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Resonance (quasinormal) states correspond to non-Hermitian solutions to the Schrödinger equation obeying
outgoing boundary conditions which lead to complex energy eigenvalues and momenta. Following the normal-
ization rule for resonance states obtained from the residue at a complex pole of the outgoing Green’s function to
the problem, we propose a definition of expectation value for these states and use it to investigate the extent of
validity of the Heisenberg uncertainty relations for potentials that vanish after a distance. We derive analytical
expressions for the expectation values involving the momentum and the position for a given resonance state and
find in model calculations that the Heisenberg uncertainty relations are satisfied for a broad range of potential
parameters. A comparison of our approach with that based on the regularization method by Zel’dovich yields
very similar results except for resonance energies very close to the energy threshold. Our work shows that the
validity of the Heisenberg uncertainty relations may be extended to the non-Hermitian resonance-state solutions
to the Schrödinger equation.
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I. INTRODUCTION

Non-Hermitian solutions to the Schrödinger equation were
already considered in the early days of quantum mechanics.
As is well known, in 1928 Gamow derived the analytical
expression of the exponential decay law in his studies on α

decay by imposing outgoing (radiative) boundary conditions
to the solutions of the time-dependent Schrödinger equation
of the problem and hence to complex energy eigenvalues
[1,2]. Some years later, in 1939, Siegert considered outgoing
boundary conditions in a time-independent framework, to
show that the description of an isolated sharp resonance in
the scattering of a particle by a potential of finite range could
be derived from the resonant eigenstate associated with the
corresponding complex energy [3]. In these non-Hermitian
descriptions, the real part of the complex energy represents
the energy of the particle and the inverse of the imaginary part
is directly related to the time scale of the resonance process.
However, the eigenfunctions associated with complex energy
eigenvalues increase exponentially with distance and as a
consequence the usual rules concerning normalization and
eigenfunction expansions do not apply. Since for scattering
problems the resonance eigenstates are evaluated at a finite
distance the above issues did not prevent, however, the formu-
lation of nuclear reactions based on these ideas [4,5].

The question of the normalization of resonance states was
given considerable attention in the 1960s and 1970s. In fact,
various approaches led to similar normalization conventions.
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Zel’dovich proposed a regularization method [6] that was
later adopted by Bergreen [7]. Romo obtain a normalization
condition as the residue at a complex pole of the outgoing
Green’s function to the problem in terms of Jost functions
[8], which was shown to be identical with that obtained by
Zel’dovich [9]. Another procedure referred to as the complex
scaling or rotation method [10,11] yields a similar normaliza-
tion condition for elastic processes as that by Zel’dovich [6]
and Romo [8]. Here we consider the normalization condition
discussed by García-Calderón and Peierls [12] which also
involves the behavior of the Green’s function near a complex
pole but leads to a normalization rule which is given in terms
of resonance states and goes into the usual rule in the case of
bound states. This rule also extends the validity of first-order
perturbation theory to resonance states, a point made also by
Hokkyo following a different approach [13,14] and, as shown
below, it also coincides with the Zel’dovich prescription. The
study of the analytical properties of the outgoing Green’s
function paves the way to derive eigenfunction expansions
involving resonance states [7,8,12,15–19]. Since the 1990s up
to the present time, one may find in the literature an increasing
number of works dealing with distinct aspects of these states,
as discussed, for example, in Refs. [20–27] and references
therein. It is worth mentioning the generalization of the phe-
nomenon of diffraction in time, first discussed by Moshinsky
[28], to potentials of finite range by García-Calderón and
Rubio [29]. See also [30]. It is also worth mentioning work
concerning resonance (quasinormal) solutions to the Klein-
Gordon equation in open electromagnetic cavities [31] and in
gravitational systems [31,32].

Recently, it has been shown using the approach developed
by García-Calderón, as reviewed in Refs. [23,33], that the
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time evolution of single-particle decay by tunneling out of
a potential in terms of resonance states and continuum wave
functions yields exactly the same result for interactions that
vanish beyond a distance [34]. (see also [35]). An essential
difference between these approaches is that the former pro-
vides analytical expressions for the distinct decaying regimes,
whereas the later consists of a “black-box” numerical calcu-
lation. Since resonance states correspond to non-Hermitian
solutions to the Schrödinger equation and therefore lie outside
the standard formalism of quantum mechanics, the above
results have prompted us to explore some fundamental issues
concerning these states. One of these refers to the Born rule
[27] and the one discussed here concerns the Heisenberg
uncertainty relations.

