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Quantum metrology exploits quantum correlations in specially prepared entangled or other nonclassical states
to perform measurements that exceed the standard quantum limit. Typically, though, such states are hard to
engineer, particularly when larger numbers of resources are desired. As an alternative, this paper aims to establish
quantum jump metrology, which is based on generalized sequential measurements as a general design principle
for quantum metrology and discusses how to exploit open quantum systems to obtain a quantum enhancement.
By analyzing a simple toy model, we illustrate that parameter-dependent quantum feedback can indeed be used
to exceed the standard quantum limit without the need for complex state preparation.
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I. INTRODUCTION

Over recent years, developing novel methods of conduct-
ing measurements with enhanced precision has become of
increasing interest to a wide range of research areas and
for a wide range of applications [1–4]. Classically, the best
scaling in measurement uncertainty that one can achieve is the
standard quantum limit. This limit applies when the variance
(�ϕ)2 of a measured parameter ϕ is inversely proportional to
N ,

(�ϕ)2 ∝ N−1 , (1)

where N is called a resource. Depending on the type of
measurement considered, N could correspond to a number of
different quantities. For instance, N could be the number of
photons involved in an interferometric phase shift measure-
ment between two pathways of light. Alternatively, N might
relate to the total length of the measurement process.

As is well known, it is possible to exploit the more coun-
terintuitive properties of quantum physics, like entanglement,
to increase the precision of measurements and to overcome
the standard quantum limit. This can be done in a variety of
ways [5–21] (see, for example, Ref. [22] for a recent review).
Using quantum resources, the variance (�ϕ)2 of a measured
parameter ϕ can be shown to possibly scale as

(�ϕ)2 ∝ N−2, (2)

which is known as the Heisenberg limit [23,24]. In principle,
even this limit can be overcome [25] but this requires non-
linear system dynamics which are difficult to induce. Even
the preparation of highly entangled resources usually poses
serious experimental challenges. This means that although
very high scaling is achievable within the theoretical frame-
work, it is not likely to be achieved on a large scale in a
laboratory in the near future. This makes the development
of alternative approaches for potentially immediate practical
quantum technology applications desirable, even when these

do not necessarily realize the full potential of the Heisenberg
limit.

In this paper, we have a closer look at quantum metrology
schemes that do not rely on entanglement as a resource and
are therefore easier to implement experimentally [26–32].
Such schemes exploit the strong temporal correlations that
are known to exist in the system dynamics of open quantum
systems with generalized sequential measurements [33–35].
Also, monitoring the environment has been shown previously
to have benefits for quantum metrology even when using
entanglement [36]. Although the modeling of such systems
is well understood [37–41], it is in general difficult to design
and analyze these quantum metrology schemes, since the
derivation of the scaling laws for quantum metrology schemes
in closed systems do not automatically extend to open systems
and require novel insight [26,30]. Some of the currently
known results only apply to specific systems, which can be
analyzed analytically by drawing analogies to closed systems
[32]. In other cases, scaling laws for measurement errors can
only be obtained through extensive numerical simulations of
the proposed measurements [29].

This paper aims to establish quantum jump metrology
which is based on generalized sequential measurements as a
general design principle for developing quantum metrology
schemes. While it is already known that quantum-enhanced
metrology does not require entanglement as a resource
[32,42], our motivation here is to provide a straightforward
methodology for obtaining such an enhancement without it.
In the following, we obtain two necessary (although not suffi-
cient) conditions for obtaining a quantum enhancement when
measuring an unknown parameter ϕ. As we shall see below,
quantum jump metrology exploits strong temporal correla-
tions in the statistics of measurements which can be described
by Kraus operators [43]. The first condition demands that at
least some of these Kraus operators should depend on ϕ in a
nontrivial way. This could mean resetting the quantum system
into a ϕ-dependent state when a certain measurement outcome
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FIG. 1. Schematic view of the generation of non-Markovian
measurement statistics via sequential measurements in open quantum
systems. In every time step, an interaction between the quantum
system and its surrounding bath results in the generation of a
measurement signal. For instance, an open quantum system might
emit a photon or not. Depending on the measurement result, the state
of the quantum system is altered. Although the system dynamics
are Markovian, the same does not need to be true for the generated
measurement sequence.

is obtained, as illustrated in Fig. 1, which considers an open
quantum system. Second, Kraus operators which correspond
to different measurement outcomes should not commute with
each other which is a necessary criteria for strong temporal
correlations in the measurement statistics.

Systems with long-range temporal correlations in their
measurement statistics are well-known to be useful in clas-
sical computer science and are classified as hidden Markov
models. Their name derives from the fact that they progress
randomly from one internal state to another, which remains
unobserved (hidden), while producing a stochastic output
sequence [44–46]. Although based on Markovian system dy-
namics, hidden Markov models can produce non-Markovian
measurement sequences (cf. Fig. 1). The same applies to
quantum versions of hidden Markov models, so-called hidden
Quantum Markov models [47–51]. A standard example for
hidden quantum Markov models are open quantum systems
with quantum feedback [52]. In other words, this paper pro-
poses to utilize hidden quantum Markov models in quantum
metrology.

Recent research has shown that hidden quantum Markov
models are able to produce stronger temporal measurement
correlations than their classical counterparts, even when using
significantly less resources to store information [48,53,54].
Similarly, quantum neural networks have also been shown to
offer an enhancement versus their classical counterpart [55].
The dynamics of these quantum versions exhibit a higher de-
gree of complexity which can result in an extreme advantage
for a wide range of computational tasks, like the simulation of
complex systems [56].

There are five sections in this paper. In Sec. II we give
a brief overview of parameter estimation theory, especially
Fisher information and scaling laws. In Sec. III, we demon-
strate how parameter estimation theory can be applied to
analyze temporal sequential measurements in open quantum
systems. Here we introduce the basic idea of quantum jump
metrology and illustrate it with two toy model cases. In
Sec. IV, we analyze a concrete physical system with more

practical relevance and discuss how to exceed the standard
quantum limit in open quantum systems. Finally, we conclude
and discuss the results of our work in Sec. V.

