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Measurement incompatibility is the most basic resource that distinguishes quantum from classical physics.
Contextuality is the critical resource behind the power of some models of quantum computation and is
also a necessary ingredient for many applications in quantum information. A fundamental problem is thus
identifying when incompatibility produces contextuality. Here, we show that, given a structure of incompatibility
characterized by a graph in which nonadjacent vertices represent incompatible ideal measurements, the necessary
and sufficient condition for the existence of a quantum realization producing contextuality is that this graph
contains induced cycles of size larger than three.
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Incompatibility versus contextuality. Measurement incom-
patibility is arguably the most basic resource that distin-
guishes quantum and classical physics. Incompatibility is
ubiquitous in protocols with a quantum-over-classical advan-
tage and has been proven to be necessary for no-cloning [1]
and nonlocality [2–4]. On the other hand, contextuality (a
concept resulting from the Kochen-Specker theorem [5–7],
but here used in the exact sense used in Refs. [8–13]) is the
critical resource behind the quantum advantage of some mod-
els of quantum computation [14–21] and a necessary ingre-
dient for many quantum protocols (e.g., device-independent
quantum key distribution [22,23], quantum advantage in zero-
error classical communication [24], and some cryptographic
protocols [25]). Therefore, a fundamental question is what is
the relation between incompatibility and contextuality. This is
the problem we address in this Rapid Communication.

The definition of measurement incompatibility is indepen-
dent of any physical theory. Two measurements, A, with out-
come set {ax}x∈X , and B, with outcome set {by}y∈Y , are incom-
patible (or not jointly measurable) if there is no measurement
C with outcome set {cx,y}x∈X,y∈Y such that, for all initial states
ρ, the probability P(ax|ρ) = ∑

y∈Y P(cx,y|ρ), for all outcomes
ax, and the probability P(by|ρ) = ∑

x∈X P(cx,y|ρ), for all out-
comes by. If such a C exists, then A and b are compatible (or
jointly measurable). In other words, two measurements A and
B are incompatible if there does not exist a measurement C
such that both A and B are coarse grainings of C.

A measurement scenario is characterized by a set M of
measurements, their respective outcomes, and the subsets
of M that are compatible. The relations of compatibility
between the measurements in a scenario are usually repre-
sented by a hypergraph in which each vertex represents a
measurement and vertices in the same hyperedge are mutually
compatible (see, e.g., Refs. [26–28]).

In general, contextuality indicates that the outcome statis-
tics of an experiment involving several contexts (i.e., sets
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of compatible measurements) cannot be explained assuming
that the outcomes reveal preexisting values that are indepen-
dent of the context. However, there are several definitions of
contextuality in the literature. The one for which a crucial
connection with quantum computation has been established
[17] is the one used in Refs. [8–13]. Given a measurement
scenario where all measurements are ideal, a behavior (i.e.,
a set of probability distributions, one for each context) is
contextual if it does not belong to the polytope whose vertices
are all possible deterministic assignments of outcomes to the
measurements in that scenario. A measurement is ideal (or
sharp) [29,30] if (i) it yields the same outcome when per-
formed consecutive times, (ii) it only disturbs measurements
that are incompatible with it, and (iii) all its coarse grainings
have realizations satisfying (i) and (ii). In quantum theory, an
ideal measurements is represented by a self-adjoint operator
A on a Hilbert space or, equivalently, by the set of orthogonal
projectors (onto distinct, possibly degenerate, eigenspaces of
A) summing to the identity in the spectral decomposition of A.
On the other hand, compatible measurements are represented
in quantum theory by commuting operators.

