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In electromagnetic scattering, the so-called T matrix encompasses the optical response of a scatterer for any
incident excitation and is most commonly defined using the basis of multipolar fields. It can therefore be viewed
as a generalization of the concept of polarizability of the scatterer. We calculate here the series expansion of
the T matrix for a spheroidal particle in the small-size, long-wavelength limit, up to third lowest order with
respect to the size parameter, X̃ , which we will define rigorously for a nonspherical particle. T is calculated from
the standard extended boundary condition method with a linear system involving two infinite matrices P and
Q, whose matrix elements are integrals on the particle surface. We show that the limiting form of the P and Q
matrices, which is different in the special case of spheroid, ensures that this Taylor expansion can be obtained by
considering only multipoles of order 3 or less (i.e., dipoles, quadrupoles, and octupoles). This allows us to obtain
self-contained expressions for the Taylor expansion of T(X̃ ). The lowest order is O(X̃ 3) and equivalent to the
quasistatic limit or Rayleigh approximation. Expressions to order O(X̃ 5) are obtained by Taylor expansion of the
integrals in P and Q followed by matrix inversion. We then apply a radiative correction scheme, which makes
the resulting expressions valid up to order O(X̃ 6). Orientation-averaged extinction, scattering, and absorption
cross sections are then derived. All results are compared to the exact T -matrix predictions to confirm the validity
of our expressions and assess their range of applicability. For a wavelength of 400 nm, the new approximation
remains valid (within 1% error) up to particle dimensions of the order of 100–200 nm depending on the exact
parameters (aspect ratio and material). These results provide a relatively simple and computationally friendly
alternative to the standard T -matrix method for spheroidal particles smaller than the wavelength, in a size range
much larger than for the commonly used Rayleigh approximation.
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I. INTRODUCTION

The T -matrix method for electromagnetic scattering can
be viewed as an extension of Mie theory to nonspherical
particles [1–4]. It provides a framework in which the optical
properties of particles can be computed using a basis of
spherical harmonics, whereby incident, internal, and scattered
fields are expanded as a series of multipolar fields. This
approach is particularly suited to predictions of orientation-
averaged properties. The T -matrix method has been used
extensively in various contexts [5,6], in particular to predict
the optical properties of nanoparticles beyond the (long-
wavelength) Rayleigh Gans approximation [7]. The latter is
typically valid for particle sizes smaller than λ/20 − λ/10,
which severely limits its applicability to particles relevant
to experiments. The Rayleigh approximation has neverthe-
less often been used outside this range of validity [8,9] for
semiquantitative calculations, simply because of the dramatic
jump in complexity and computational requirements to im-
plement the T -matrix framework, which provides an exact
solution. We here propose an appealing compromise between
accuracy and complexity: an analytic formula for the higher-
order approximation of the rigorous T -matrix solution, which
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expands the range of applicability of the approximation to
a more relevant range of sizes (up to ≈λ/6–λ/3), whilst to
some extent retaining its simplicity. Similar higher-order long-
wavelength approximations have previously been obtained for
spheres [8,10–13] and for spherical nanoshells [14] starting
from the exact solution of Mie theory. Semiempirical approx-
imations have also been proposed for nonspherical nanopar-
ticles [15,16], but numerical calculations are then required
to predetermine some of the parameters. Taylor expansions
of the solution can also be formally obtained by iterative
solution of the Laplace equation [17]. While this approach is
applicable to a general shape, it results in relatively lengthy
expressions for spheroidal particles [18], which are not easily
linked to optical properties [19,20] and do not lend themselves
to orientation averaging. Reference [10] has also proposed a
set of higher-order approximations for spheroids following the
physical arguments of Ref. [21] but these do not contain all the
higher-order corrections found here.