This work, therefore, explores the Heisenberg uncertainty
relations using resonance states. This requires one to define
the expectation value of a given operator in terms of these
states. This issue was addressed by a number of authors
some decades ago [8,13,36,37]. We shall not be concerned
here with the complex scaling method [38–40] mainly be-
cause it requires distinct mathematical considerations. In any
case, as far as we know, the study of the Heisenberg un-
certainty relations involving resonance states has not been
addressed before.

The paper is organized as follows. In Sec. II we review
some relevant properties of resonance states. Section III pro-
vides both our definition for the expectation value and that in-
volving the regularization method in terms of resonance states
and gives the corresponding Heisenberg uncertainty relations.
In Sec. IV we illustrate our results using two solvable models
and we end with the conclusions in Sec. V.

II. RESONANCE STATES

We shall be concerned here with the time-honored problem
of a single particle subjected to a spherically symmetric real
potential that vanishes exactly beyond a distance, i.e., V (r ) =
0, r > a. For simplicity of the discussion we shall refer to
the case of zero angular momentum, though the extension
to higher angular momentum is straightforward. Our analysis
will be therefore equivalent to a description on the half-line in
one dimension.

Resonance (quasinormal) states obey the Schrödinger
equation to the problem with the complex energy eigenvalues
[1–5]. Using units h̄ = 2m = 1 we may write

[En − H ]un(r ) = 0, (1)

where En = k2
n = En − i�n/2. Since kn = αn − iβn, then

En = α2
n − β2

n and �n = 4αnβn. The Hamiltonian H in (1)
reads

H = − d2

dr2
+ V (r ). (2)

The solutions un(r ) to Eq. (1) vanish at the origin and satisfy
outgoing (radiative) boundary conditions, namely,

un(0) = 0,

[
d

dr
un(r )

]
r=a−

= ikn un(a). (3)

The expression on the right-hand side of (3) follows from the
fact that, for r > a,

un(r ) = Dne
iknr = Dne

iαnrβnr , (4)

which yields a divergent result for the usual normalization
rule. Due to time-reversal invariance, Eq. (1) admits also the
solutions k−n = −k∗

n and u−n(r ) = u∗
n(r ) [5]. It turns out that

the set of complex values {kn} corresponds to the poles of
the outgoing Green’s function to the problem, which are the
same as those of the corresponding S(k) matrix. They are
distributed in the complex k plane in a well-known manner
and are simple except in special cases. We assume that such
is the case here. In general they lie either on the positive
imaginary axis, corresponding to bound states, or in the lower
half of the k plane, corresponding to antibound states (lying
on the negative imaginary k axis) and to the infinite set of
resonance states [41].

As mentioned above, another form to define resonance
states is from the residue ρn(r, r ′) at a given pole kn of the
outgoing Green’s function to the problem derived in Ref. [12]
in the energy plane adapted for the k plane [23], namely,

ρn(r, r ′) = un(r )un(r ′)
2kn

{ ∫ a

0 u2
n(r ) dr + (i/2kn)u2

n(a)
} . (5)

It is worthwhile to emphasize that the set of poles {kn}, and
hence the states {un(r )}, vary as a function of the parameters
that define the potential. This means that each pole follows
a trajectory along the complex k plane as a function of the
potential parameters and hence, as noticed by Nussensveig
many years ago, a complex pole may become a bound state
or vice versa [42]. For bound states, i.e., kb = iγb, with γb

a real positive number, the expression within brackets in (5)
yields exactly the usual normalization rule of a bound state,
namely,

i

2kb

u2
b(a) = 1

2γb

u2
b(a) ≡

∫ ∞

a

u2
b(r ) dr, (6)

where ub(r ) = Db exp(−γbr ). This suggests to adopt in gen-
eral the normalization rule for resonance states [12,23] as∫ a

0
u2

n(r )dr + i

2kn

u2
n(a) = 1. (7)

It might be of interest to add that the normalization condi-
tion given by (7) is physically satisfactory in that it extends
the validity of first-order perturbation theory for a change
in the internal potential of the system, by which the change in
the energy eigenvalue is given as the integral of the perturbing
potential times the square of the wave function [12].

It might be also of interest to refer to some sort of orthonor-
mality condition concerning resonance states. Using Green’s
formula between Eq. (1) times um(r ) and similar equation for
um(r ) times un(r ), subtracting and integrating the resulting
expression along the internal interaction region and using the
corresponding boundary conditions for un and um, allows us
to write, in view of (7), the orthonormality condition [23]∫ a

0
un(r )um(r ) dr + i

kn + km

un(a)um(a) = δnm. (8)

Another useful expression which follows from the expan-
sion of the outgoing Green’s function in terms of resonance
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states [23],

G+(r, r ′; k) =
∞∑

n=−∞

un(r )un(r ′)
2kn(k − kn)

, (r, r ′)† � a, (9)

is the closure relation [23],

1

2

∞∑
n=−∞

un(r )un(r ′) = δ(r − r ′), (r, r ′)† � a, (10)

where the notation (r, r ′)† � a means that the above expres-
sions hold along the internal interaction region and at the
boundary values except when r = r ′ = a.