The restriction of the definition of contextuality to sce-
narios involving only ideal measurements obeys three main
reasons: (I) It assures that compatible measurements do not
disturb each other (which is what naturally happens in Bell
scenarios due to the fact that measurements are spatially
separated). A measurement A disturbs a measurement B if,
for some initial state, from the outcome statistics of B, one
can detect whether A was performed. Recall that, for nonideal
measurements, compatibility does not imply nondisturbance
[26,27,31]. (II) It assures that the contextuality of a behavior
can be taken as a signature of nonclassicality. On the one hand,
as pointed out in Ref. [32], the assumption that the outcome
of a measurement depends deterministically on the ontic state
(which is the assumption satisfied by the extreme points of
the set of noncontextual behaviors) is reasonable if and only
if the measurement is ideal. In particular, it is not a physically
plausible assumption when applied to a noisy measurement
(even a classical one), since, in this case, the outcome may
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have an indeterministic dependence on the ontic state of the
measured system. On the other hand, the classical simulation
of quantum contextuality for ideal measurements has a quan-
tifiable memory [33,34] and thermodynamical overcosts [35].
(III) It assures that the classical and quantum sets of behaviors
are direct generalizations of the corresponding sets for Bell
scenarios. In particular, for contextuality scenarios that, by
spacelike separating the measurements, can be converted into
Bell scenarios, the sets of behaviors are identical regardless of
whether there is timelike or spacelike separation.

For ideal measurements, if in a set of measurements every
two of them are compatible, then all of them are compatible
[29] (this is not true for nonideal measurements [5,26]). As
a consequence, the relations of compatibility between ideal
measurements can be represented by a simple graph, called
compatibility graph, in which any clique of vertices represents
a set of compatible measurements (see, e.g., Refs. [28,36,37]).
A clique of a graph is a set of vertices every pair of which are
adjacent.

The fundamental problem is what is the relation between
incompatibility and contextuality. Clearly, incompatibility is
necessary for contextuality. Otherwise, if all measurements
are compatible, then there is only one context. However,
not every set of measurements that includes incompatible
measurements produces contextuality. Therefore, the crucial
question is what incompatibility structures can produce quan-
tum contextuality and which ones cannot. Surprisingly, we
have not found the answer to this question in the literature.

A first step towards solving this problem is a theorem intro-
duced by Vorob’yev [38,39] that has been used in connection
to quantum theory in Refs. [40–45]. The theorem states that,
for any set of measurements whose corresponding compati-
bility graph is chordal (i.e., does not contain induced cycles
of size larger than three), there is always a joint probability
distribution for every behavior (see the Appendix). Therefore,
in this case, all quantum behaviors can be simulated by a
noncontextual hidden variable model. Recall that an induced
subgraph of a graph G(V, E ), with vertex set V and edge set E ,
is a graph with vertex set S ⊆ V and edge set comprising all
the edges of G with both ends in S. An n-vertex cycle, denoted
Cn, is a graph with n vertices connected in a closed chain, e.g.,
C4 is a square and C5 is a pentagon. Therefore, a necessary
condition for quantum contextuality is that the compatibility
graph is not chordal.

Main result. The aim of this Rapid Communication is to
prove and explore the consequences of the following result.

Theorem. For a given compatibility graph G(V, E ), with
vertex set V and edge set E , there is a set of quantum
ideal measurements M = {Mi}i∈V satisfying the incompati-
bility/compatibility structure given by G(V, E ) and producing
contextuality if and only if G(V, E ) is not a chordal graph.

Proof. That the nonchordality of the compatibility graph
is a necessary condition for contextuality follows from the
proof of Vorob’yev’s theorem (see the Appendix). That non-
chordality of the compatibility graph is a sufficient condition
for contextuality can be proven as follows. Let G1(V1, E1)
be the compatibility graph of M1 = {Mi}i∈V1 . Let G2(V2, E2)
be a compatibility graph such that G1(V1, E1) is an induced
subgraph of G2(V2, E2) and V2 = V1

⋃{v0}, where v0 is a
vertex that is not in V1. The following set of measurements,

M2 = {Mi}i∈V2 , has G2(V2, E2) as its compatibility graph,

Mi = Mi

⊗
j∈V1

�i, j, ∀i ∈ V1 and Mv0 = Id

⊗
j∈V1

Pj, (1)

where

�i, j =
{
I2, j �= i,
|0〉〈0|, j = i,

(2)

Pj =
{
I2, (v0, j) ∈ E2,

|ψ〉〈ψ |, (v0, j) �∈ E2,
(3)

d is the dimension of each of the elements in {Mi}i∈V1 , Ik is the
identity operator in dimension k, and |ψ〉 = (|0〉 + |1〉)/

√
2.

