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Perfect discrimination of nonorthogonal quantum states with posterior classical partial information
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The indistinguishability of nonorthogonal pure states lies at the heart of quantum information processing.
Although the indistinguishability reflects the impossibility of measuring complementary physical quantities by a
single measurement, we demonstrate that the distinguishability can be perfectly retrieved simply with the help of
posterior classical partial information. We demonstrate this by showing an ensemble of nonorthogonal pure states
such that a state randomly sampled from the ensemble can be perfectly identified by a single measurement with
the help of postprocessing of the measurement outcomes and additional partial information about the sampled
state, i.e., the label of the subensemble from which the state is sampled. When an ensemble consists of two
subensembles, we show that the perfect distinguishability of the ensemble with the help of postprocessing can
be restated as a matrix-decomposition problem. Furthermore, we give the analytical solution for the problem
when both subensembles consist of two states.
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I. INTRODUCTION

The existence of nonorthogonal pure states is a peculiar
feature of quantum mechanics. Indeed, an ensemble of them
is neither perfectly cloned [1,2] nor perfectly distinguishable
[3–7]. This is in contrast to classical theories, which assume
that any ensemble of distinct pure states, each of which is
not a probabilistic mixture of different states, is perfectly
distinguishable in principle. While the nonorthogonality of
pure states has its origin purely in quantum mechanics, we
investigate its classical aspect in this Rapid Communication.

From a practical point of view, the indistinguishability of
nonorthogonal pure states restricts our ability to transmit in-
formation [8]; conversely, it enables extremely secure designs
of banknotes [9] and secret key distribution [10]. For example,
in the quantum key distribution (QKD) protocol proposed
in Ref. [10], a secret bit is encoded in a basis randomly
chosen from two complementary bases, S(A) = (|0〉, |1〉) and
S(B) = (|+〉, |−〉), where |±〉 = 1√

2
(|0〉 ± |1〉). An eavesdrop-

per cannot intercept the secret bit perfectly if she does not
know which basis is used since a state in S(A) and that in
S(B) are nonorthogonal. Moreover, even if she is informed of
the label of the chosen basis, X ∈ {A, B}, after the quantum
state encoding the secret bit is destroyed by her measurement,
she cannot intercept the secret bit perfectly owing to the
complementarity of measurement: The accurate measurement
of one physical quantity entails an inaccurate measurement of
another complementary quantity (see Fig. 1). Thus, it seems
that a state randomly sampled from nonorthogonal pure states
cannot be identified perfectly even if classical partial informa-
tion about the sampled state is available after measurement of
the state is performed.
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Contrary to such an intuition, in this Rapid Communi-
cation, we show that such classical partial information is
sometimes sufficient for accomplishing perfect discrimination
of nonorthogonal pure states. Suppose that a state is randomly
sampled from an ensemble of pure states S consisting of two
a priori known subensembles S(A) and S(B). First, we give an
example of a pair of subensembles (S(A),S(B) ) such that S
is an ensemble of nonorthogonal pure states but the sampled
state can be perfectly identified by the classical postprocessing
of the measurement outcomes with the label of the subensem-
ble, X ∈ {A, B}, from which the state is sampled. Second, we
investigate a standard pair (S(A),S(B) ), which is trivially dis-
tinguishable by postprocessing. Third, we give the necessary
conditions for (S(A),S(B) ) to be perfectly distinguishable by
postprocessing. The conditions imply that the first example
we gave can be considered as a maximally nonorthogonal
distinguishable pair in the smallest Hilbert space. Finally,
we show that the perfect distinguishability with the help of
postprocessing can be restated as a matrix-decomposition
problem, and also give the analytical solution for the problem
when |S(A)| = |S(B)| = 2. The result also implies that every
perfectly distinguishable pair with the help of postprocessing
can be embedded in a larger Hilbert space as a standard pair.