Using (10) one may immediately expand an arbitrary func-
tion �(r ) defined in the interval (0, a) as

�(r ) = 1

2

∞∑
n=−∞

Cnun(r ), r � a, (11)

where the coefficient Cn reads

Cn =
∫ a

0
�(r )un(r ) dr. (12)

The time dependence of a resonance state is given by

un(r, t ) = un(r )e−iEnt e−�nt/2, (13)

which shows that the amplitude of a resonant state decreases
exponentially with time. Since the absolute value square of the
resonance function varies with time, it is of interest to see the
result of applying the continuity equation, or more precisely
of the continuity equation integrated along the internal region
of the interaction,

∂

∂t

∫ a

0
|un(r, t )|2 dr = −2 Im

[
u∗

n(r, t )
∂

∂r
un(r, t )

]a

0

. (14)

Now, using the above expression (13) and the boundary
conditions given by (3) allows us to write

�n = 2αn

|un(a)|2∫ a

0 |un(r )|2 dr
, (15)

which establishes that the decay width is proportional to the
velocity of the decaying particle times the probability to find
the particle at the surface divided by the probability to find
it inside the interaction region. It is worth noticing that (15)
depends on the absolute value squared |un(r )|2, whereas the
normalization condition given by (7) depends on u2

n(r ).
Since one of the model calculations is in one dimension,

we end this section by mentioning that in one dimension the
outgoing boundary condition occurs at both end points of
the system and hence the normalization condition involves
an additional surface term. However, the expressions for the
resonance expansions and the closure relationship remain the
same [23,29].

III. EXPECTATION VALUES

In analogy with the normalization condition (7), one could
define the expectation value of an operator O in terms of
resonance states as

〈O〉 =
∫ a

0
un(r )Oun(r ) dr + i

2kn

[un(r )Oun(r )]r=a. (16)

A similar definition has been also given by Hokkyo [13,14]
and also in the definition of internal product involving the
Klein-Gordon equation by Leung et al. [31]. Clearly, the
definition given by (16) is unsuitable on physical grounds
since it yields a complex quantity. For example, choosing in
(16) O = H , the Hamiltonian to the system, using (7), yields
by substitution in (16)

〈H 〉 = En − i 1
2�n. (17)

Equation (17) suggests, however, that the real part of (17)
yields the correct answer and hence it prompts one to define
the expectation value of an operator in a given resonance state
as the real part of (16), namely,

〈〈O〉〉 ≡ Re 〈O〉 . (18)

Clearly, for O = H , we obtain

〈〈H〉〉 = En. (19)

Since our aim is to calculate the Heisenberg uncertainty re-
lations, it is required to calculate Eq. (18) for O = p, p2, r ,
and r2.

For O = p = −id/dr , integrating by parts the integral
term in (16), and using the boundary condition at r = a given
in (3) to calculate the surface term in (16), one obtains

〈〈p〉〉 = 0. (20)

For O = p2 = −d2/dr2, one may use the identity p2 = H −
V (r ), that follows from (2), to write using (17)

〈〈p2〉〉 = En − Re

{∫ a

0
V (r )u2

n(r ) dr

}
. (21)

It is worth discussing a relevant implication of Eq. (21).
One should notice, since kn = αn − iβn and hence En = k2

n =
α2

n − β2
n , that in the limit of a vanishing potential the imagi-

nary part of the complex poles goes to ∞, namely,

kn → αn − i∞, (22)

as expected for the free case where complex poles are absent.
It follows then, by inspection of (21), that in general there
might be potentials, usually very shallow potentials, where for
a given un(r ), βn > αn, and hence 〈〈p2〉〉 < 0, which seems
unacceptable on physical grounds. Hence, in order to have
〈〈p2〉〉 > 0, the potential parameters must guarantee that the
complex poles fulfill αn > βn. These poles are called proper
poles and are usually the case for most problems of physical
interest.