By construction, the state ρ = ρ ⊗ j∈V1 |0〉〈0| and the mea-
surements M1 = {Mi}i∈V1 produce the same probabilities as
the ones produced by ρ and M1. That is, for every outcome
mi of Mi ∈ M1 and every outcome mi of Mi ∈ M1,

P(mi|ρ) = P(mi|ρ). (4)

This implies that, if there is an induced subgraph of a given
compatibility graph G that can produce contextuality, then the
graph G can produce at least the same amount of contextuality.
Now, notice that a compatibility graph G is not chordal if and
only if it has induced cycles of size k � 4. Let us suppose
that Ck is one of them. If we could find a set of measurements
MC = {Mi}i∈VC whose compatibility graph were isomorphic
to Ck and that would produce contextuality, then, by the pre-
vious result, G would also produce contextuality (at least the
same amount as the induced Ck), thus proving our claim. For
any k, explicit examples of sets of measurements satisfying all
these requirements can be found in Ref. [12]. �

Classification of the scenarios with quantum contextuality.
An interesting consequence of the previous theorem is that it
allows us to identify and classify all measurement scenarios
in which incompatibility can produce contextuality and tells
us how to use quantum theory to produce contextuality in
each of them. Given a fixed number k of ideal measurements,
to identify all scenarios that can produce contextuality, it is
enough to compute all nonchordal graphs with k vertices and
avoid the cases in which one of the measurements is not
needed for contextuality by removing those graphs in which
one of the vertices does not belong to any cycle of length
four or more. For k up to 6, the complete list of compatibility
graphs corresponding to scenarios in which contextuality can
occur is shown in Fig. 1. All these compatibility graphs can
be realized in experiments with sequential measurements on
single systems, such as the experiments of Refs. [46–49]. In
addition, some of the compatibility graphs can be realized
in multipartite scenarios, since their sets of vertices can be
divided into disjoint subsets, each subset corresponding to the
measurements of one party and containing some nonadjacent
vertices (i.e., incompatible measurements), and such that each
vertex in a subset is adjacent to all vertices in the other subsets.
According to this criterion, the graphs of compatibility that
can produce quantum contextuality can be classified in three
types:

(a) Nonchordal compatibility graphs that are complete n-
partite, with n � 2 (i.e., whose sets of vertices can be divided
into n disjoint and independent subsets such that each vertex
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FIG. 1. All the compatibility graphs corresponding to scenarios that can produce quantum contextuality with up to six ideal measurements.
They are of three types: (a1)–(a5) can be realized in Bell scenarios (dots of the same color denote measurements performed by the same
party); (b1)–(b8) can be realized in multipartite scenarios, but at the cost that at least one party has at least two compatible measurements, and
(c1)–(c11) cannot be realized in multipartite scenarios.

in a set is adjacent to all vertices in the other subsets), as
the graphs in Figs. 1(a1)–1(a5). If n = 2, then the graphs
have realizations as bipartite Bell scenarios. For example,
the graphs in Figs. 1(a1)–1(a4). If n = 3, then the graphs
have realizations as tripartite Bell scenarios, for example,
the graph in Fig. 1(a5). The sets of classical and quantum
behaviors for these scenarios have been studied extensively,
since the boundaries of the classical (noncontextual) sets are
tight Bell inequalities. Specifically, for measurements with
two outcomes, the exhaustive list of tight Bell inequalities
that bound the set of classical behaviors for the scenario
whose compatibility graph is in Fig. 1(a1) is in Refs. [50–54],
while the corresponding set of quantum behaviors is exhaus-
tively characterized in Refs. [2,51,55–58]. Similarly, for the

scenarios in Figs. 1(a2)–1(a3), the tight Bell inequalities and
their quantum violations are presented in Ref. [59], and in
Ref. [60] for the scenario in Fig. 1(a4). Finally, the full set
of tight Bell inequalities for the scenario in Fig. 1(a5) is in
Refs. [61,62] and the corresponding quantum violations in
Ref. [63].