Note that the state discrimination with the help of post-
processing has been investigated in Refs. [11–13], moti-
vated by the analysis of quantum cryptographic protocols. In
Refs. [11,12], the optimal discrimination of basis states (or
their probabilistic mixtures) was investigated, where perfect
discrimination is impossible in general. In Ref. [13], further
investigations concerning the optimal measurement for imper-
fect state discrimination were done. In contrast, we focus on
the perfect discrimination of general pure states in this Rapid
Communication.

II. DEFINITIONS

We consider a quantum system represented by finite-
dimensional Hilbert space H. The two a priori known
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FIG. 1. Indistinguishability of nonorthogonal pure states in a
QKD-like protocol. First, the sender randomly chooses label X ∈
{A, B} and encodes his secret bit in a basis state of S(X ). Second,
the eavesdropper intercepts the state transmitted from the sender and
measures it. She cannot identify the transmitted state perfectly even
if she can process her measurement outcomes with label X .

ensembles of distinguishable pure states are described by in-
dexed sets of orthonormal vectors, S(X ) = (|φ(X )

k 〉 ∈ H)k∈K(X )

(X ∈ {A, B}), where K(X ) = {0, 1, . . . , |S(X )| − 1} for X ∈
{A, B}. We suppose that the state of H is randomly sampled
from ensemble S consisting of S(A) and S(B).

The measurement performed on H is described by a
positive-operator-valued measure (POVM) over a finite set
� [3], (Mω ∈ P(H))ω∈�, such that

∑
ω∈� Mω = I , where

P(H) and I represent the set of positive semidefinite oper-
ators and the identity operator on H, respectively. After the
measurement, the label of the subensemble, X ∈ {A, B}, from
which the state is sampled is received, and one processes the
measurement outcome ω and X to guess k as k̂ = f (X )(ω),
where f (X ) : � → K(X ) for X ∈ {A, B}.

Thus, the pair (S(A),S(B) ) is perfectly distinguishable by
postprocessing if and only if there exist POVM (Mω )ω∈� and
postprocessing ( f (X ) )X∈{A,B} such that

∀X ∈ {A, B}, ∀k ∈ K(X ),
∑

ω∈ f (X )−1(k)

〈
φ

(X )
k |Mω|φ(X )

k

〉 = 1. (1)

Note that a more general postprocessing including proba-
bilistic processing does not change the condition for perfect
distinguishability [11–13].

III. MEASUREMENT TABLE

If (S(A),S(B) ) is perfectly distinguishable by postprocess-
ing, we can construct a measurement table representing the
POVM and classical postprocessing. The measurement table
is POVM over K := K(A) × K(B), (Mab)(a,b)∈K such that

Mab =
∑

ω∈f−1((a,b))

Mω, (2)

where f (ω) = ( f (A)(ω), f (B)(ω)). We can verify that
(Mab)(a,b)∈K is a valid POVM, i.e., it is an indexed set of
positive semidefinite operators and the sum of the elements is

TABLE I. Measurement table to distinguish S(A) =
(|0 + 1〉, |0 − 1〉) and S(B) = (|0 + 2〉, |0 − 2〉), where |0 + 1 + 2〉
represents the normalized state 1√

3
(|0〉 + |1〉 + |2〉). We can easily

check that (Mab) is a valid POVM and satisfies Eq. (4).

|0 + 2〉 |0 − 2〉

|0 + 1〉 M00 =
[√

3
2 |0 + 1 + 2〉

]
M01 =

[√
3

2 |0 + 1 − 2〉
]

|0 − 1〉 M10 =
[√

3
2 |0 − 1 + 2〉

]
M11 =

[√
3

2 |0 − 1 − 2〉
]

the identity operator. Equation (1) implies that(
∀a ∈ K(A),

∑
b∈K(B)

〈
φ(A)

a

∣∣Mab

∣∣φ(A)
a

〉 = 1

)

∧
(

∀b ∈ K(B),
∑

a∈K(A)

〈
φ

(B)
b

∣∣Mab

∣∣φ(B)
b

〉 = 1

)
, (3)

or equivalently,[∀{a, a′|a 	= a′} ⊆ K(A),∀b ∈ K(B),
∣∣φ(A)

a′
〉 ∈ ker(Mab)

]
∧[∀{b, b′|b 	= b′} ⊆ K(B),∀a ∈ K(A),

∣∣φ(B)
b′

〉 ∈ ker(Mab)
]
.