II. PARAMETER ESTIMATION THEORY

To see the benefit of quantum metrology, we shall consider
a brief mathematical analysis of parameter estimation theory
and give an overview of the Fisher information and Cramér-
Rao bound (for more details see, for example, Ref. [23]). The
classical Fisher information is useful in determining the pre-
cision of an estimator ϕ̂(x) of some parameter ϕ. The estimate
ϕ̂(x) is assumed to depend on the values of some data-string
x ∈ RN , for some N ∈ N, of a real random vector X defined
over a Kolmogorov probability space. The Fisher information
associated with the probability density Pϕ is defined by

F (Pϕ ) =
∫

dN xPϕ (x)[∂ϕ ln Pϕ (x)]2

=
∫

dN x
[∂ϕPϕ (x)]2

Pϕ (x)
. (3)

The Fisher information is additive for independent sources
of knowledge; F (P) = F (P1) + F (P2) whenever P(x1, x2) =
P1(x1)P2(x2).

The Cramér-Rao bound gives a lower bound on the preci-
sion of an estimate ϕ̂ using the Fisher information. The bound
is

〈�ϕ̂2〉Pϕ
� 1

F (Pϕ )
+ 〈�ϕ̂〉2

Pϕ
� 1

F (Pϕ )
, (4)

where for an unbiased estimate 〈�ϕ̂〉2
Pϕ

= 0. The proof of
Eq. (4) involves a straightforward application of the Cauchy-
Schwarz inequality ‖x‖‖y‖ � |〈x, y〉|2 applied to the natural
inner-product defined over the L2(RN ) function space [23,24].

In practice one gathers information about a physical system
in the form of a list of numbers obtained by querying the sys-
tem. The values xN can be viewed as the result of querying a
physical system N times, which would be equivalent to having
an ensemble of N identically prepared independent systems
that have the same state P̃ϕ = Pϕ (xi ), ∀i = 1, ..., N . More
generally, systems that are independent but not necessarily
identically prepared are described by a product distribution
Pϕ (x) = ∏N

i=1 Pi
ϕ (xi ). For such a distribution the Cramér-Rao

bound and the additivity of the Fisher information yield the
bound

〈�ϕ̂2〉Pϕ
� 1

NF max
, (5)

where F max = maxxi F [Pi
ϕ (xi )]. The number N is called the

resource and is what was discussed in the previous section
in terms of the limits. It is the number of times one has
queried the system to gather information in the form of a list
of numbers x. The bound from Eq. (4) yields the so-called
standard quantum limit scaling of 1/

√
N for the lower bound

of
√

〈�ϕ̂2〉Pϕ
.

In quantum metrology one considers a quantum system
whose density matrix ρϕ depends on an unknown param-
eter ϕ. According to quantum theory, a measurement of
the physical system yields an outcome x with probability
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Pϕ (x) = tr(Exρϕ ), where Ex is a positive operator-valued
measure (POVM) describing the measurement process. The
quantum Fisher information can be defined as

FQ(ρϕ ) = max
Ex

F [Pϕ (x)]. (6)

The quantum Cramér-Rao bound

〈�ϕ̂2〉ρϕ
� 1

FQ(ρϕ )
(7)

then follows from the Cramér-Rao bound Eq. (4). The quan-
tum Fisher information is additive in that FQ(ρ1

ϕ ⊗ ρ2
ϕ ) =

FQ(ρ1
ϕ ) + FQ(ρ2

ϕ ) whenever the composite state ρϕ = ρ1
ϕ ⊗ ρ2

ϕ

varies with ϕ according to ∂ϕρϕ = i[ρϕ, h1
ϕ ⊗ I2 + I1 ⊗ h2

ϕ]
with h1,2

ϕ being a Hermitian operator. In this case, for an

uncorrelated N-part state ρϕ = ⊗N
i=1 ρ i

ϕ the quantum Cramér-
Rao bound yields

〈�ϕ̂2〉ρϕ
� 1

NF max
Q

, (8)

where F max
Q = maxi FQ(ρ i

ϕ ). The above bound gives the stan-
dard quantum limit scaling for the precision. Since each
system making up the N-part composite system is queried
once in a measurement, the number N coincides with the
number of queries made.

One way to obtain an enhancement over the scaling of 1/N
of the standard quantum limit in Eq. (8) is to consider an
N-part system that is prepared in an entangled state. Since
for an entangled state the Fisher information is not additive
the bound in Eq. (8) does not follow from the Cramér-Rao
bound. It is then possible to improve upon the standard scaling
to obtain the Heisenberg scaling 〈�ϕ̂2〉ρϕ

∼ 1/N2 [23,24].
The crucial ingredient in obtaining this enhancement is the
breakdown of additivity of the quantum Fisher information
due to the presence of correlations within the N-part system.
Then, although not always, it is possible that the Fisher
information will scale greater than linearly.

III. QUANTUM JUMP METROLOGY

We will now introduce a method of creating nonaddi-
tive Fisher information that can produce a nonlinear scaling
with respect to the resource without the need for entangled
state preparation. Concrete examples of quantum metrology
schemes, which do not require entanglement as a resource,
can already be found in the literature [26–32]. In the fol-
lowing, we aim to establish a general design principle for
quantum metrology schemes that are based on sequential
measurements and quantum feedback and which we refer
to as quantum jump metrology. By calculating the Fisher
information for relatively simple two-level toy models, it is
shown that quantum jump metrology schemes are indeed able
to exceed the standard quantum limit.