(b) Nonchordal compatibility graphs that have realizations
as multipartite scenarios (since their vertices can be divided
into disjoint sets, each of them containing some nonadjacent
vertices, and such that each vertex in a subset is adjacent to all
vertices in the other subsets), but in which at least one party
has at least two measurements that are compatible (i.e., at least
one of the subsets is not an independent set). These graphs are
shown in Figs. 1(b1)–1(b8). So far, to our knowledge, these
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types of compatibility graphs have been considered only in
relation with scenarios of nonlocality via local contextuality
[64,65] and monogamy between nonlocality and local con-
textuality [66,67]. However, unlike in all these cases, in the
scenarios in Figs. 1(b1)–1(b6), none of the parties has a set of
measurements capable to locally produce contextuality, thus
our result reveals a different form of quantum contextuality
that is worth closer examination. Specifically, it would be
interesting to compare the classical and quantum sets of
behaviors with those of the scenario in Fig. 1(a1), since it
seems that there are quantum behaviors that are contextual in
the scenarios of Figs. 1(b1)–1(b6) but that are noncontextual
when we ignore the measurements in Bob’s side that are not
in the scenario of Fig. 1(a1). However, this contextuality is not
merely local (as occurs in Refs. [64–67]).

(c) Nonchordal compatibility graphs that do not admit
realizations as multipartite scenarios (since their sets of ver-
tices cannot be divided into disjoint subsets containing some
nonadjacent vertices and such that each vertex in a subset is
adjacent to all vertices in the other subsets). These graphs
are shown in Figs. 1(c1)–1(c11). The most famous of them
is the pentagon of compatibility shown in Fig. 1(c1), which
corresponds to the scenario studied by Klyachko, Can, Bini-
cioğlu, and Shumovsky (KCBS) [8]. To our knowledge, so
far, the classical and quantum sets of behaviors have been ex-
haustively characterized only for the scenarios corresponding
to this graph and the hexagon in Fig. 1(c2) [12]. Our result
allows us to identify new simple scenarios that can produce
quantum contextuality. Curiously, the first Bell inequality dif-
ferent than the Clauser-Horne-Shimony-Holt inequality pro-
posed in the literature, the two-party three-setting chained
Bell inequality, proposed in Ref. [68] and rediscovered in
Ref. [69], is a tight noncontextuality inequality for a scenario
corresponding to the compatibility graph in Fig. 1(c2) [12],
but is not a tight Bell inequality for the two-party three-setting
Bell scenario corresponding to the compatibility graph in
Fig. 1(a4).

Conclusion. Here, we have investigated the connec-
tion between the most basic form of nonclassicality—
incompatibility—and the resource that has been proven to
be necessary to explain the power of some leading mod-
els of quantum computation and many quantum information
protocols—contextuality. We have proven that a necessary
and sufficient condition for the existence of a quantum be-
havior that is contextual in the sense of Refs. [8–13] is that
the compatibility graph that encodes the relations of incom-
patibility between the measurements is nonchordal. Since
being nonchordal implies containing induced cycles of size
larger than three, our result points out the crucial role for
quantum contextuality of the n-cycle compatibility scenarios
with n � 4 (whose complete list of tight noncontextuality in-
equalities and their maximal quantum violation are presented
in Ref. [12]).

The scenarios in which contextuality can happen can be
classified in three types: Bell scenarios, KCBS-type scenarios,
and a third type in between them that worth closer examina-
tion. This classification holds not only for quantum theory but
for general probabilistic theories, as it is based on the obser-
vation that contextuality can only occur in scenarios whose
compatibility graph is nonchordal, and nonlocality can only

occur if, in addition, the vertices of the compatibility graph
can be divided into disjoint sets, each of them containing only
nonadjacent vertices. In fact, one of the interesting conse-
quences of our result is the observation that what is special
about quantum theory is that contextuality and nonlocality
occur in all scenarios in which they can, respectively, occur.
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APPENDIX: VOROB’YEV’S THEOREM

Here, we restate in the language of graph theory and
prove a theorem introduced, without a proof, by Vorob’yev
in 1963 [38] and then proven independently by Kellerer
[70,71], Vorob’yev [39], and others [72]. Vorob’yev’s theorem
is the basis of a fundamental result in the field of expert
systems [73].