(4)

Conversely, if there exists a measurement table satisfying
Eqs. (3) or (4) for (S(A),S(B) ), it is perfectly distinguishable by
postprocessing. We give an example of a measurement table
which perfectly distinguishes an ensemble of nonorthogonal
pure states in Table I, where we use the notation [|ψ〉] =
[ψ] := |ψ〉〈ψ |.

IV. STANDARD PAIR

We define a standard pair, (S(A),S(B) ) =
((|�(A)

a 〉)a∈K(A) , (|�(B)
b 〉)b∈K(B) ), which is trivially

distinguishable by postprocessing as follows.
Definition 1. For S ⊆ Y , where Y = C|K| is a Hilbert space

spanned by the orthonormal basis {|ab〉}(a,b)∈K, (S(A),S(B) ) is
called a standard pair if their elements are represented by∣∣�(A)

a

〉 =
∑

b

αab|ab〉 ∧ ∣∣�(B)
b

〉 =
∑

a

βab|ab〉, (5)

where
∑

b |αab|2 = 1 and
∑

a |βab|2 = 1.
We can easily verify that the standard pair is perfectly dis-

tinguishable by the measurement table (Mab = |ab〉〈ab|). In
addition to the standard pair, we can verify that if (S(A),S(B) )
can be embedded in a larger Hilbert space as a standard pair,
it is also perfectly distinguishable by postprocessing, as stated
in the following proposition.

Proposition 1. Let the reduced Hilbert space of H be
X := span(S). If there exists isometry V : X → Y such that
((V |φ(A)

a 〉), (V |φ(B)
b 〉)) is a standard pair, (S(A),S(B) ) is per-

fectly distinguishable by postprocessing.
Note that if (S(A),S(B) ) is perfectly distinguishable by

the measurement table (Mab) consisting of rank-r operators
with r � 1, it can always be embedded in a larger Hilbert
space as a standard pair by using Naimark’s extension as
follows: Let Mab = |ψ̃ab〉〈ψ̃ab|, where |ψ̃ab〉 ∈ H is an unnor-
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TABLE II. Corresponding standard pair ((V |φ (A)
a 〉), (V |φ (B)

b 〉))
of ((|φ (A)

a 〉), (|φ (B)
b 〉)) defined in Table I, where V = ∑

a,b |ab〉〈ψ̃ab|,
|ψ̃00〉 = 1

2 (|0〉 + |1〉 + |2〉), |ψ̃01〉 = 1
2 (|0〉 + |1〉 − |2〉), |ψ̃10〉 = 1

2
(|0〉 − |1〉 + |2〉), and |ψ̃11〉 = 1

2 (|0〉 − |1〉 − |2〉). A measurement
table distinguishing the standard pair is also shown in the table.

|+0〉 |+1〉
|0+〉 |00〉〈00| |01〉〈01|
|1+〉 |10〉〈10| |11〉〈11|

malized state. Define isometry V = ∑
(a,b)∈K |ab〉〈ψ̃ab|. Then

((V |φ(A)
a 〉), (V |φ(B)

b 〉)) is a standard pair. We give an example
of the corresponding extension of Table I in Table II.

In general, we cannot assume that a measurement table
consists of rank-r operators with r � 1. For example, it is
not obvious whether the perfectly distinguishable pair given
in Table III can be embedded in a larger Hilbert space as
a standard pair. However, in Sec. VI, we show that every
perfectly distinguishable pair can be embedded as a standard
pair.

V. NECESSARY CONDITIONS

We show two propositions regarding the necessary con-
ditions for perfect distinguishability with the help of post-
processing. Since (S(A),S(B) ) given in Table I saturates both
conditions, it can be considered as a maximally nonorthogonal
pair in the smallest Hilbert space.