In contrast to metrology schemes that require entanglement
as a resource and which are difficult to realize experimentally,
quantum jump metrology schemes are easily scalable. As
we shall see below, to obtain a quantum enhancement in
the uncertainty scaling, all that is required is correlations.
Entanglement is one special example of such correlations,

but its presence is not a necessary criterion. To obtain more
insight as to where the enhancement comes from, we present
a thorough analysis of the Fisher information for specific
examples. We discuss how to introduce the necessary quantum
correlations in open quantum systems with quantum feedback
and identify types of processes that can be useful for quantum
metrology. We expect that our results can be used to guide
the design of quantum metrology schemes in open quantum
systems.

A. Correlated distributions yield nonadditive Fisher
information

Temporal quantum correlations [33,34] and sequential
measurements [27,28,31] in open quantum systems are known
to constitute an interesting resource for quantum technology
applications. The analysis of the previous section shows that
enhancement over the standard quantum limit can be obtained
when additivity of the quantum Fisher information fails to
hold. The quantum Fisher information is simply a specific
type of classical Fisher information having the form of Eq. (6).
Of course, one can consider the precision of parameter esti-
mates without restricting one’s attention to the quantum Fisher
information, especially in the case we consider here where
the measurement outcomes are effectively a classical string
of data. The standard quantum limit scaling seen in Eq. (5)
follows from the Cramér-Rao bound in Eq. (4) when the
Fisher information is additive, i.e., when the probability den-
sity Pϕ (x) is uncorrelated; Pϕ (x) = ∏N

i=1 Pϕ (xi ). When there
are correlations present within Pϕ (x) the standard quantum
limit-scaling does not necessarily follow, which allows for
the possibility of obtaining enhanced precision. One way to
achieve such enhancement is to consider a distribution of
the form Pϕ (x; Ex) = tr(Exρϕ ) in which ρϕ is an entangled
quantum state and Ex is a POVM. However, this is by no
means the only way to obtain a correlated distribution Pϕ (x).
The use of entanglement is hence not the only means by which
to obtain enhanced precision.

B. Producing temporal correlations

In this section we consider a different approach. Our
aim is to determine precision bounds on parameter estimates
when the queries of a system are represented by parameter-
dependent POVMs. Suppose generalized measurements are
performed on a single qubit at short time intervals and the
only possible measurement outcomes are 0 or 1. Moreover,
we assume in the following, that these measurements trig-
ger a parameter-dependent back-action and describe their
overall effect on the state of the single qubit by parameter-
dependent Kraus operators K0,1(ϕ) [43]. They must satisfy the
completeness relation ∑

n

K†
n Kn = 1 . (9)

Consequently, the measurement statistics created by the ran-
dom dynamics of the single qubit exhibits so-called quantum
jumps [57]. Any sequence of such quantum jumps corre-
sponds to a concrete quantum trajectory within the single-
qubit Hilbert space.
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One way of implementing parameter-dependent Kraus op-
erators in the dynamics of a two-level system is to create an
interaction between the single qubit and an auxiliary system,
a so-called ancilla, which is measured and reset after every
discrete time step of the evolution. Since the ancilla always
ends up eventually, i.e., at the end of every measurement, in
exactly the same state, the dynamics of the single qubit may be
described by a sequence of Kraus operators. In the following,
we have a closer look at possible measurement schemes that
are capable of quantum-enhance precision. In the approach
described here there is no need to prepare entangled states of
the system measured.

First, we shall demonstrate that the output produced by a
sequence of generalized measurements can indeed be highly
correlated. The distribution Pϕ (x) of outcomes after N sequen-
tial queries on the parameter ϕ is given by

Pϕ (x) = tr
(
KxN KxN−1 ...Kx1ρK†

x1
...K†

xN−1
K†

xN

)
, (10)

where ρ is the initial state of the system and where xi =
0, 1 is the outcome of the i′th measurement. In general, the
distribution Pϕ (x) is correlated, i.e., is not of the product
form

∏N
i=1 P̃ϕ (xi ). Even when the reduced dynamics of the

quantum system are Markovian, the distribution Pϕ (x) does
not result from a Markov chain of outcome events [48,52].
To see this note that at each step i = 1, ..., N the operators
K0,1, respectively, select subensembles of systems for which
outcomes 0,1 were obtained. The complete ensemble at step i
is therefore represented by a density matrix

ρ(i) = T [ρ(i − 1)]

:= K0ρ(i − 1)K†
0 + K1ρ(i − 1)K†

1 , (11)

where T denotes the Markovian evolution map that propa-
gates the system’s state to the next step. Consider the example
N = 3. In this case, we have

Pϕ (x3|x2, x1) = tr
(
Kx3 Kx2 Kx1ρK†

x1
K†

x2
K†

x3

)
tr
(
Kx2 Kx1ρK†

x1 K†
x2

) , (12)

whereas

Pϕ (x3|x2) := tr
(
Kx3 Kx2T (ρ)K†

x2
K†

x3

)
tr
(
Kx2T (ρ)K†

x2

) . (13)

In general, the right-hand side of Eq. (13) is not equal to the
right-hand side of Eq. (12), therefore the random variable se-
quence X1 → X2 → X3 is not a Markov chain. Since the state
of the system after each measurement depends on the outcome
obtained, the probability density Pϕ (x) can become highly
correlated throughout the course of the N-measurements. This
is the result of the system having coherences that are not
necessarily destroyed in Kraus measurements. The presence
of correlations in the distribution in Eq. (10) means that the
standard quantum limit does not necessarily follow from the
Cramér-Rao bound for the associated Fisher information.

C. Implementations

To illustrate the idea of determining precision bounds
within the context described above we now consider some
simple examples involving just a single qubit. All of the
examples can be implemented by applying simple operations

to a qubit and an ancilla [43,48,52]. First we examine a
system that does not produce an enhancement but produces
the usual scaling of the standard quantum limit to show a
simple example of how it may be calculated in this context.
Afterwards, we discuss an example that does produce an
enhanced scaling.