We first review the basic ingredients of the T -matrix ex-
tended boundary condition method (EBCM) for axisymmetric
particles and the associated symmetry properties. Simplified
integral expressions for the auxiliary Q and P matrices are
used to determine the dependence on the size parameter in
the small-particle limit, for all matrix elements. We show that,
for a general axisymmetric particle, the T matrix at lowest
order in the size parameter X̃ [which is O(X̃ 3)] depends on the
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matrix elements in P and Q for all multipoles. This precludes
any simple analytic approximation of T to lowest order using
the EBCM, as an infinite number of terms would have to be
included. However, as shown previously [22,23], the Q matrix
for spheroidal particles has a different limiting form for small
X̃ and we show that, in this special case, the low-order approx-
imation of the T matrix only involves the lowest multipoles,
namely dipoles, quadrupoles, and octupoles for the accuracy
we require here. Using this special property, we can derive
a T -matrix approximation for a spheroidal particle up to the
next nonzero correction, which is O(X̃ 5). To this order, only
11 independent matrix elements are nonzero. We then show
that the approximations can be further improved by applying a
radiative correction scheme previously described in Ref. [24],
which results in a Taylor expansion of T correct to O(X̃ 6).
The resulting expressions are relatively simple and involve no
special functions or series. They provide much more accurate
results than the commonly used Rayleigh approximation for
nanospheroids.

II. T -MATRIX FORMALISM

A. Definition of the T matrix

We provide a summary of the main results using notations
very similar to those in Refs. [4] and [24]. We consider the
standard problem of electromagnetic scattering by a bounded
scatterer, e.g., a particle. The solutions for the incident, scat-
tered, and internal fields are each expanded on the appropriate
basis of vector spherical wave functions (VSWFs), M(i) and
N(i):

Einc = E0

∑
n,m

(
anmM(1)

nm(k1r) + bnmN(1)
nm(k1r)

)
,

Esca = E0

∑
n,m

(
pnmM(3)

nm(k1r) + qnmN(3)
nm(k1r)

)
, (1)

Eint = E0

∑
n,m

(
cnmM(1)

nm(k2r) + dnmN(1)
nm(k2r)

)
,

where k1, k2 are the wave numbers in the medium and particle,
respectively. The relative refractive index s = k2/k1 may be
complex for absorbing or conducting materials. The total (n)
and projected (m) angular momentum indices satisfy |m| � n,
and anm, bnm, pnm, qnm, cnm, and dnm are the expansion coeffi-
cients. Explicit definitions of M(i) and N(i), which correspond
to multipolar fields, can be found in [4,24], and here we just
note that the superscript (i) specifies which spherical Bessel
function is used in the definition. Regular VSWFs that are
finite at the origin are given by i = 1 and are denoted RgM
and RgN in Ref. [4], whereas the irregular VSWFs with i = 3
are outgoing spherical waves and decay to zero in the far field.
It is worth noting that a VSWF expansion may be problematic
near the surface of the scatterer but this does not affect the
validity of the T -matrix method itself. For more information
on near fields and the so-called Rayleigh hypothesis, refer for
example to Ref. [25] and references therein.

Regardless of the shape of the scatterer, the linearity of
Maxwell’s equations implies that the scattering coefficients
pnm and qnm can each be expressed as a linear combination of
the incident coefficients anm and bnm. This linear relationship

can be expressed as a (block) matrix equation:[
p
q

]
= T

[
a
b

]
=
[

T11 T12

T21 T22

][
a
b

]
, (2)

where the column vectors p, q, a, and b respectively contain
all the pnm, qnm, anm, and bnm as components and T is the
so-called transition matrix, or simply the T matrix. Presuming
that all the incident field coefficients are known, then the
knowledge of the T matrix will fully determine the scattered
field coefficients through Eq. (2), and therefore any derived
physical properties.

Symmetries in the particle shape can reduce some of the
T -matrix components to zero; if these particular components
are identified a priori, then the number of components that
need to be computed will be reduced. This is best exem-
plified by spherical scatterers (which fall in the realm of
Mie theory [26]): the corresponding T matrix is diagonal,
yielding a set of completely decoupled equations of the form
pnm = �nanm and qnm = �nbnm, where �n and �n are the Mie
coefficients [4].