Using Eqs. (16) and (18) for O = r and respectively for r2

leads to the expressions

〈〈r〉〉 = Re

{∫ a

0
ru2

n(r ) dr + i

2kn

au2
n(a)

}
(23)

and

〈〈r2〉〉 = Re

{∫ a

0
r2u2

n(r ) dr + i

2kn

a2u2
n(a)

}
. (24)

For bound states, however, since kb = iγb, the integral over
the full space is well defined and hence one may write the
expectation value in the usual way.
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A. Regularization procedure

In 1961 Zel’dovich suggested a regularization procedure
to obtain a normalization rule for resonance states. This
procedure consists in introducing a factor exp(−εr2) into the
corresponding integrand of the usual normalization condition
and subsequently taking the limit as ε → 0, namely,

lim
ε→0

∫ ∞

0
e−εr2

u2
n(r ) dr = 1. (25)

In 1968, Berggren adopted the normalization procedure of
Zel’dovich and generalized it to define the expectation value
of an operator O as

〈O〉B = lim
ε→0

∫ ∞

0
e−εr2

un(r )O un(r ) dr. (26)

Noticing, however, that (26) yields a complex quantity,
Berggren suggested to define the expectation value of an
operator as [7]

〈〈O〉〉B = Re 〈O〉B , (27)

which yields the same result for O = H as that given by
Eq. (19), namely [7],

〈〈H〉〉B = En. (28)

Since the potential vanishes exactly beyond the distance a,
it is convenient to write (26) as

〈O〉B =
∫ a

0
un(r )Oun(r ) dr

+ lim
ε→0

∫ ∞

a

e−εr2
un(r )Oun(r ) dr. (29)

As shown in Appendix A, the regularization procedure yields

〈〈p〉〉B = 0 (30)

and

〈〈p2〉〉B = En − Re

{∫ a

0
V (r )u2

n(r ) dr

}
, (31)

which are results identical to those given by (20) and (21).
Let us now refer to the case O = rm. Using (4) we may

write (26) as

〈rm〉 =
∫ a

0
rm u2

n(r ) dr + lim
ε→0

D2
n

∫ ∞

a

e−εr2
rm ezr dr, (32)

where we have defined z = 2ikn and Dn stands for the normal-
ization coefficient of the resonance state. The second integral
in Eq. (32) may be calculated with the help of the identity
given Eq. (A5) of Appendix A to get

〈rm〉 =
∫ a

0
rm u2

n(r ) dr − D2
n

∂m

∂zm

[
eza

z

]
. (33)

Then by substituting the variable z = 2ikn in (33) we obtain
the expression

〈rm〉 =
∫ a

0
rm u2

n(r ) dr + D2
n

1

(2i)m
∂m

∂km
n

[
i

2kn

e2ikna

]
. (34)

Recalling that u2
n(a) = D2

ne
2ikna , we may verify using (34),

so that the case with m = 0 corresponds to the normalization

condition given by (7), namely,

lim
ε→0

∫ ∞

0
e−εr2

u2
n(r ) dr =

∫ a

0
u2

n(r ) dr + i

2kn

u2
n(a) = 1,

(35)
which shows that the normalization procedure given by (7)
and that by Zel’dovich are equivalent. Using Eq. (34) with
m = 1 yields, using (27),

〈〈r〉〉B = Re

{∫ a

0
r u2

n(r ) dr + i

2kn

au2
n(a)[1 + An(a)]

}
,

(36)
where

An(a) = i

2kna
. (37)

In a similar fashion, using Eq. (34) with m = 2 yields

〈〈r2〉〉B = Re

{∫ a

0
r2 u2

n(r ) dr + ia2

2kn

u2
n(a)[1 + Bn(a)]

}
,

(38)
where

Bn(a) = i

kna
− 1

2(kna)2
. (39)

It turns out that, for a bound state, kn = iγn, the expectation
values for r and r2, given respectively by (36) and (38), give
the correct answer. This may be verified by direct partial
integration since in this case it is not necessary to make
use of the regularization procedure. However, it follows by
inspection of the corresponding terms, given by (37) and
(39), that the resulting contributions are in general very small
unless γna 	 1. Since this may happen in general for a bound
state very close to the energy threshold, one may expect that
in general these contributions will be negligible. A similar
argument may be employed for a resonance state very close
to the energy threshold, namely, |kna| 	 1.

Summarizing, one sees that (18) and (27) yield identical
results, in addition to the normalization condition, for O =
H,p, p2. On the other hand, we find that for O = r, r2 both
procedures yield different results. However, since in general
|kna| >> 1, one may expect the terms An(a) and Bn(a) to
provide small corrections to 〈〈r〉〉 and 〈〈r2〉〉.