1. An example without enhanced precision

Our first example assumes a qubit system with the two
Kraus operators

K0 =
(

cos(ϕ) 0

0 cos(ϕ)

)
,

K1 =
(

0 sin(ϕ)

sin(ϕ) 0

)
. (14)

These operators could be generated by taking an ancilla
initially prepared in |0〉 and performing a Pauli operation
σx = |1〉 〈0| + |0〉 〈1| on the system qubit and ancilla with
probability sin2(ϕ). By then measuring the ancilla in either
state |0〉 or |1〉, we obtain the above Kraus operators. These
satisfy the relations

K0,1 = K†
0,1, K2

0 + K2
1 = 1, (15)

and

[K0, K1] = 0 . (16)

The first and second property ensure that the Kx with x = 0, 1
are indeed Kraus operators. Since K0 = cos(ϕ)1, K0 and K1

commute, which makes them amenable to analytic calcula-
tions. Moreover, K1 = sin(ϕ) σx so that K2

0 = cos2(ϕ)1 and
K2

1 = sin2(ϕ) 1. For this choice of Kraus operators and for
fixed ϕ the number of different values of Pϕ (x) is only N ,
because if x and x′ contain the same number of zeros and ones,
then Pϕ (x) = Pϕ (x′). Since tr(ρ) = 1 for any initial state ρ, if
x contains kx zeros, then we get

Pϕ (x) = tr
(
K2kx

0 K2(N−kx )
1 ρ

)
= cos2kx (ϕ) sin2(N−kx )(ϕ), (17)

where we have used the cyclicity of the trace and Eqs. (15)
and (16). The x are binomially distributed in that the number
of x’s with kx zeros and N − kx ones is

(N
kx

)
. We can calculate

the Fisher information [cf. Eq. (3)] associated with ρϕ as

F =
∑

x

[∂ϕPϕ (x)]2

Pϕ (x)

=
N∑

kx=0

(
N

kx

)
[N − 2kx + N cos(2ϕ)]2

× cos2(kx−1)(ϕ) sin2(N−kx−1)(ϕ)

= 4N. (18)

Thus, for the choices in Eq. (14) we get the standard quantum
limit scaling from the Cramér-Rao bound in Eq. (4):

〈(�ϕ)2〉 � 1

4N
. (19)
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This result is due to the nature of the distribution Pϕ (x), which
can in fact be written as a product distribution

∏N
i=1 Pϕ (xi ). To

see this, note that in this particular example Pi
ϕ (xi ) = P j

ϕ (x j )
whenever xi = x j , so Pi

ϕ is actually independent of i. Over all
steps i = 1, . . . , N there are only two possible probabilities:

Pi
ϕ (0) = Pϕ (0) = tr

(
K2

0 ρ
) = cos2(ϕ),

Pi
ϕ (1) = Pϕ (1) = tr

(
K2

1 ρ
) = sin2(ϕ). (20)

We therefore have

Pϕ (x) = cos2kx (ϕ) sin2(N−kx )(ϕ)

= Pϕ (0)kx Pϕ (1)N−kx

=
N∏

i=1

Pϕ (xi ). (21)

We can define the single-shot distribution Ps
ϕ as the pair Ps

ϕ =
[Pϕ (0), Pϕ (1)]. The associated single-shot Fisher information
is

Fs := F
(
Ps

ϕ

) =
∑

x=0,1

[∂ϕPϕ (x)]2

Pϕ (x)

= 4 sin2(ϕ) + 4 cos2(ϕ)

= 4, (22)

and since the Fisher information is additive for a product
distribution, we obtain

F (Pϕ ) =
N∑

i=1

F
(
Ps

ϕ

) = 4
N∑

i=1

= 4N, (23)

in agreement with Eq. (18).
This standard quantum limit scaling follows from the use

of the product distribution described in Eq. (21). Sufficient
conditions for obtaining a product distribution are that the Kx

are Hermitian and share an orthonormal eigenbasis {|b1,2〉},
and that ρ is one of the corresponding spectral projections,
i.e., ρ = |b1〉 〈b1| or ρ = |b2〉 〈b2|. In such a case, the resulting
string of Kraus operators applied to the system commute and
hence do not create any temporal correlations in the dynamics.
In the example above, Eqs. (15) and (16) imply that the Kx are
Hermitian and share a common orthonormal eigenbasis that
may or may not depend on ϕ. We have in this case that

Kx(ϕ) =
∑

n=1,2

λn
x (ϕ) |bn〉 〈bn| , (24)

where the eigenvalues λn
x (ϕ) depend in general on ϕ. If ρ =

|b1〉 〈b1|, say, then for x = 0, 1,

Pϕ (x) = tr(Kx(ϕ)2ρ) = λ1
x (ϕ)2,

Pϕ (x) = Pϕ (0)kx Pϕ (1)N−kx =
N∏

i=1

Pϕ (xi ), (25)

where kx is the number of xi = 0, and N − kx is the number
of xi = 1, in the string x. To get a ϕ-dependent result the
eigenvalues λn

x must depend on ϕ. Alternatively, if the (λn
x )2

are independent of n as in the example from Eq. (14) above,
then ρ can be a completely arbitrary density matrix and the

0

2

4

6

0 π
2 π

N

F
(N

,ϕ
)

ϕ

3

8

13

18

23

FIG. 2. Fisher information as a function of the parameter ϕ. Each
curve shows a different number of time steps N , as illustrated by the
key. Here the free parameters are chosen to be A = 0.9 and b = 0.1.
We see a steady increase in the Fisher information for all values of ϕ.
However, the peak value seems to move closer to π/2 as N increases.

same result will follow. In this case both K2
0,1 are proportional

to the identity K2
x = λ2

x 1, so that Pϕ (x) = tr(K2
x ρ) = λ2

x for
any normalized ρ.

