
PHYSICAL REVIEW A 99, 022109 (2019)

Ensemble of Lindblad’s trajectories for non-Markovian dynamics
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Although Lindblad developed a general Markovian theory for open-system dynamics while maintaining the
positivity of the density matrix, a practical non-Markovian analog remains a significant problem. Here, we
present an extension of Lindblad’s theory through an ensemble of Lindbladian trajectories originating from
different times in the system’s history. This approach provides an account of the system’s memory while
preserving the positivity of the density matrix. We apply the theory to the Jaynes-Cummings model to capture
non-Markovian dynamics in the weak and strong coupling regimes.
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I. INTRODUCTION

Non-Markovian effects are important in a variety of phys-
ical quantum systems including but not limited to exciton
transport in photosynthetic light harvesting complexes [1–8],
qubits and quantum control [9–12], and quantum optics [13].
Yet despite their prevalence there remain many unanswered
questions in the theoretical treatment of such systems [14,15].
The most common starting point for treating non-Markovian
dynamics is an exact kernel equation, which is challenging to
solve in the most general case [14,15]. Many methods approx-
imate the kernel through perturbative techniques, and while
they are effective for small perturbations about the Markovian
limit, they can in general limit or destroy the positivity of
the density matrix [16]. Other methods have been developed
to treat non-Markovian dynamics with built-in positivity in
specific systems [17–29], but the development of a general,
practical framework for non-Markovian approximations that
maintains the positive semidefiniteness of the density matrix
remains a significant problem [19]. Recent work has produced
an exact, closed form master equation which allows the treat-
ment of non-Markovian dynamics for Gaussian environments
[30]. Other related work includes quantum jump methods and
trajectory approaches [31–37].

Lindblad developed an elegant, completely general theory
for treating Markovian dynamics in an open quantum system
while maintaining the positive semidefinite property of the
density matrix for all time [38–40]. In this paper we present
a general extension of Lindblad’s theory to the case of non-
Markovian quantum systems. While Lindblad examines the
equation of motion for a single trajectory that generalizes
the Liouville equation to the Markovian case, we consider an
ensemble of Lindbladian trajectories (ELT) which allows for
an accurate calculation of dynamics in the strong coupling,
non-Markovian regime while maintaining the positivity of
the density matrix. The constraint of the system’s density
matrix to be consistent with the total density matrix (i.e., pos-
itive semidefinte) has connections to the N-representability
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problem in which a p-particle density matrix is constrained to
represent an N-particle density matrix with N > p [41–45].
The ELT theory is also related to post-Markovian methods
[31,33,37] based on Kraus maps, with further details given
below. The Jaynes-Cummings model is used to demonstrate
the accuracy of the ELT method as it is exactly solvable
and many perturbative methods fail at capturing the exact
dynamics in the strong coupling regime [46,47].

II. ENSEMBLE OF LINDBLADIAN
TRAJECTORIES METHOD

An ensemble of Lindbladian trajectories is used to calcu-
late the density matrix at a given time t . In Fig. 1 the blue
density matrix D(t ) at time t is the actual density matrix
of the quantum system while the green density matrices are
auxiliary variables, each of which represents a trajectory in the
ensemble. Each green density matrix D̃(t, τi ) is the endpoint
of a Lindblad trajectory originating from an actual (blue) den-
sity matrix at time t − τi. The ensemble of the green density
matrices D̃(t, τi ) originating at different times t − τi defines
the actual (blue) density matrix at time t . Formally, this is
equivalent to

D(t ) =
N∑

i=1

ω(τi )D̃(t, τi ) (1)

=
N∑

i=1

ω(τi )e
L(τi )D(t − τi ), (2)

where N is an integer controlling the maximum amount
of memory, ω(τi ) are the weights of the trajectories and
eL(τi ) are the propagators. Each trajectory is a Kraus map
which we can represent by the following Lindbladian
trajectory:

dD

ds
= −i[H, D] +

N∑
j=1

CjDC†
j − 1

2
{C†

j Cj, D}, (3)

where s represents an effective time within the mapping
and the Lindblad terms Cj account for the interaction of
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FIG. 1. An ensemble of Lindbladian trajectories whose weighted
ensemble produces the density matrix at time t .

the N-electron system with its environment through differ-
ent dissipative channels [39]. From the properties of Kraus
maps the trajectories produce positive semidefinite density
matrices whose ensemble is also positive semidefinite [48].
If the Hamiltonian and the Lindbladian matrices are all time
dependent, that is dependent on the effective time s, then
the Lindblad trajectory can approach an arbitrary Kraus map.
The proof follows from writing the Lindblad trajectory as a
composition of Kraus maps where all but one of the Kraus
maps can be chosen to be the identity operation.