B. Extended boundary condition method (EBCM)

It is possible to express the elements of the T matrix
in semianalytic form using the so-called extended boundary
condition method (EBCM). The derivation can be found in
Ref. [4]. One first defines the P and Q matrices, which, similar
to T, express linear relationships between the field expansion
coefficients:[

a
b

]
=
[

Q11 Q12

Q21 Q22

][
c
d

]
,

[
p
q

]
=−

[
P11 P12

P21 P22

][
c
d

]
. (3)

Matrices Q and P relate the incident field (Einc) and the
scattered field (Esca) coefficients to the internal field (Eint)
coefficients. The key insight of the EBCM is that the elements
of Q and P can be expressed analytically as surface integrals
of products of VSWFs, with the integration being performed
over the surface of the scatterer. General expressions are given
in Ref. [4].

Comparing Eqs. (2) and (3) then leads to the fundamental
relationship of the EBCM method:

T = −PQ−1, (4)

which allows one to calculate the T -matrix elements. Note
that Mishchenko et al. [4] write P = RgQ, explicitly indi-
cating that P and Q are mathematically very similar: they
differ only in the type of spherical Bessel function used in the
integral expressions, which can be traced back to the initial
series expansions in Eq. (1). It will be convenient for us to also
define the R matrix, where R = Q−1, which gives the internal
series coefficients in terms of the incident coefficients.

The T , R, P, and Q matrices are infinite but in practice must
be truncated at some maximum multipolarity N for computa-
tions (note that we will use the term multipolarity instead of
multipole order to avoid confusion with the order of terms
in our Taylor expansions). This truncation may introduce an
additional error in the T -matrix elements themselves, arising
from the matrix inversion and multiplication in Eq. (4) [27].
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C. Axisymmetric particles with mirror symmetry

For particles with symmetry of revolution around the z
axis, such as spheroids, expansion coefficients with different
m values are entirely decoupled, and one can therefore solve
the problem for each value of m, where m can be viewed as
a fixed parameter (added as a subscript where needed, but
otherwise implicit). Moreover, we have [4]

T 11
nk|−m = T 11

nk|m, T 12
nk|−m = −T 21

nk|m,

T 21
nk|−m = −T 12

nk|m, T 22
nk|−m = T 22

nk|m, (5)

and therefore only m � 0 need to be considered in the cal-
culation of T. Furthermore, the surface integrals for the P-
and Q-matrix elements reduce to line integrals, for which a
number of simplified expressions have been derived [22,28].
The integral expressions used in this work are summarized in
Appendix A.

Reflection symmetry with respect to the equatorial plane
also results in a number of additional simplifications (see
Sec. 5.2.2 of Ref. [4] and Sec. 2.3 of Ref. [23]):

P11
nk = P22

nk = Q11
nk = Q22

nk = 0, if n + k odd,

P12
nk = P21

nk = Q12
nk = Q21

nk = 0, if n + k even, (6)

and identical relations for T and R. As discussed in [23], we
can then rewrite Eqs. (2) and (3) as two independent sets of
equations. Following Ref. [29], we define

ae =

⎛
⎜⎝

a2

a4
...

⎞
⎟⎠, bo =

⎛
⎜⎝

b1

b3
...

⎞
⎟⎠, ao =

⎛
⎜⎝

a1

a3
...

⎞
⎟⎠, be =

⎛
⎜⎝

b2

b4
...