2. An example with enhanced precision

In the following, we consider a single qubit with
parameter-dependent resetting. More concretely, we reset into
a state that is a function of a parameter ϕ and whose measure-
ments can be described by

K0 =
(

1 0

0 A

)
,

K1 =
(

0 cos(ϕ)
√

1 − A2

0 sin(ϕ)
√

1 − A2

)
, (26)

with 0 � A � 1. Furthermore, we may choose an initial state
given by the density matrix

ρ = b |0〉 〈0| + (1 − b) |1〉 〈1| , (27)

where 0 � b � 1. One can easily check that the above Kraus
operators satisfy the completeness relation in Eq. (9) but do
not commute:

[K0, K1] = 0. (28)

Immediately, it should be noted that in general for this choice
of Kraus operators, Eq. (12) is different to Eq. (13). Thus,
these Kraus operators have potential to provide a Fisher in-
formation with greater than linear scaling. In the next section,
we will have a closer look at a possible implementation of the
above K0 and K1.

Figure 2 shows the Fisher information generated by the
above Kraus operators as a function of ϕ and has been
obtained from a numerical simulation of the sequential mea-
surements and respective stochastic measurement sequences.
In general, we observe a relatively complex Fisher informa-
tion which does not follow a simple trend. Our numerical
simulations show that the best measurement enhancement is
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10−8

10−7

10−6

2 5 10 20

F
(N

)

N

F (N)
N2-scaling
N -scaling

FIG. 3. Fitted log-log plot of the Fisher information for the Kraus
operators given in Eq. (31) for ϕ = (499/500)π and with A ≈ 1,
such that

√
1 − A2 = 10−4. The trend is clearly not linear and is

therefore beyond the standard linear scaling of classical systems.
Plots showing scaling as ∼N2 and ∼N are shown for illustration.

achieved when the parameter A in Eq. (26) is close to unity,
while the choice of b offers little physical interest in long term
scaling. In this case, we find that F (N ) scales as

F (N ) ∼ (N2 − N + c), (29)

where c is a small constant (cf. Figs. 3 and 4). For large N ,
the right-hand side of Eq. (29) is dominated by the N2 term
which implies scaling approaching the Heisenberg limit. The
numerical simulations moreover show that

F (N, ϕ) = cos2(ϕ)(N2 − N + c) (30)

to a very good approximation. For example, Fig. 3 shows
F (N, ϕ) for a fixed value of ϕ. Figure 4, which shows F (N, ϕ)
for ϕ ∈ (0, π ), clearly demonstrates a nonlinear growth.

In general, for most values of A, the Fisher information
grows nonlinearly with N initially but assumes linear scaling
in N for large N . Only when the parameter A is close to
one, the Fisher information is nonlinear for a relatively wide
range of N . Our simulations show that enhanced scaling

F (N, ϕ)

5 10 15 20
N

0

π
2

π

ϕ

0

10−6

2 × 10−6

FIG. 4. Fitted function of the Fisher information for the scheme
described by the Kraus operators in Eq. (31), again taking√

1 − A2 = 10−4. We see that the Fisher information is maximised
around 0 and π and also appears to grow nonlinearly at these points,
as shown in Fig. 3.

which overcomes the standard quantum limit can be generated
with no entanglement. The exact behavior that results from
varying the parameter A is not studied here, though presents a
potentially interesting topic on how this affects the long-term
scaling as a function of T . For instance, we know that taking
values of A increasingly close to 1 results in more persistent
Heisenberg-scaling, but its asymptotic limit is not determined.
In all the finite cases considered here the scaling eventually
reaches that of the standard quantum limit, but still offers
an enhancement for some T . This result supports our earlier
results in Ref. [29], where we analyze a much more complex
system with applications in quantum metrology. There is no
reason why a quantum system occupying a larger Hilbert
space should not persist with enhanced scaling further even
for very large values of N . Unfortunately, numerical calcula-
tions of the Fisher information are in general difficult to obtain
in these complex systems. However, what we have seen here
is that enhanced scaling is possible in such systems.

Moreover, we have seen in this section, that there are
necessary (although not sufficient) conditions for producing
a quantum enhancement. First, the Kraus operators should
depend on ϕ in a nontrivial way. Second, Kraus operators
which correspond to different measurement outcomes should
not commute with each other which is a necessary criteria
for strong temporal correlations in the measurement statistics.
This observation can be used to guide the design of quan-
tum jump metrology schemes which can then be analyzed
for instance numerically via the simulation of the proposed
measurement scheme.

IV. DETAILED ANALYSIS OF A CONCRETE PHYSICAL
IMPLEMENTATION

To obtain more insight into how this works, we finally have
a closer look at a possible concrete implementation of Eq. (26)
and for which we can obtain analytical results. Suppose a
single two-level atom is allowed to freely decay, while being
subjected to parameter-dependent back-action upon photon
emission. Such parameter-dependent queries could be realised
physically by connecting the photodetectors that monitor the
radiation field around the atom to a laser directed towards the
atom. The laser sends a feedback pulse to the atom whenever
a photon is detected. Most importantly, the laser parameters of
the feedback pulse should depend on the unknown parameter
ϕ that we want to measure. In this case only the Kraus operator
K1 would be ϕ-dependent. There are a number of ways such
a scheme could be implemented but we focus on the resulting
behavior here.

Proceeding as described, for example, in Refs. [37–39,52]
and as we shall see below, we find that the dynamics of such
a two-level atom with ground state |0〉 and an excited state |1〉
over a short time interval �t can be described by the Kraus
operators

K0 = |0〉 〈0| + e− 1
2 	�t |1〉 〈1| ,

K1 =
√

	�t [cos(ϕ) |0〉 〈1| − i sin(ϕ) |1〉 〈1|]. (31)

Here 	 denotes the spontaneous photon emission rate of the
atom and it is assumed that every detection of a photon results
in a rotation of the atomic state by an angle ϕ. In the next
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subsection we see that the quantum trajectories of the atom are
due to the successive application of the above Kraus operators
on a coarse grained time scale �t . To measure the unknown
parameter ϕ, we observe the average number N̄ (T, ϕ) of
photons emitted by the atom in a time interval (0, T ) of length
T which we derive later in this section. Eventually, we show
that this quantity may provide an enhanced measurement of
the unknown parameter ϕ.