Proposition 2. If (S(A),S(B) ) is perfectly distinguishable by
postprocessing and any pair of a state in S(A) and a state in S(B)

is nonorthogonal, the dimension of H must satisfy dim H �
|S(A)| + |S(B)| − 1.

Proof. If either |S(A)| or |S(B)| is 1, the statement is trivial.
Thus, we assume |S(A)| � 2 and |S(B)| � 2.

It is enough to show that for any perfectly distinguishable
(S(A),S(B) ), the following two conditions cannot be satisfied
simultaneously:

1. ∀a ∈ K(A),∀c ∈ {0, 1}, 〈φ(A)
a |φ(B)

c 〉 	= 0,
2. ∀c ∈ {0, 1}, |φ(B)

c 〉 ∈ span(S(A) ∪ S(B)c), where S(B)c =
S(B) \ (|φ(B)

0 〉, |φ(B)
1 〉).

If (S(A),S(B) ) is perfectly distinguishable, we can find a
measurement table (Mab). If the second condition is satisfied,
we can find the following decompositions:

∣∣φ(B)
c

〉 =
∑

a∈K(A)

αac

∣∣φ(A)
a

〉 + ∑
b�2

βbc

∣∣φ(B)
b

〉
(6)

TABLE III. Measurement table to distinguish S(A) =
(|1 + 2〉, |3 + 4〉) and S(B) = (|0 + 3〉, |2 + 4〉).

|0 + 3〉 |2 + 4〉
|1 + 2〉 |0〉〈0| + |1〉〈1| |2〉〈2|
|3 + 4〉 |3〉〈3| |4〉〈4|

for c ∈ {0, 1}. Since Eq. (4) implies Ma,1−c|φ(B)
c 〉 = 0, we

obtain

∀a ∈ K(A), ∀c ∈ {0, 1}, αacMa,1−c

∣∣φ(A)
a

〉 = 0. (7)

If the first condition is satisfied, since Eq. (4) guarantees
〈φ(A)

a |Mac|φ(B)
c 〉 = 〈φ(A)

a |φ(B)
c 〉 	= 0, we obtain

∀a ∈ K(A), ∀c ∈ {0, 1}, αacMac

∣∣φ(A)
a

〉 	= 0, (8)

which leads us to a contradiction. �
This proposition shows that the retrieval of the perfect

distinguishability of such nonorthogonal pure states appears
only with d (�3)-dimensional Hilbert space.

Proposition 3. If (S(A),S(B) ) is perfectly distinguishable by
postprocessing, then min {|〈φ(A)

a |φ(B)
b 〉|2}(a,b)∈K � 1

|S(A)||S(B)| .
Proof. Let (Mab) be a measurement table distinguishing

(S(A),S(B) ). By using the Cauchy-Schwartz inequality, arith-
metic mean (AM)-geometric mean (GM) inequality, Eq. (3),
and Eq. (4), we can derive the following inequality:∏

ab

∣∣〈φ(A)
a

∣∣φ(B)
b

〉∣∣2 =
∏
ab

∣∣〈φ(A)
a

∣∣Mab

∣∣φ(B)
b

〉∣∣2

�
∏
ab

〈
φ(A)

a

∣∣Mab

∣∣φ(A)
a

〉〈
φ

(B)
b

∣∣Mab

∣∣φ(B)
b

〉

�
(∑

ab

〈
φ(A)

a

∣∣Mab

∣∣φ(A)
a

〉
|S(A)||S(B)|

)|S(A)||S(B)|

×
(∑

ab

〈
φ

(B)
b

∣∣Mab

∣∣φ(B)
b

〉
|S(A)||S(B)|

)|S(A)||S(B)|

= |S(A)||S(B)|−|S(A)||S(B)|. (9)

This completes the proof. �
This proposition shows that there does not exist a per-

fectly distinguishable pair each of whose pairwise overlap
|〈φ(A)

a |φ(B)
b 〉| is strictly larger than the pair given in Table I.