B. Heisenberg uncertainty relations

Using the expression for the expectation value of an oper-
ator O given by (18), the corresponding dispersion, defined in
the usual way, reads

�O =
√

[〈〈O2〉〉 − 〈〈O〉〉2]. (40)

It follows from (40) that the expression for the Heisenberg
uncertainty relations (�r )(�p), in view of (20), may be
written as

�r�p =
√

[〈〈r2〉〉 − 〈〈r〉〉2] 〈〈p2〉〉, (41)

which may be evaluated using Eqs. (21), (23), and (24).
In a similar fashion, for the regularization procedure,

[�r�p]B =
√[ 〈〈r2〉〉B − 〈〈r〉〉2

B

] 〈〈p2〉〉B, (42)

which may be evaluated using Eqs. (31), (36), and (38).
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As is well known, the Heisenberg uncertainty relations
(recalling that in our units h̄ = 1) must satisfy

�r�p � 1
2 , (43)

and similarly, for the regularization procedure,

[�r�p]B � 1
2 . (44)

One dimension

As pointed out above, in one dimension the potential has
an additional endpoint, i.e., V (x) = 0 for x < 0 and x > L. It
may be shown that the corresponding normalization condition
reads [29]∫ L

0
u2

n(x)dx + i

2kn

[
u2

n(0) + u2
n(L)

] = 1 (45)

and∫ L

0
un(x)um(x)dx + i

kn + km

[un(0)um(0) + un(L)um(L)]

= δnm. (46)

In a similar fashion as discussed for the three-dimensional
case, the expectation value of an operator O now reads

〈O〉 =
∫ L

0
un(x)Oun(x) dx + i

2kn

[un(x)Oun(x)]x=0

+ i

2kn

[un(x)Oun(x)]x=L. (47)

As a consequence, the expectation values of x and x2 look
similar to those given by Eqs. (23) and (24) except that each
of them has an additional surface term. Also, using Eq. (46),
those of p and p2 look similar to Eqs. (20) and (21).

Similarly, for the regularization method in one dimension
the expressions for 〈xm〉B and 〈pm〉B read

〈xm〉B =
∫ L

0
xmu2

n(x)dx + 1

(2i)m
A2

n

∂m

∂km
n

(
i

2kn

e2iknL

)

+ (−1)mu2
n(0)

1

(2i)m
∂m

∂km
n

(
i

2kn

)
, (48)

where un(L) = Ane
iknL, and

〈pm〉B = 1

im

∫ L

0
un(x)

dmun(x)

dxm
dx

+ i

2
km−1
n

[
u2

n(L) + (−1)m u2
n(0)

]
. (49)

From the above equation it follows that 〈p〉B = 0 and

〈p2〉B = En −
∫ L

0
V (x) u2

n(x) dx, (50)

which are similar to the result in three dimensions.

IV. MODELS

In order to investigate to what extent, if any, the Heisenberg
uncertainty relations are satisfied using resonance states, we
discuss below two potential models, the s-wave δ-shell po-
tential in three dimensions and the rectangular barrier in one
dimension.

A. Delta-shell potential

The s-wave δ-shell potential constitutes an exactly solv-
able model which allows us to calculate the corresponding
resonance states and complex poles. This is a model that
has been widely used in scattering and decay problems. A
nice feature of this model is that, for λ → ∞, the region
0 < r < a becomes the well-known problem of a box with
an infinite wall, which corresponds to a Hermitian problem. A
nice feature of this model is that it permits one to analyze how
a non-Hermitian open system becomes a Hermitian closed
system. This potential is defined as

V (r ) = λδ(r − a), (51)

where λ refers to the intensity of the potential.
The resonance-state solutions to Eq. (1) with the potential

given by (51) read

un(r ) =
{

An sin(knr ), r � a,

Dn eiknr , r � a.
(52)

From the continuity of the above solutions and the disconti-
nuity of its derivatives with respect to r (due to the δ-function
interaction) at the boundary value r = a, it follows that the
complex kn’s satisfy the equation

J (kn) = 2ikn + λ(e2ikna − 1) = 0. (53)

For λ > 1 one may write approximate analytical solutions to
Eq. (53) as [23,33]

kn ≈ nπ

a

(
1 − 1

λa

)
− i

1

a

(nπ

λa

)2
. (54)

As is well known, using the above expression as an initial
value in the Newton-Rapshon iteration method,

kr+1
n = kr

n − J (kr
n)

J̇ (kr
n)

, (55)

where J̇ = [dJ/dk]k=kn
, one may obtain the kn’s with the

desired degree of approximation.
As λ → 0, one may also obtain by manipulating (53) that

kn =
(

n − 1

2

)
π

a
− i∞. (56)

The above limit holds also for a potential barrier of height V0

and width a [43], both cases in agreement with Eq. (22).
The normalization coefficient for resonant states may be

evaluated by substitution of Eq. (52), for r � a, into Eq. (7),
to obtain the analytical expression