Notice also that the Kraus operators K0 and K1 in Eq. (31)
coincide with the Kraus operators in Eq. (26) for A = e− 1

2 	�t

in the limit of frequent measurements on the free radiation
field which implies small time intervals �t . The Kraus opera-
tors K0 and K1 in Eq. (31) are in fact the Kraus operators used
in Figs. 3 and 4 to allow for a comparison with the results in
this section.

A. Quantum jump operators in open quantum systems

From quantum optics, we know that an atom that is con-
stantly monitored but does not emit a photon evolves with the
conditional Hamiltonian [37–39]

Hcond = − i

2
h̄	σ+σ−, (32)

which is non-Hermitian. If no photon is detected for a short
time �t , the state of the atom evolves into the unnormalized
state

|ψI(t + �t )〉 = exp (−iHcond�t/h̄) |ψI(t )〉 (33)

up to first order in �t . The normalization of this state squared
equals the probability for no photon emission in (t, t + �t ).
Hence, the no-photon time evolution of the atom automati-
cally implements the transformation |ψI〉 −→ K0 |ψI〉 with K0

given in Eq. (31), as long as �t is sufficiently small. This can
be shown by calculating the right-hand side of Eq. (33).

Whenever a photon is detected, the atom is subsequently
found in its ground state |0〉. Moreover, we know that the prob-
ability density for the emission of a photon is the product of its
spontaneous decay rate 	 and the population ‖〈1|ψ (t )〉‖2 in
the excited state. Suppose now, every photon emission triggers
a short strong laser pulse which transfers its state into a state
of the form

|ψph〉 = cos(ϕ) |0〉 − i sin(ϕ) |1〉 , (34)

which could be achieved in a variety of ways. Then the change
of atomic state in the case of an emission can be described by
the Kraus operator K1 in Eq. (31).

B. Average number of emitted photons

To determine the unknown parameter ϕ, we utilize in the
following a measurement of the average number of emitted
photons in a time period (0, T ), denoted N̄ (T, ϕ). In this
subsection, we calculate this observable for the proposed
experimental setup. To do so, we notice that N̄ (T, ϕ) can be
written as

N̄ (T, ϕ) =
∞∑

n=1

npn(0, T ), (35)

where pn(0, T ) is the probability of the system emitting
exactly n photons in a time interval (0, T ) for a given initial
state. For simplicity, we assume in the following that the state
of the atom at the time t = 0 equals the the reset state after a
photon detection |ψph〉 which can be found in Eq. (34).

Next we notice that the time evolution operator of our
two-level system under the condition of no photon detections
equals Ucond(T, 0) = exp(−iHcondT/h̄) and that the probabil-
ity of the system not emitting a photon in a time period (0, T ),
p0(0, T ) is given by

p0(0, T ) = ‖Ucond(T, 0) |ψph〉 ‖2

= cos2(ϕ) + e−	T sin2(ϕ). (36)

Moreover, one can show that the probability density for emit-
ting exactly one photon in a time period (0, T ) at a time t
equals the probability density w1(0, t ) for the emission of a
first photon at a time t ,

w1(0, t ) = − d

dt
p0(0, t ) = 	 sin2(ϕ)e−	t , (37)

multiplied by the probability for no photon emission in (t, T ),
which we denote p0(t, T ). The probability p1(0, T ) of the
system emitting exactly one photon in a time period (0, T ) is
hence obtained by integrating these probability densities over
t . Hence,

p1(0, T ) =
∫ T

0
dt w1(0, t )p0(t, T ). (38)

Proceeding analogously and calculating the probability for
exactly n photon emissions in a time interval (0, T ) moreover
yields

pn(0, T ) =
∫ T

0
dt1w1(0, t1)pn−1(t1, T ), (39)

where pn−1(t1, T ) denotes the probability for the emission
of n − 1 photon in the time interval (t1, T ). In other words,
the probability for having n photons in (0, T ) is the sum of
all probability densities with a first photon at t1 ∈ (0, T ) and
exactly n − 1 photons in (t1, T ). In the following, we use this
relation to determine pn as a function of w1 and p0.

Iteration of Eq. (39) yields

pn(0, T ) =
∫ T

0
dt1

∫ T

t1

dt2w1(0, t1)w1(t1, t2)pn−2(t2, T )

(40)

and so on. Hence,

pn(0, T ) =
∫ T

0
dt1

∫ T

t1

dt2· · ·
∫ T

tn−1

dtn w1(0, t1)

×w1(t1, t2) . . . w1(tn−1, tn)p0(tn, T )

=
n∏

i=1

( ∫ T

ti−1

dti w1(ti−1, ti )

)
p0(tn, T ), (41)

with t0 = 0. If we consider the case where we wait for a
large amount of time such that we may take the stationary
limit T → ∞, then we find these integrals factorize nicely,
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meaning

lim
T →∞

∫ T

ti−1

dti w(ti−1, ti ) = sin2(ϕ),

lim
T →∞

p0(tn, T ) = cos2(ϕ). (42)

Hence, we find that the probability for n photons in the
stationary limit is given by

lim
T →∞

pn(0, T ) = sin2n(ϕ) cos2(ϕ). (43)

The average number of photons emitted in the stationary limit
can now be calculated by substituting Eq. (43) into Eq. (35),
which gives

N̄ (∞, ϕ) =
∞∑

n=1

n sin2n(ϕ) cos2(ϕ). (44)

This is nearly a geometric series. After appropriately modify-
ing the standard geometric series, it can be shown that

∞∑
n=1

nrn = r

(1 − r)2 . (45)

Taking r = sin2(ϕ), we hence find

N̄ (∞, ϕ) = tan2(ϕ). (46)

This function matches expectations, as we see that for the case
where the system is reset exactly to the excited state, we see
an infinite number of photons, whereas when it is reset to the
ground state we see no photons.