⎞
⎟⎠,

(7)

and similarly for c, d, p, q. We also define the matrices Qeo

and Qoe from Q as

Qeo =
(

Q11
ee Q12

eo
Q21

oe Q22
oo

)
, Qoe =

(
Q11

oo Q12
oe

Q21
eo Q22

ee

)
, (8)

where Q12
eo denotes the submatrix of Q12 with even row indices

and odd column indices, and similarly for the others. One can
see that Qeo and Qoe contain all the nonzero elements of Q
and exclude all the elements that must be zero by reflection
symmetry, so this is an equivalent description of the Q matrix.
Physically, the eo matrices relate the properties of the even
magnetic and odd electric multipoles, while the oe matrices
relate the odd magnetic and even electric multipoles. Those
two groups are strictly decoupled in the case of axisymmetric
particles with mirror symmetry and the equations relating the
expansion coefficients can be written as two independent sets,
for example,(

ae

bo

)
= Qeo

(
ce

do

)
,

(
ao

be

)
= Qoe

(
co

de

)
, (9)

and similar expressions deduced for P, T, and R. As a result,
the problem of finding a 2N×2N T matrix reduces to finding
two decoupled T matrices Teo and Toe, each of size N×N ,
namely

Teo = −Peo[Qeo]−1, Toe = −Poe[Qoe]−1. (10)

III. SIZE DEPENDENCE OF THE MATRIX ELEMENTS

A. Size parameter

Here we are interested in scattering by axisymmetric par-
ticles that are small relative to the wavelength. If the surface
of the scatterer in spherical coordinates is described by r(θ ),
then we define the variables

x = k1r(θ ), (11)

xθ = dx

dθ
= k1

dr

dθ
, (12)

X = k1r(θ = 0), (13)

X̃ = k1req = k1
3

√
3V

4π
, (14)

where k1 is the wave number in the external medium: k1 =
2πn1/λ, with n1 is the refractive index. x(θ ) is analogous to
the size parameter in Mie theory [26], but is a function of θ

for nonspherical particles. X̃ is our chosen definition for the
size parameter of a nonspherical particle, in terms of req, the
radius of the sphere of equivalent volume V . This choice will
be motivated by the fact that the range of validity of the small-
size approximation depends primarily on X̃ , rather than X .
X will nevertheless be a more convenient parameter for the
Taylor expansions.

For a given shape, scaling X̃ or X is equivalent to scaling
the particle size.

For a spheroid with symmetry of revolution around z, with
semiaxes c along its axis and a perpendicular to it, we have

r(θ ) = ac√
a2 cos2 θ + c2 sin2 θ

, X = k1c. (15)

The shape may then be characterized by a single parameter,
for example, the aspect ratio defined as h = c/a:

x(θ ) = X√
1 + (h2 − 1) sin2 θ

. (16)

The size is characterized by X or X̃ , which are related
by X = X̃ h2/3. For a prolate spheroid, we have c > a and
h > 1, and the opposite for an oblate spheroid. To simplify
our expressions, we will also use the eccentricity of the
spheroid e = √

h2 − 1/h. We will carry out all our derivations
for prolate spheroids (for which 0 < e < 1), and discuss the
extension to oblate spheroids (for which e is imaginary within
the definition above) at the end.

B. Long-wavelength limit of the matrix elements

The simplified integrals (given in Appendix A) contain
products of the Riccati-Bessel functions, for which we can
develop a long-wavelength approximation by considering a
Taylor series in their argument, either x(θ ) or sx(θ ). For
example,

Q12
nk = AnAk

s2 − 1

s
m
∫ π

0
dθ dndkξn(x)ψ ′

k (sx)xθ , (17)

where xθ is defined in Eq. (12), An is a constant, dn is a
function of θ (related to the associated Legendre functions),
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and ξn, ψn are Riccati-Bessel functions—see Appendix A for
full details. Since ξn(x) ∝ x−n and ψ ′

k (sx) ∝ (sx)k , we have
Q12

nk ∝ X k−n+1. Following similar arguments, the asymptotic
forms of the matrix elements of the P and Q matrices were de-
rived for a general axisymmetric scatterer (see Appendix B 1
and also Ref. [22]):

Q11
nk = O(X k−n+2−2δnk ), Q12

nk = O(X k−n+1),

Q21
nk = O(X k−n+1), Q22

nk = O(X k−n),

P11
nk = O(X k+n+3), P12

nk = O(X k+n+2),

P21
nk = O(X k+n+2), P22

nk = O(X k+n+1).