Note that we did not assume that the perfectly distinguish-
able pair can be embedded as a standard pair in the proofs.
This allows us to apply these propositions to a more general
setting as discussed in Sec. VII.

VI. PERFECT DISTINGUISHABILITY
AS A MATRIX DECOMPOSITION

We show that perfect distinguishability with the help of
postprocessing can be restated as a matrix-decomposition
problem, and give the analytical solution for the problem
in the case of |S(A)| = |S(B)| = 2. This result also implies
that any perfectly distinguishable pair with the help of post-
processing can be embedded in a larger Hilbert space as a
standard pair (see Table IV). The main theorem uses Lemma 1
followed by two definitions about linear algebra.

Definition 2. The set of matrices that can be decomposed
into the elementwise product of a right stochastic matrix and
left one is defined by

D̄(n, m) := {P ∈ L(Rm,Rn)|P = A ◦ B}, (10)

where ◦ represents the elementwise product, L(Rm,Rn) rep-
resents the set of n × m matrices, and A and B are a right
stochastic matrix and a left one, respectively.
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TABLE IV. Corresponding standard pair ((V |φ (A)
a 〉), (V |φ (B)

b 〉))
of ((|φ (A)

a 〉), (|φ (B)
b 〉)) defined in Table III, where V = ∑

ab |ab〉〈ψab|,
where |ψ00〉 = 1

2
√

5
(−|0〉 + 4|1〉 + |2〉 + |3〉 − |4〉), |ψ01〉 =

1
2
√

3
(|0〉 + 3|2〉 − |3〉 + |4〉), |ψ10〉 = 1√

2
(|0〉 + |3〉), and

|ψ11〉 = 1√
6
(−|0〉 + |3〉 + 2|4〉).

|10〉 (√
2
3 |0〉 +

√
1
3 |1〉)|1〉

|0〉(√ 5
8 |0〉 +

√
3
8 |1〉) |00〉〈00| |01〉〈01|

|1〉(√ 1
4 |0〉 +

√
3
4 |1〉) |10〉〈10| |11〉〈11|

Definition 3. The set of elementwise positive matrices in
D̄(n, m) is defined by

D(n, m) := {P ∈ D̄(n, m)|P > 0}. (11)

Note that D̄(n, m) is the closure of D(n, m), and the matrix
inequalities such as P > 0 and P � Q represent elementwise
inequalities such as Pi j > 0 and Pi j � Qi j for all i and j.

Lemma 1. If n � 2 and m � 2, the following statement
holds: For any P ∈ D̄(n, m) and for any Q ∈ L(Rm,Rn),

0 � Q � P ⇒ Q ∈ D̄(n, m). (12)

Proof. First, we show that it is sufficient to prove

∀P ∈ D(n, m), ∀Q, 0 < Q � P ⇒ Q ∈ D(n, m). (13)

Assume Eq. (13) holds. Since D̄(n, m) is the closure of
D(n, m), for any P ∈ D̄(n, m) and for any δ > 0, there exists
P′ ∈ D(n, m) such that |P − P′| < δ. For any Q ∈ L(Rm,Rn)
such that 0 � Q � P, we define Q′ ∈ L(Rm,Rn) as

Q′
i j =

⎧⎨
⎩

Qi j (0 < Qi j � P′
i j ),

P′
i j (Qi j > P′

i j ),
min{δ, P′

i j} (Qi j = 0).
(14)

Since 0 < Q′ � P′, Q′ ∈ D(n, m) by using Eq. (13). Note that
for any ε > 0, there exists sufficiently small δ > 0 such that
|Q − Q′| < ε. Thus, Q ∈ D̄(n, m).