This ansatz is an extension of the Lindbladian theory to
the general case of non-Markovian dynamics under the mild
assumption that each point in history can be mapped to the
present using a Kraus map. Because any positive semidef-
inite density matrix at time t can be generated by a Kraus
map from a historical density matrix at t − τ [9–12,48], the
assumption is equivalent to requiring that each trajectory’s
density matrix be positive semidefinite. Any positive semidef-
inite density matrix can be generated from an initial density
matrix from a Kraus map. By assuming the positivity of each
individual map in the ensemble average, we can select the
nonnegative weights in the ensemble average without any
additional restriction. Although Kraus maps are employed in
other open-system theories such as the post-Markovian meth-
ods [31,33,37], ELT does not rely on measurement theory to
generalize the Lindblad equation, which leads to a different
set of final equations.

III. RELATIONSHIP TO KERNEL METHODS

The general kernel equation is given by

dD

dt
=

∫ t

0
K(t, τ )D(t, τ )dτ, (4)

where D(t, τ ) is the reduced density matrix at time t − τ and
K(t, τ ) is the memory kernel [14,15]. We can convert Eq. (2)
into the form of Eq. (4) by taking the summation in Eq. (2) to
the continuous limit, differentiating each side of Eq. (2) with
respect to t , and invoking the Leibnitz rule:

dD(t )

dt
=

∫ t

0
ω(τ )eL(τ ) dD(t, τ )

dt
dτ, (5)

where t is the current time, t − τ is the initial time for each
trajectory, eL(τ ) are the Kraus maps, and ω(τ ) are the weights.
The key difference between the Eq. (5) and the standard kernel

equation in Eq. (4) is that the integral depends on the first
derivative of the density matrix with respect to time while the
standard method relies on just the density matrix. Equation (5)
is the key equation because the time derivative is central to the
process of maintaining a positive semidefinite density matrix.
It also has the benefit of transforming the integro-differential
equation in Eq. (4) into a simplified type 2 Volterra equation
[49,50], which has well-developed numerical solutions [51].

IV. JAYNES-CUMMINGS MODEL

To illustrate this theory, we consider the damped Jaynes-
Cummings model on resonance with and without detun-
ing. This model consists of a single excitation in a two-
level system coupled to a reservoir of harmonic oscillators
[14,17,46,47]. The Hamiltonian for the model is

Ĥ = ω0

2
σ̂z +

∫
ωâ†

ωâω + λ(σ̂+âω + σ̂−â†
ω )dω, (6)

where ω0 is the two-level system’s transition frequency and
λ is inversely proportional to the reservoir correlation time.
The â†

ω and âω are the creation and annihilation operators for
frequency modes ω, and σ̂x,y,z are the Pauli spin operators with
σ̂± = (σ̂x ± σ̂y)/2 [17]. The spectral density of the bath is

J (ω) = 1

2π

γ0λ
2

(ω0 − � − ω)2 + λ2
, (7)

where γ0 is inversely proportional to the time scale of system
changes and � is the amount of detuning [14]. Here the decay
rates and populations in the excited level from our method
are compared to those calculated exactly from the spectral
density of the bath [14,17]. We also compare our results with
the Markovian solution, the solution to the generalized master
equation to second order (GME2), and the time convolution-
less solution to second (TCL2) and fourth (TCL4) orders
[52,53].

In the weak coupling case without detuning the correla-
tion time of the reservoir is set to one-fifth of the system’s
timescale, and in the strong coupling case without detuning
the correlation time of the reservoir is set to five times the
system’s timescale. In all calculations we set the Markovian
decay rate γ0 to 1.091. The trajectory of each density matrix
in the ELT method was computed with the computer algebra
system Maple [54].