From these, it is possible to prove (see Appendix B 2 for
details) that R = Q−1 and T = −PQ−1 have the same lowest-
order dependence as Q and P, respectively:

Ri j
nk ∝ Qi j

nk, T i j
nk ∝ Pi j

nk for i, j = 1, 2. (18)

Following this proof, one may notice that, to obtain the
lowest-order approximation of R or T (in particular T 22

11 ,
akin to the electric dipole polarizability of the particle), it is
necessary to include elements of P and Q of higher multipo-
larity. This important point is more obvious when writing out
explicitly the lowest-order form of the matrices. For example,
for a mirror-symmetric particle, we have in the small particle
limit (truncated at N = 5)

Peo, Teo = O

⎡
⎢⎢⎢⎢⎣

X 7 X 9 X 5 X 7 X 9

X 9 X 11 X 7 X 9 X 11

X 5 X 7 X 3 X 5 X 7

X 7 X 9 X 5 X 7 X 9

X 9 X 11 X 7 X 9 X 11

⎤
⎥⎥⎥⎥⎦, (19)

Qeo, Reo = O

⎡
⎢⎢⎢⎢⎣

X 0 X 4 X 0 X 2 X 4

X 0 X 0 X −2 X 0 X 2

X 2 X 4 X 0 X 2 X 4

X 0 X 2 X −2 X 0 X 2

X −2 X 0 X −4 X −2 X 0

⎤
⎥⎥⎥⎥⎦. (20)

We see that, although the dominant term T 22
11 is of order

O(X 3), it will be necessary to compute the lowest-order terms
for the entire column of Reo = [Qeo]−1 and the entire row of
Peo in order to compute it from Teo = −PeoReo.

C. Special case of spheroidal particles

As shown in Ref. [22], the matrix elements of the lower
triangular parts of the four blocks of the Q matrix have
a different limiting form in the special case of spheroidal
particles. All terms of negative orders in X in the Taylor
expansion of the Q matrix are exactly zero, resulting in Qi j

nk =
O(X 0) for n > k and i, j = 1, 2. As a result, it can be proved
that the same applies to R, i.e., Ri j

nk = O(X 0) for n > k (see
Appendix B 3). Explicitly for the eo matrices, we then have

Qeo, Reo = O

⎡
⎢⎢⎢⎢⎣

X 0 X 4 X 0 X 2 X 4

X 0 X 0 X 0 X 0 X 2

X 2 X 4 X 0 X 2 X 4

X 0 X 2 X 0 X 0 X 2

X 0 X 0 X 0 X 0 X 0

⎤
⎥⎥⎥⎥⎦. (21)

Together with Eq. (19), this implies that only R22
11 will con-

tribute to the lowest order of T 22
11 . Similarly, when calculating

Teo = −PeoReo to order O(X 5), we may then truncate all three
matrices to multipolarity N = 3, i.e., consider only the electric
dipole and octupole and the magnetic quadrupole. All matrix
elements in Peo and Reo can moreover be approximated by
their lowest-order term except P22

11 and R22
11, which must be

expanded up to their next nonzero term (X 5 and X 2, respec-
tively). Moreover, by tracking the order of terms in the inver-
sion of Q, one can also show that Q can also be truncated at
N = 3 when calculating T to order O(X 5); see Appendix C 1
for details. In other words, all matrix elements with n � 4
or k � 4 will ultimately only introduce corrections of order
O(X 7) or higher for T.