For the purposes of metrology, we want a signal we can
scale with time. As such, we can calculate how this signal
scales for finite T . By not imposing T → ∞, the integrals no
longer factorize nicely. Nevertheless, a solution can still be
found for p(n, T ), which is given by

pn(0, T ) = sin2n(ϕ) cos2(ϕ) + e−	T sin2n(ϕ)

n!

×
[

(	T )n − cos2(ϕ)
n∑

m=0

n!

m!
(	T )m

]
. (47)

The derivation of Eq. (47) is given in the Appendix. The limit
of the sum in Eq. (35) where n → ∞ is now more difficult to
resolve. Although the limit is well defined, it is not straightfor-
ward to explicitly calculate. Hence, for simplicity, all results
involving this term will be approximated by choosing a large
finite value for n. In doing so, N̄ (T, ϕ) can be calculated to a
very good approximation. In Fig. 5, we see how this function
behaves as a function of ϕ at a variety of times T .

This signal clearly displays dependence on the parameter
ϕ that grows in time. Hence, it should be possible to use
this signal to extract information about ϕ. To calculate the
uncertainty in ϕ, we use the error propagation formula [22]

(�ϕ)2 = [�A(ϕ)]2∣∣ dA
dϕ

∣∣2 , (48)

for some signal A(ϕ) that has dependence on the unknown
parameter ϕ. For our case of A = N̄ , the variance in the

0

2

4

6

8

10

0 π
2 π

N̄

ϕ

T=2Γ−1

T=4Γ−1

T=6Γ−1

T=8Γ−1

T=10Γ−1

T→∞

FIG. 5. The plot of N̄ now does not go to infinity, as a finite
amount of time is considered. The curve has a similar functional
shape to the case of infinite time and hence demonstrates the validity
of the calculations. Here, the sum is taken up to n = 2000. The limit
of T → ∞ calculated in Eq. (46) is also shown for consistency.

numerator is given by

(�N̄ )2 =
∞∑

n=1

n2 pn(0, T ) −
[ ∞∑

n=1

npn(0, T )

]2

, (49)

from Eq. (35), while the derivative in the denominator can be
calculated straightforwardly.

Plotting as a function of ϕ for a variety of times T , we
see in Fig. 6 how the uncertainty in ϕ changes in time. In
particular, the error decreases in time. However, it appears to
approach a fixed point that depends on the value of ϕ being
considered. Also, the error is able to reach a lower value
for a large amount of time the closer it is to π/2. Hence, to
maximise the scaling it appears that we should choose a value
of ϕ close to π/2, so long as a large time T may be considered.
As such, when T is unable to be taken as a large value, a value
of ϕ away from π/2 is preferable. Taking ϕ as values close
to π/2, we now plot (�ϕ)2 as a function of time T . This is

0

0.5

1

1.5

2

0 π
2 π

(Δ
ϕ
)2

ϕ

T=Γ−1

T=2Γ−1

T=5Γ−1

T=8Γ−1

T=15Γ−1

FIG. 6. Uncertainty (�ϕ)2 plotted as a function of ϕ. Initially,
the uncertainty is minimized at multiples of π . However, these
uncertainties do not significantly decrease in time. As T increases,
the optimum value of ϕ for measurement moves closer to π/2. This
result is again produced with a sum up to n = 2000.
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10−6

10−4

10−2

1

102

104

0.1 1 10 100

(Δ
ϕ
)2

T (units of Γ−1)

H-berg scaling
SQL scaling

ϕ = 1.5
ϕ = 1.4

FIG. 7. The uncertainty (�ϕ)2 as a function of T plotted for
fixed values of ϕ (ϕ = 1.4, 1.5). For illustrative purposes, scaling
according to the standard quantum limit (∼1/T ) and the Heisenberg
limit (∼1/T 2) are shown. We see that the scaling of our system
lies between these two. The results are produced with a sum up to
n = 2000 again.

shown in Fig. 7. Here, we see the scaling is surpassing that of
the standard quantum limit.

Crucially, we see that there is an enhanced scaling present
for this measurement scheme. Although this measurement is
not necessarily an optimum measurement, it serves as a proof-
of-principle that an enhanced time-dependent scaling can be
found for a relatively simple system with quantum feedback.
Indeed, there are many ways in which this system can be
developed further, including going to a larger system size
or performing a more complex measurement, such as using
photon correlations where an enhancement has already been
shown [29]. In Fig. 7, we see that the uncertainty in ϕ seems
to be levelling off to a fixed value. This is also suggested in
Fig. 6 for other values of ϕ. If we move to a larger system size,
then the overall uncertainty should be reduced further. This
is because in a larger system size two initially close together

10−2

10−1

1

101

1 10 100

(Δ
ϕ
)2

T (units of Γ−1)

ϕ = 1.25
ϕ = 1.3
ϕ = 1.35
ϕ = 1.4

FIG. 8. Uncertainty (�ϕ)2 as a function of T plotted for a range
of values of ϕ. For smaller values of ϕ, we see the long time limit of
plateauing behavior both more clearly and earlier. This shows how
values of ϕ that are initially optimal in the short time limit eventually
become inferior to others in the long time limit. The results are
produced with the same simulations as previous plots in this section.

points in the relevant space can move further away from each
other and hence become more distinguishable.

Another observation from Figs. 6 and 7 is that for small
T a value of ϕ closer to 0 is preferable. However, as T
increases, the optimum value of ϕ to be measured shifts
asymptotically closer to π/2. This supports what was seen
earlier in Fig. 2, where the maximum of the Fisher information
moves closer to π/2 with increasing N . Indeed all values of
ϕ tend to follow a standard quantum limit scaling initially for
this measurement scheme, before eventually at some time T
gaining some enhanced scaling and ultimately then plateauing
at some fixed value for (�ϕ)2. This allows one to determine
an optimum value of ϕ to measure if T becomes a limiting
factor. This is shown for a range of values of ϕ in Fig. 8.