Second, we show that it is sufficient to prove

∀P ∈ D(2, 2), ∀Q, 0 < Q � P ⇒ Q ∈ D(2, 2). (15)

Note that for proving Eq. (13), it is sufficient to prove for any
i ∈ {1, . . . , n} and j ∈ {1, . . . , m} and for any δ ∈ (0, 1],

∀P ∈ D(n, m), P ◦ T (i j)
δ ∈ D(n, m), (16)

where T (i j)
δ is the n × m matrix, all of whose elements are

1 except for the (i, j) element, which is set to δ. Assume
Eq. (15) holds. For any P ∈ D(n, m) and for any T (i j)

δ , pick up
their arbitrary 2 × 2 submatrices P[2] and T (i j)

δ [2] containing
the (i, j) element. (There exist such submatrices since we
assume n � 2 and m � 2.) Letting P = A ◦ B, the correspond-
ing submatrices A[2] and B[2] satisfy P[2] = A[2] ◦ B[2].
Define the right stochastic matrix Ã[2] and left one B̃[2] by

Ã[2] := A[2] ◦
(

1
A[2]1∗

1
A[2]1∗

1
A[2]2∗

1
A[2]2∗

)
, (17)

B̃[2] := B[2] ◦
(

1
B[2]∗1

1
B[2]∗2

1
B[2]∗1

1
B[2]∗2

)
, (18)

where A[2]i∗ = A[2]i1 + A[2]i2 and B[2]∗ j = B[2]1 j + B[2]2 j .
Since 0 < Ã[2] ◦ B̃[2] ◦ T (i j)

δ [2] � Ã[2] ◦ B̃[2], there exists a
right stochastic matrix Ã′[2] and left one B̃′[2] satisfying
Ã′[2] ◦ B̃′[2] = Ã[2] ◦ B̃[2] ◦ T (i j)

δ [2] by using Eq. (15). De-
fine elementwise positive 2 × 2 matrices A′[2] and B′[2] by

A′[2] := Ã′[2] ◦
(

A[2]1∗ A[2]1∗
A[2]2∗ A[2]2∗

)
, (19)

B′[2] := B̃′[2] ◦
(

B[2]∗1 B[2]∗2

B[2]∗1 B[2]∗2

)
. (20)

Since A′[2] ◦ B′[2] = P[2] ◦ T (i j)
δ [2] and A (B) whose subma-

trix A[2] (B[2]) is replaced by A′[2] (B′[2]) preserves the sum
of elements in each row (column), i.e., a right (left) stochastic
matrix, Eq. (16) is proven.

Third, we prove Eq. (15) by explicitly analyzing D(2, 2).
By definition, P ∈ D(2, 2) if and only if P > 0 and there exist
real numbers A21, A22, B11, B12, and A11 ∈ (P11, 1 − P12) such
that(

P11 P12

P21 P22

)
=

(
A11 1 − A11

A21 A22

)
◦

(
B11 B12

1 − B11 1 − B12

)
(21)

and A21 + A22 = 1. Note that two conditions A11 ∈ (P11, 1 −
P12) and P > 0 are necessary and sufficient for two matrices
on the right-hand side of Eq. (21) to be elementwise positive.
Under the two conditions, A21 + A22 can be regarded as a
function of A11 defined by

f (A11) = P21

1 − P11
A11

+ P22

1 − P12
1−A11

. (22)

Thus, P ∈ D(2, 2) if and only if P > 0 and there exists a
real number x ∈ (P11, 1 − P12) such that f (x) = 1. If P11 <

1 − P12, f is an unbounded convex function [limx↘P11 f (x) =
limx↗1−P12 f (x) = ∞] with a global minimum f (x∗), where

x∗ = λP11 + (1 − λ)(1 − P12) and λ =
√

P12P22√
P11P21+

√
P12P22

. By
straightforward calculation, P ∈ D(2, 2) if and only if

(P > 0) ∧ (P11 + P12 < 1)

∧ [
Pc

11Pc
22 + Pc

12Pc
21 − 2(P11P12P21P22)

1
2 � 1

]
,

(23)

where Pc
i j = 1 − Pi j . This implies Eq. (15). �

Theorem 1. Assume |S(A)| � 2 and |S(B)| � 2. The follow-
ing three conditions are equivalent:

1. (S(A),S(B) ) is perfectly distinguishable by postprocess-
ing.