The situation is even simpler in the oe case as the lowest-
order elements of Poe and Toe are O(X 5):

Poe, Toe = O

⎡
⎢⎢⎢⎢⎣

X 5 X 7 X 9 X 5 X 7

X 7 X 9 X 11 X 7 X 9

X 9 X 11 X 13 X 9 X 11

X 5 X 7 X 9 X 5 X 7

X 7 X 9 X 11 X 7 X 9

⎤
⎥⎥⎥⎥⎦. (22)

The same cancellations occur in the lower triangular part
of Qoe in the case of spheroids, giving

Qoe, Roe = O

⎡
⎢⎢⎢⎢⎣

X 0 X 4 X 6 X 2 X 4

X 0 X 0 X 4 X 0 X 2

X 0 X 0 X 0 X 0 X 0

X 0 X 2 X 4 X 0 X 2

X 0 X 0 X 2 X 0 X 0

⎤
⎥⎥⎥⎥⎦. (23)

Following similar arguments as for the eo matrices, we can
show that in order to obtain Toe to order O(X 5), we can
truncate all oe matrices at multipolarity N = 2.

Overall, we see that we can ignore any matrix elements
related to electric multipolarity larger than 3 or to magnetic
multipolarity larger than 2.

D. Radiative correction

The final ingredient of our approach will be to enforce
a suitable radiative correction following Ref. [24]. Briefly,
this procedure consists in defining the matrix U such that
Q = P + iU. U is computed exactly like Q, but replacing
the Riccati-Hankel functions ξn = ψn + iχn by the irregular
Riccati-Bessel functions χn. We can then compute the so-
called K matrix defined as K = PU−1 [24], which therefore
has a similar expression as the T -matrix in terms of Q. iχn

and ξn have the same lowest-order expansion and therefore K
has the same long-wavelength behavior as T. The final step in
this scheme is to compute T from

T = −[I + iK−1]−1 = iK(I − iK)−1. (24)

This procedure therefore requires an additional matrix
inversion step, but the resulting expressions for the cross sec-
tions will then strictly satisfy energy conservation (extinction
= absorption + scattering), which is crucial in the case of
nonabsorbing particles (see Ref. [24] for more details). An
additional benefit here is that the Taylor expansion of χn (and
therefore of U) only contains even or odd orders, while that
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of ξn contains both. As a result, more terms in the Taylor
expansions of the matrix elements will reduce to zero.

E. Comparison to the analytic quasistatic solution

The lowest-order approximation to the matrix elements can
alternatively be obtained by solving the boundary value prob-
lem in the quasistatic approximation. Analytic results have
been derived for the lower-right blocks (P22, Q22, T22) [30],
where the problem can be solved using separation of variables
in spheroidal coordinates. These results have recently been
extended to the other matrix blocks [31]. Where applicable,
this method may be simpler than Taylor expanding the inte-
grals to lowest order and will provide us with equivalent, and
sometimes simpler, expressions.

IV. TAYLOR EXPANSION OF THE T MATRIX
AND DERIVED QUANTITIES TO O(X 6)

We now bring together all the preliminary results of the
previous section to calculate the Taylor expansions of the
T matrix up to order O(X 6) for spheroidal particles. First,
as explained in Sec. III C, we can truncate all matrices at
multipole N = 3, as higher-multipole matrix elements will
only introduce corrections of order O(X 7) or higher. Since
|m| � n, we only need to consider 0 � m � 3 (in fact we will
find that only up to m = 2 are relevant). Since different m are
decoupled, it is easier to study each m separately. We will start
with m = 0 and provide full details of the derivations. We then
provide the final results with fewer details for m = 1 and 2.
For each m we proceed as follows.

(i) Formally write out the Taylor expansions of the matrix
elements of P up to order X 5 and U up to order X 2.

(ii) Deduce the Taylor expansion of K = PU−1 up to order
X 5 as a function of the expansion coefficients of P and U.

(iii) Calculate explicit expressions for the necessary P and
U expansion coefficients by expanding the integrals defining
the P- and U -matrix elements.