Recall that a perfect elimination ordering in a graph G is
an ordering of the vertices of G such that, for each vertex vi,
vi and the vertices of G that are adjacent to vi and occur after
vi in the order form a clique. A graph is chordal if and only if
it has a perfect elimination ordering [74].

Theorem. Any set of probabilities for the outcomes of a
set of measurements whose compatibility relations are repre-
sented by a chordal graph admits a global extension to a joint
probability distribution.

Proof. Suppose an n-vertex chordal graph G. Since G is
chordal, G has a perfect elimination order (vn, vn−1, . . . , v1).
Let Ak be the set of vertices of G that are adjacent to vk

and occur after vk in that order. By definition of perfect
elimination ordering, Ak is a clique. Therefore, {Mv}v∈Ak is a
set of mutually compatible measurements. Let {Mvi = mvi}k

i=1,
for i = 1, 2, . . . , k, be the set of events in which the output of
measurement Mvi is mvi . Let us define

P1
(
Mv1 = mv1

)
:= Prob

(
Mv1 = mv1

)
, (A1)

Pk
({

Mvi = mvi

}k

i=1

)

:= Prob({Mv = mv}v∈Ak )Pk−1
({

Mvi = mvi

}k−1
i=1

)
Prob

({Mv = mv}v∈Ak\vk

) , (A2)

where Prob({Mv = mv}v∈A) denotes the probability distribu-
tion for a set of compatible measurements {Mv}v∈A.

We have to prove that Pn({Mvi = mvi}n
i=1) is a joint prob-

ability distribution which coincides with any Prob({Mv =
mv}v∈A), where A is a clique in G. We will prove it by
induction. By definition, P1(Mv1 = mv1 ) coincides with any
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Prob({Mv = mv}v∈A). Let us assume that Pt ({Mvi = mvi}t
i=1) also coincides with Prob({Mv = mv}v∈A), for 1 � t � k − 1 and

any clique A in G, that is, ∑
mv ,v∈{v1,...,vt }\A

Pt
({Mvi = mvi}t

i=1

) =
∑

mv ,v∈A\{v1,...,vt }
Prob({Mv = mv}v∈A). (A3)

Then, for any clique which does not contain vk ,

∑
mv ,v∈{v1,...,vk}\A

Pk
({

Mvi = mvi

}k

i=1

) =
∑

mv ,v∈{v1,...,vk−1}\A

(
∑

mvk
Prob({Mv = mv}v∈Ak ))Pk−1

({
Mvi = mvi

}k−1
i=1

)
Prob({Mv = mv}v∈Ak\vk )

(A4)

=
∑

mv ,v∈{v1,...,vk−1}\A

Pk−1
({Mvi = mvi}k−1

i=1

)
(A5)

=
∑

mv ,v∈A\{v1,...,vk−1}
Prob({Mv = mv}v∈A) (A6)

=
∑

mv ,v∈A\{v1,...,vk}
Prob({Mv = mv}v∈A). (A7)

If A contains vk , then A ∩ {v1, . . . , vk} ⊆ Ak by definition. Therefore,

∑
mv ,v∈{v1,...,vk}\A

Pk
({Mvi = mvi}k

i=1

) =
∑

mv ,v∈Ak\A

Prob({Mv = mv}v∈Ak )
(∑

mv ,v∈{v1,...,vk}\Ak
Pk−1

({
Mvi = mvi

}k−1
i=1

))
Prob({Mv = mv}v∈Ak\vk )

(A8)

=
∑

mv ,v∈Ak\A

Prob({Mv = mv}v∈Ak ) (A9)

=
∑

mv ,v∈A\{v1,...,vk}
Prob({Mv = mv}v∈A). (A10)

So Pk ({Mvi = mvi}k
i=1) also coincides with any Prob({Mv = mv}v∈A), where A is a clique in G. By induction, so does Pn({Mvi =

mvi}n
i=1). �
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