2. A standard pair ((|�(A)
a 〉), (|�(B)

b 〉)) exists such that
〈φ(A)

a |φ(B)
b 〉 = 〈�(A)

a |�(B)
b 〉 for all (a, b) ∈ K.

3. P ∈ D̄(|S(A)|, |S(B)|), where Pab = |〈φ(A)
a |φ(B)

b 〉|2.
Proof. “2 ⇒ 1” is shown by using Lemma 2 in

Appendix A, and Proposition 1. “3 ⇒ 2” is shown by taking
the standard pair with the following amplitudes:

αab = e−iθ (a,b)√Aab, βab = √
Bab, (24)

where eiθ (a,b)|〈φ(A)
a |φ(B)

b 〉| = 〈φ(A)
a |φ(B)

b 〉 and P = A ◦ B.
We show “1 ⇒ 3” in the following. If (S(A),S(B) ) is

perfectly distinguishable, there exists a measurement table

020102-4



PERFECT DISCRIMINATION OF NONORTHOGONAL … PHYSICAL REVIEW A 99, 020102(R) (2019)

FIG. 2. The region of (P21, P22) for perfectly distinguishable
(S(A),S(B) ) with the help of postprocessing when P11 = P12 = 1/4,
shown by the white region. The example shown in Table I resides on
the boundary of perfectly distinguishable pairs. Note that since S(B)

is an indexed set of orthonormal vectors, (P21, P22) cannot be in the
dark gray region for any (S(A),S(B) ).

(Mab). Equation (3) guarantees that Aab = 〈φ(A)
a |Mab|φ(A)

a 〉 and
Bab = 〈φ(B)

b |Mab|φ(B)
b 〉 are a right stochastic matrix and left

one, respectively. Using Eq. (4) and the Cauchy-Schwartz
inequality, we obtain∣∣〈φ(A)

a

∣∣φ(B)
b

〉∣∣2 = ∣∣〈φ(A)
a

∣∣Mab

∣∣φ(B)
b

〉∣∣2 � AabBab, (25)

which implies condition 3 by using Lemma 1. �
We can derive the following criteria for perfect distin-

guishability as a corollary of Theorem 1 (see Fig. 2).
Corollary 1. Assume |S(A)| = |S(B)| = 2. Let the 2 × 2 ma-

trix P be Pab = |〈φ(A)
a |φ(B)

b 〉|2. Then, (S(A),S(B) ) is perfectly
distinguishable by postprocessing if and only if P satisfies

Pc
11Pc

22 + Pc
12Pc

21 − 2(P11P12P21P22)
1
2 � 1, (26)

where Pc
i j = 1 − Pi j .

A proof is straightforward by using Eq. (23) and the fact
that D̄(2, 2) is the closure of D(2, 2). Note that similar criteria
for larger sets can be analytically obtained via a similar
derivation of Eq. (23).

VII. RELATED PAST WORK

The investigation of a perfectly distinguishable tuple

((S(n) = (|φ(n)
k 〉)k∈K(n) )

N

n=1
with the help of postprocessing of

the measurement outcomes with label n is related to the mean
king’s problem (MKP) [14–19]. The MKP consists of three
steps: First, a player prepares a composite system H ⊗ R.
Second, the mean king performs a randomly chosen projective
measurement on subsystem H. Third, the player tries to guess
the king’s measurement outcome by postprocessing of her
own measurement outcomes obtained by measuring H ⊗ R
and the label of the measurement chosen by the king. The
main issue in the MKP—understanding the ensemble of the

king’s measurement whose outcome can be perfectly identi-
fied by the player—has led to the development of several im-
portant concepts in quantum mechanics, including a mutually
unbiased basis [20,21] and a weak value [22].