An =
[

2λ

λa + e−2ikna

]1/2

, (57)

and similarly from the continuity of the solutions un(r ) at
r = a,

Dn = −
[

2λ

λa + e−2ikna

]1/2
kn

λ
e−2ikna. (58)

1. Infinite wall potential

As mentioned above, as λ → ∞, the system becomes a
closed system whose solutions are well known in introductory
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FIG. 1. Plot of the first three poles kn = αn − iβn on the fourth
quadrant of the complex k plane as a function of the intensity λ of the
δ-shell potential given by Eq. (51) with a = 1. For λ → ∞ the poles
kn go, as described by Eq. (54), into the infinite box model solutions
and as λ → 0 the corresponding imaginary parts βn go to −∞, as
described by Eq. (56). See text.

courses in quantum mechanics. Indeed from (54), (57), and
(58) one sees immediately that in the above limit

k±n → ±nπ

a
, (59)

and

An → (2/a)1/2, Dn → 0. (60)

As a result, the non-Hermitian resonance solutions un(r ),
given by (52), go into the well-known infinite wall Hermitian
solutions φn(r ),

φ±n(r ) = ±
(

2

a

)1/2

sin
[nπ

a
r
]
, (61)

with n = 1, 2, 3, . . .. Notice, since φ−n(r ) = −φn(r ), that in
the limit λ → ∞ the sum rule given by Eq. (10) becomes the
usual relation,

∞∑
n=1

φn(r )φn(r ′) = δ(r − r ′), 0 < (r, r ′) < a. (62)

As is well known from quantum mechanics textbooks, the
uncertainty relations for the infinite wall model read

[(�r ) (�p)]iw =
√

n2π2

12
− 1

2
. (63)

Let us now discuss the results of our calculations.
Figure 1 exhibits a plot of the first three complex poles

kn, with n = 1, 2, 3, on the fourth quadrant of the complex
k plane. We recall that the poles k−n located on the third
quadrant of the k plane fulfill, from time-reversal consider-
ations, that k−n = −k∗

n. As pointed out above, as λ → ∞ the
complex poles kn become real and go into the infinite wall box
model solutions (59), whereas, as λ → 0, the imaginary part
of the poles βn → −∞, in agreement with Eq. (56).

In Fig. 2 we plot the Heisenberg uncertainty relations
�r �p as functions of λ to make a comparison between

0.0 50.0 100.0 150.0 200.0
0.4

0.5

0.6

Δr
Δp

λ

FIG. 2. Plot of the uncertainty �r�p for a δ-shell potential as a
function of the intensity λ, using Eqs. (41) (blue solid line) and (42)
(orange dashed line) for the case n = 1. The uncertainty �r�p for
the infinite well (λ → ∞) (red solid square) [Eq. (63) with n = 1] is
also included for comparison. See text.

our prescription, given by (41) (blue solid line), and the
regularization procedure, given by (42) (orange dashed line).
We consider the case n = 1, and as may be appreciated the
Heisenberg uncertainty relationships obey �r �p � 1

2 for a
broad range of values of λ. For λ � 7 both (41) and (42) are
indistinguishable, which implies that the corrections An(a)
and Bn(a), given respectively by (37) and (39), are negligible.
The corresponding value of �r �p for the infinite wall,
computed using Eq. (63) for n = 1, is indicated with a red
solid square in Fig. 2. It is worth noticing that, as λ increases,
�r �p approaches the value corresponding to the infinite
wall model. Notice also that the uncertainty relations are not
fulfilled for small values of λ. For example, λ � 5, for the case
of Eq. (43), and λ � 7, for the case of Eq. (44).

B. Rectangular potential

Here we consider the well-known rectangular potential in
one dimension, defined as

V (x) =
{

V0, 0 � x � L,

0, x < 0, x > L,
(64)

where V0 is a constant representing the barrier height and L is
the corresponding barrier width. As is the case for any finite-
range potential, the rectangular potential possesses an infinite
number of complex poles {kn}.