V. CONCLUSIONS

This paper introduces the general concept of quantum
jump metrology, which is based on generalized sequential
measurements and considers the total duration T of the mea-
surement process as the main measurement resource. One
way of implementing quantum jump metrology is to apply
quantum feedback to open quantum systems. It is shown that
this approach can indeed result in precision scaling beyond
the standard quantum limit without the need for complex state
preparation. This is in contrast to closed quantum systems,
where overcoming the standard quantum limit requires en-
tanglement or the presence of other highly nonclassical states
which are hard to prepare experimentally. Open quantum sys-
tems therefore currently receive a lot of attention in quantum
metrology but their systematic study is often difficult, since
standard quantum metrology techniques do not extend easily
to more complex systems [32].

Here we provide novel insight into quantum metrology
with generalized sequential measurements by drawing analo-
gies to hidden quantum Markov models [47–51]. This anal-
ogy suggests that there could be a wide range of computa-
tional advantages compared to analogous classical machines
[48,53,54,56]. As usual, we describe the system dynamics
induced by the generalized measurements with Kraus oper-
ators. For applications in quantum metrology, these should
depend in a nontrivial fashion on the parameter ϕ that we
want to measure. Moreover, the Kraus operators associated
with different measurement outcomes should not commute
with each other. A quantum enhancement of the scaling of
errors can be expected, when measurement sequences cannot
be modeled as Markov processes and contain long-range tem-
poral correlations. The above described necessary (although
not sufficient) conditions can be used to guide the design of
quantum metrology schemes in open quantum systems.

To substantiate our claims and to demonstrate the practi-
cality of our approach, Sec. IV finally analyses a quantum
metrology scheme which consists only of a two-level atom
with spontaneous photon emission and external laser driving.
Due to its simplicity, it is possible to analyze the precision of
parameter estimates deduced from the atomic dynamics with
relative ease. In doing so, we show that observing the output
of an open quantum system with sequential measurements
and quantum feedback can indeed be used to exceed the stan-
dard quantum limit. This result is consistent with our earlier
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numerical analysis of a more complex quantum metrology
scheme based on the conditional dynamics of the coherent
states of an optical cavity for which we were unable to
establish analytical bounds for the precision of measurement
outcomes [29].

We also emphasize again here that the approach and im-
plementation shown are not necessarily optimum but provide
a simple pathway to enhancements. There are other meth-
ods that obtain enhancements that could potentially also be
incorporated into this work, such as a final measurement
of the system to obtain a further enhancement [58]. The
scope for further developments of these schemes is large and
should be of significant interest. Furthermore, as discussed in
Sec. III C 2, there is still much more to explore in terms of
the Fisher information of systems of this type, such as a more
rigorous study involving varying the parameter A. We leave
this as an open question here that remains to be investigated
in future work. Overall, we hope that the general discussion
of this paper helps the design of novel practical quantum
metrology schemes.
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APPENDIX: DERIVATION OF pn(0, T )

We derive Eq. (47) by direct construction. We start with the
expression

pn+1(0, T ) =
∫ T

0
dt w1(0, t )pn(t, T ). (A1)

Using the notation pn(0, t ) =: pn(t ) and w1(0, t ) =: w1(t )
and noting that pn(t, T ) = pn(0, T − t ) =: pn(T − t ) the
convolution theorem yields

p̃n+1(s) = w̃1(s) p̃n(s) = w̃1(s)n+1 p̃0(s), (A2)

where g̃ := L[g] denotes the Laplace transform of g. Applying
the convolution theorem again then yields

pn+1(T ) = ( fn+1 ∗ p0)(T ), fn(t ) = L−1[w̃1(s)n](t ),

(A3)

where ∗ denotes the convolution product,

( f ∗ g)(T ) :=
∫ T

0
dt f (t )g(T − t ). (A4)

Using Eq. (37) we have

w̃1(s)n+1 = 	n+1 sin2(n+1)(ϕ)

(	 + s)n+1

= 	n+1 sin2(n+1)(ϕ)

(−1)nn!

dn

dsn

1

s + 	

= L
[
	n+1 sin2(n+1)(ϕ)

t ne−	t

n!

]
(s), (A5)

from which it follows that

fn+1(t ) = 	n+1 sin2(n+1)(ϕ)
t ne−	t

n!
. (A6)

Using this expression and Eq. (A3) we obtain

pn+1(T ) = 	n+1 sin2(n+1)(ϕ)

n!

[
e−	T T n+1 sin2(ϕ)

n + 1

+ cos2(ϕ)
∫ T

0
dt tne−	t

]
. (A7)

The integral in the above can be evaluated as

∫ T

0
dt tne−	t = 1

	n+1
[n! − γ (n + 1, 	T )], (A8)

where γ denotes a special function called the incomplete
γ -function, which is defined by

γ (a, y) =
∫ ∞

y
dz za−1e−z. (A9)

Using Eq. (A8) we obtain

pn+1(t ) = sin2(n+1)(ϕ) cos(ϕ)

+ (	T )n+1e−	T sin2(ϕ) sin2(n+1)(ϕ)

(n + 1)!

− cos2(ϕ) sin2(n+1)(ϕ)

n!
γ (n + 1, 	T )

= sin2(n+1)(ϕ) cos(ϕ) + (	T )n+1e−	T sin2(n+1)(ϕ)

(n + 1)!

− cos2(ϕ) sin2(n+1)(ϕ)

×
[

(	T )n+1e−	T

(n + 1)!
+ γ (n + 1, 	T )

n!

]
. (A10)

Using the definition Eq. (A9) and integration by parts one can
prove inductively that

γ (n + 1, 	T ) = e−	T
n∑

m=0

n!

m!
(	T )m. (A11)

We therefore obtain

pn+1(t ) = sin2(n+1)(ϕ) cos(ϕ)

+ (	T )n+1e−	T sin2(n+1)(ϕ)

(n + 1)!

− cos2(ϕ) sin2(n+1)(ϕ)
n+1∑
m=0

1

m!
(	T )m, (A12)

which is equivalent to the expression shown in Eq. (47).
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