It is known that even for noncommuting projective mea-
surements which inevitably produce nonorthogonal pure
states for distinct outcomes in the third step, the player can
still identify the king’s outcome perfectly with the help of
postprocessing. Thus, the retrieval of the perfect distinguisha-
bility of nonorthogonal pure states can be partially understood
by using the result of the MKP. However, since the king
cannot prepare general nonorthogonal pure states in H ⊗ R
by interacting only with the subsystem H, a full understanding
of the phenomenon cannot be obtained via the MKP. On
the other hand, in many cases, it is enough for the player
to prepare the maximally entangled state in the first step of
the MKP [14,16–19,21]. In such cases, the only nontrivial
part of the problem is whether the nonorthogonal pure states
produced in the third step are perfectly distinguishable with
the help of postprocessing. Therefore, the investigation of a
perfectly distinguishable tuple (S(n) )N

n=1 with the help of post-
processing extracts an intriguing structure from the MKP as
a simpler problem, which would deepen our understanding of
the MKP and lead us to key concepts in quantum mechanics.

As a first step toward the general case, we have investigated
the case of N = 2. Note that the three propositions we have
shown hold for general N , which could be a guide to a further
investigation for the general case.

VIII. CONCLUSION

We have investigated a perfectly distinguishable pair of
ensembles of pure states (S(A),S(B)) with the help of post-
processing, and have shown that such a pair can always
be embedded in a larger Hilbert space as a corresponding
standard pair. The distinguishability has been shown to be
completely determined by whether a matrix whose elements
consist of |〈φ(A)

a |φ(B)
b 〉|2 can be decomposed into the element-

wise product of two types of stochastic matrices. By using the
result, we also gave a complete characterization of perfectly
distinguishable pairs when |S(A)| = |S(B)| = 2. Furthermore,
we gave the necessary conditions for N-tuple (S(n) )N

n=1 to be
perfectly distinguishable by postprocessing.
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APPENDIX : EXISTENCE OF ISOMETRY

We prove the following lemma used in the proof of
Theorem 1.

Lemma 2. If (|ψi〉 ∈ H)i∈I and (|i〉 ∈ H′)i∈I satisfy
〈ψi|ψ j〉 = 〈i| j〉 for all i, j ∈ I, there exists isometry V :
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H̃ → H′ such that V |ψi〉 = |i〉 for all i ∈ I, where H̃ =
span({|ψi〉}i∈I) and I is a finite set.

Proof. Take a basis of H̃ as {|ψi〉}i∈Ĩ, where Ĩ ⊆ I. Define
linear operator V : H̃ → H′ as V |ψi〉 = |i〉 for all i ∈ Ĩ. We
can easily check that V is an isometry since it does not change
the inner product of the basis, i.e., 〈ψi|V †V |ψ j〉 = 〈i| j〉 =
〈ψi|ψ j〉 for all i, j ∈ Ĩ.

Let an orthonormal basis of H̃ be (|ψ̃i〉)i∈Ĩ. We can
verify that an indexed set of vectors (|̃i〉)i∈Ĩ defined by
|̃i〉 = ∑

j∈Ĩ αi j | j〉 is also orthonormal, where αi j satisfies

|ψ̃i〉 = ∑
j∈Ĩ αi j |ψ j〉. Take arbitrary j ∈ I \ Ĩ and let |ψ j〉 =∑

i∈Ĩ βi|ψi〉.
Since 〈ψ̃k|ψi〉 = 〈̃k|i〉 for all k ∈ Ĩ and i ∈ I,

∀k ∈ Ĩ, 〈̃k|
⎛
⎝∑

i∈Ĩ
βi|i〉

⎞
⎠ = 〈ψ̃k|ψ j〉 = 〈̃k| j〉. (A1)

Since 〈 j | j〉 = 〈ψ j |ψ j〉, | j〉 = ∑
i∈Ĩ βi|i〉, which shows

V |ψ j〉 = | j〉 for all j ∈ I \ Ĩ. �
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