The resonance-state solutions to Eq. (1) with the potential
given by (64) read

un(x) =

⎧⎪⎨
⎪⎩

Fn e−iknx, � 0,

An eiqnx + Bn e−iqnx, 0 � x � L,

Dn eiknx, x � L,

(65)

where qn = [k2
n − V0]1/2. From the usual continuity condi-

tions of the above solutions at x = 0 and x = L, one obtains
the even and odd solutions to the problem. The corresponding
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0.0 10.0 20.0 30.0
-14.0

-7.0

0.0
n=1
n=2
n=3
n=4

Im
[k

]

Re [k]

FIG. 3. Plot of the first four poles kn = αn − iβn on the fourth
quadrant of the complex k plane for a fixed barrier height V0 = 10 as
a function of the barrier width L in the range from L = 100, where
they are located just above the barrier height k0 ≈ 3.16, down to L =
0.42, which shows that they migrate to higher values of αn and βn,
except the first pole. See text.

complex kn’s satisfy the equations

J(±)(kn) = e−iqn/2(kn + qn) ∓ eiqn/2(kn − qn) = 0, (66)

with the (+) sign corresponding to the even and the (−) sign
to the odd solutions. The set of complex kn’s may be obtained
by methods similar to those employed in Ref. [42] for the s-
wave rectangular barrier in three dimensions, as discussed in
Ref. [44].

Figure 3 exhibits a plot in the k plane of the motion
of the first four complex poles of the problem for a fixed
value of the potential barrier height V0 = 10 as a function
of the barrier width L. The range of values of L goes from
L = 100 to L = 0.42. Around the value L = 100, the poles
are clustering together just above the barrier height, which in
k space corresponds to the wave number k0 = √

V0 ≈ 3.16.
As L decreases, the poles move along the k plane increasing
its values of αn and βn, except the first complex pole which
migrates towards the imaginary k axis, n = 1, as discussed in
Ref. [44].

Figure 4 refers to two graphs involving the rectangular po-
tential. In Fig. 4(a) we plot for the case n = 1 the Heisenberg
uncertainty relations as functions of V0, with a fixed value of
the barrier width L = 100, to make a comparison between our
prescription (blue solid line) and the regularization procedure
(orange dashed line). One sees that both prescriptions behave
in a similar fashion and satisfy the Heisenberg uncertainty
relations for a wide range of values of V0. Figure 4(b) exhibits
a plot of the Heisenberg uncertainty relations as a function
of the barrier width L for fixed values of the potential height
V0 = 10. As may be appreciated the uncertainty relations are
also very similar for both prescriptions and are satisfied for a
large range of values of L.

To conclude this section, it is worth mentioning that the
validity of the Heisenberg uncertainty relations for a broad

0.00 0.01 0.02 0.03 0.04 0.05
0.30

0.40

0.50

0.60

0.0 2.0 4.0 6.0 8.0 10.0

0.50

0.55

0.60

Δx
 Δ

pΔx
 Δ

p

V0

(a)

0.0 25.0 50.0 75.0 100.0

0.50

0.55

0.60

2.0 3.0 4.0 5.0
0.3

0.4

0.5

0.6
Δx

 Δ
p

L

(b)

Δx
Δp

FIG. 4. Plot of the uncertainty �x �p using Eqs. (41) (blue solid
line) and (42) (orange dashed line) for a one-dimensional potential
barrier: (a) for a fixed value of the barrier width L = 100 as a
function of the barrier height V0 and (b) for a fixed value of the barrier
height V0 = 10 as a function of the barrier width L. Both cases refer
to the resonance state with n = 1. See text.

range of potential parameters is fulfilled as n increases in both
potential models.

V. CONCLUSIONS

In this work we have explored the validity of the Heisen-
berg uncertainty relations for the resonance solutions to the
Schrödinger equation for a single-particle potential in an
exact analytical fashion. Resonance states constitute a non-
Hermitian basis for potentials of arbitrary shape that vanish
exactly beyond a distance. Following the expression of the
normalization condition for resonance states, which involves
an integral contribution along the internal interaction region
plus a surface term, we have considered a definition for
the expectation value of an operator which is also given by
the sum of an integral term plus a surface contribution. We
have found that the Heisenberg uncertainty relations involving
resonance states require that the corresponding complex poles
are proper, i.e., αn > βn. Otherwise, the resonance energy
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becomes negative and that implies a negative expectation
value for the momentum square which invalidates the un-
certainty relations. We have also made a comparison of our
method with the regularization method, and found that both
methods yield the same analytical results for the expectation
values of H , p, and p2 but differ in the regularization method,
in one and two additional surface terms for the expectation
values of x and x2. These terms become only relevant for
poles located very close to the threshold energy. Model calcu-
lations show that both procedures give almost the same results
and satisfy the Heisenberg uncertainty relations for a broad
range of potential parameters.

Notice that, for the Hamiltonian to the system, the disper-
sion given by (40) yields, in view of (19), �H = 0, which is
consistent with the fact that the particle is described by the
eigenfunction un(r ). An issue of interest for future work is
to consider the expectation value of an operator involving an
arbitrary wave function �(r ) that may be expanded in terms
of resonance states to address the issue of measurement from
a non-Hermitian perspective.