The excited-level population of the Jaynes-Cummings
model has the following closed-form solution in the
Markovian limit:

D11(t ) = D11(0)e−γ0t . (8)

In the ELT method we consider an ensemble of such Lindbla-
dian trajectories, one trajectory from each historical point in
time,

D11(t ) =
∑

i

ω(τi )D̃11(t, τi ), (9)

where D̃11(t, τi ) = D11(t − τi )e−γ (τi )(t−τi ). To match the dy-
namics from the ELT method with the dynamics from the
full quantum system including both system and bath, we
optimized both the weights ω(τi ) and the decay parame-
ters γ (τi ) simultaneously with a least squares fit to the
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(a)

(b)

FIG. 2. The exact (black line), Markovian (green triangles),
GME2 (green-blue inverted triangles), TCL2 and TCL4 (teal di-
amonds and blue squares respectively), and ELT (red circles)
(a) populations of the excited level and (b) errors relative to the exact
solution are shown for the weak coupling limit (λ = 5γ0, γ0 = 1.091,
� = 0) in the Jaynes-Cummings model. The ELT method shows
closest agreement to the exact solution.

exact solution by a sequential programming algorithm in
Maple [55].

Figure 2(a) shows the excited-level populations of the
Markovian, ELT, and exact solutions while Fig. 2(b) shows
the errors in the excited-level population from all methods
relative to the exact solution. The excited-level population of
the Markovian solution decays too quickly at short times and
too slowly at longer times. While the perturbative methods,
GME2, TCL2, and TCL4, improve upon this behavior, only
the ELT method agrees with the exact solution to the precision
of the numerical solution.

In the strong coupling limit the excited-level population
of each method is shown in Fig. 3. The Markovian, TCL2,
and TCL4 methods give physical results and the correct long-
time behavior; they capture only the decay of the population
and not its recovery. The GME2 solution exhibits unphysical
behavior in the form of large negative probabilities for finding
the model in its excited level. The ELT method correctly pre-
dicts the recovery, matching the exact solution to the precision
of the numerical methods. Physically, the recovery arises from
the energy previously transferred to the surroundings driving
the system back into the excited state, which is often referred
to as a back-flow of energy or information.

FIG. 3. The population of the Jaynes-Cummings excited level in
the strong coupling limit (λ = 0.2γ0, γ0 = 1.091, � = 0) is shown
as a function of time for the exact (black line), Markovian (green
triangles), GME2 (green-blue inverted triangles), TCL2 and TCL4
(teal diamonds and blue squares respectively), and ELT (red circles)
solutions. The ELT method agrees with the exact solution for all
times.

Finally, we consider the Jaynes-Cummings model with de-
tuning, comparing the Markovian, TCL4, and ELT solutions
in Fig. 4, where λ = 0.3γ0 and � = 2.4γ0. In this case the
ensemble of such Lindbladian trajectories is augmented with
trajectories of the hole density matrix:

D11(t ) =
∑

i

[ω(τi )D̃11(t, τi ) + ω̃(τi ){1 − Q̃11(t, τi )}] (10)

where Q̃11(t, τi ) = Q11(t − τi )e−γ (τi )(t−τi ) in which Q11(t ) =
1 − D11(t ). Physically, consideration of the hole density ma-
trix is equivalent to including an additional Lindbladian chan-
nel corresponding to the decay of a hole from the upper level
(or excitation of a particle from the lower level). It is seen that
although the detuning case is inherently non-Lindbladian by
nature [14], due to the ensemble nature of the ELT method,
the exact dynamics are still captured.

V. CONCLUSIONS

The most general form of treating non-Markovian
dynamics in open quantum systems is with the kernel
equation (4). However, practical use of the kernel equation is
computationally challenging in its general form.
Approximations to the kernel, especially those that rely

FIG. 4. The population of the excited level of the Jaynes-
Cummings model in the strong coupling, detuning limit (λ = 0.3γ0,
γ0 = 1.091, � = 2.4γ0) is shown as a function of time for the
Markovian (green triangles), TCL4 (blue squares), and ELT (red
circles) solutions. The ELT agrees with the TCL4 solution.
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upon perturbative arguments, tend to sacrifice the positive
semidefiniteness of the density matrix. Here, we have
presented a general theory that considers an ensemble of
Lindbladian trajectories originating from different times
in the system’s history. In this manner the approach
provides a complete account of the system’s memory in
a framework that preserves the positivity of the system’s
density matrix for all time. The Lindbladian trajectories
capture the full range of potential dynamics because of the
one-to-one mapping between Lindbladian trajectories and
Kraus maps. Application of ELT to the Jaynes-Cummings
model demonstrates its ability to capture non-Markovian

dynamics in both the weak and strong coupling regimes. As
with Lindblad’s theory, the present generalization requires
physical insight from theory and/or experiments to select the
appropriate system-bath parameters. Future work will further
explore the application of these results to the more accurate
description of non-Markovian quantum systems.
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