The present work shows that the Heisenberg uncertainty
relations may hold beyond the standard Hermitian framework
of quantum mechanics. This might be of particular interest for
those pursuing a line of inquiry that explores the possibility
of extending the standard formalism of quantum mechanics
to incorporate in a fundamental fashion a non-Hermitian
treatment of the Hamiltonian to the system, as suggested by
studies on tunneling decay [34,35].
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APPENDIX A: REGULARIZATION PROCEDURE FOR
〈rm〉B

We derive here a useful mathematical identity starting from
the following identity presented in the works of Berggren [7]
and Gyarmati [9]:

lim
ε→0

∫ ∞

0
e−εr2

ezr dr = −1

z
, (A1)

where according to Ref. [7] the result holds for Re(z) > 0
and Re(z) < 0. By computing the mth partial derivative of the
result of Eq. (A1) with respect to the variable z, we obtain

lim
ε→0

∫ ∞

0
e−εr2

rm ezr dr = ∂m

∂zm

(
−1

z

)
. (A2)

The above result then can be written as

∫ a

0
rm ezr dr + lim

ε→0

∫ ∞

a

e−εr2
rm ezr dr = ∂m

∂zm

(
−1

z

)
.

(A3)

The first integral in (A3) may also be written as the mth
partial derivative (with respect to the parameter z),

lim
ε→0

∫ ∞

a

e−εr2
rm ezr dr

= ∂m

∂zm

(
−1

z

)
− ∂m

∂zm

(∫ a

0
ezr dr

)

= ∂m

∂zm

(
−1

z

)
− ∂m

∂zm

(
eza

z
−1

z

)
, (A4)

so we may finally write the above identity as

lim
ε→0

∫ ∞

a

e−εr2
rm ezr dr = − ∂m

∂zm

(
eza

z

)
. (A5)

APPENDIX B: REGULARIZATION PROCEDURE
FOR 〈 pm〉B

Let us define in Eq. (29) O ≡ pm, with p = −i d/dr , and
use Zel’dovich’s regularization procedure

〈pm〉B = 1

im

∫ a

0
un

dmun(r )

drm
dr

+, lim
ε→0

1

im

∫ ∞

a

e−εr2
un

dmun(r )

drm
dr. (B1)

Since along the external region (r > a), un(r ) = Dne
iknr , we

compute the mth derivative dmun(r )/drm, and write

〈pm〉B = 1

im

∫ a

0
un

dmun(r )

drm
dr

+D2
nk

m
n lim

ε→0

∫ ∞

a

e−εr2
ezr dr, (B2)

with z = 2ikn. The second integral in Eq. (B2) can be readily
evaluated by using the identity derived from Eq. (A2), namely

lim
ε→0

∫ ∞

a

e−εr2
ezr dr = −eza

z
, (B3)

and obtain

〈pm〉B = 1

im

∫ a

0
un

dmun(r )

drm
dr + i

2
km−1
n u2

n(a). (B4)

In what follows, let us calculate from Eq. (B4) the expec-
tation values 〈p〉B and 〈p2〉B . For the case 〈p〉B , let us choose
m = 1 in Eq. (B4), which leads to

〈p〉B = 1

i

∫ a

0
un

dun(r )

dr
dr + i

2
u2

n(a)

= 1

i

∫ a

0

1

2

du2
n(r )

dr
dr + i

2
u2

n(a)

= 1

i

1

2

[
u2

n(r )
]a

0 + i

2
u2

n(a) = 0, (B5)

and hence, using Eq. (27), it follows that 〈〈p〉〉B = 0.
For the case 〈p2〉B let us choose m = 2 in Eq. (B4),

〈p2〉B = −
∫ a

0
un(r )

d2un(r )

dr2
dr + i

2
kn u2

n(a). (B6)
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By using the relation from Eq. (2), −d2/dr2 = H − V (r ) and
Hun(r ) = Enun(r ), where we recall that En = En − i�n/2,
we obtain

〈p2〉B = En

∫ a

0
u2

n(r ) dr −
∫ a

0
V (r ) u2

n(r ) dr + i

2
kn u2

n(a).

(B7)

We evaluate the first integral in the right-hand side of
Eq. (B7) by using the normalization condition [Eq. (7)] in

the form ∫ a

0
u2

n(r )dr = 1 − i

2kn

u2
n(a), (B8)

which allows us to write Eq. (B7) as

〈p2〉B = En −
∫ a

0
V (r ) u2

n(r ) dr, (B9)

and hence, using again Eq. (27), 〈〈p2〉〉B = Re 〈p2〉B .
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