(iv) Simplify expressions as much as possible to obtain a
concise expression for K to order X 5.

(v) Apply the radiative correction to deduce T (which will
then be valid to order X 6).

All results will be expressed using a mixture of the aspect
ratio h and eccentricity e.

A. K matrix for m = 0

For m = 0 the off-diagonal blocks U12, U21, P12, P21,
K12, K21 are zero. The eo matrices are truncated at N = 3 and
are of the form

Peo
m=0 =

⎡
⎢⎣

P11
22 0 0

0 P22
11 P22

13
0 P22

31 P22
33

⎤
⎥⎦. (25)

The matrices therefore decouple into 2×2 and 1×1 blocks.
The 1×1 block can be ignored entirely as K11

22 = O(X 7) so we
only need to consider K22, which can be obtained from[

K22
11 K22

13

K22
31 K22

33

]
=
[

P22
11 P22

13

P22
31 P22

33

][
U 22

11 U 22
13

U 22
31 U 22

33

]−1

. (26)

We now expand the matrix elements as power series in X ,
making use of the fact that only even or odd orders in the
Taylor expansions of ψn and χn are nonzero:[

P22
11 P22

13

P22
31 P22

33

]
=X 3

[
p11+p(2)

11 X 2 p13X 2

p31X 2 0

]
+O(X 7). (27)

The coefficients pnk are by construction independent of X .
It is less obvious to see which terms should be kept in the

matrix U22 in order to correctly obtain the terms required in
K22 = P22[U22]−1, but, noting that U−1 has the same small X
dependence as U, one can show (see Appendix C 2) that we
only need[

U 22
11 U 22

13

U 22
31 U 22

33

]
=
[

u11 + u(2)
11 X 2 u13X 2

u31 u33

]
+ O(X 4). (28)

All higher-order terms will only contribute to O(X 7) correc-
tions in K22. The K matrix is obtained from Eq. (26) as

[
K22

11 K22
13

K22
31 K22

33

]
=

⎡
⎢⎣ K22

11|0

(
p13

u33
− p11u13

u11u33

)
X 5

p31

u11
X 5 0

⎤
⎥⎦+ O(X 7),

(29)

where

K22
11|0 = X 3 K0

1 − �0X 2
+ O(X 7), (30)

with

K0 = p11

u11
, (31)

�0 = p(2)
11

p11
− u(2)

11

u11
+ u31

u33

(
u13

u11
− p13

p11

)
. (32)

The dominant term K0X 3 is analogous to the static dipolar
polarizability and scales with volume as expected. We chose
to write the second-order correction as a factor (1 − �0X 2)−1

instead of the equivalent (1 + �0X 2). This choice simplifies
the expressions later when applying the radiative correction
to obtain the T matrix, and also provides a slightly better
approximation.

All coefficients pnk and unk can be derived by Taylor expan-
sions of the corresponding integrals for the matrix elements
of P and U. Some of them can also be directly obtained
from the analytic expressions of the P and Q matrix in the
quasistatic approximation [30]. This is the case for p11, p31,
p13, u11, u13, and u33 (but not of u31 as U 22

31 reduces to zero for
spheroids in the quasistatic approximation). pnk and unk are
given explicitly in Appendix C 5, and we here only focus on
the final simplified expressions.

We first introduce Lz, the static depolarization factor for a
prolate spheroid [26], to emphasize the connection with the
quasistatic limit:

Lz = 1 − e2

e2

[
atanh(e)

e
− 1

]
. (33)

The dominant term can then be expressed as

K0 = 2

9h2

s2 − 1

1 + (s2 − 1)Lz
= 2

3c3

αzz

4πε0
, (34)
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where the proportionality to the static dipolar polarizability
αzz is shown explicitly.

Moreover, the matrix K22 should be symmetric when s
is real [24], which is not immediately obvious from (29),
but the equality of the off-diagonal terms can be proved by
substituting the expressions of the expansion coefficients. This
equality can also be used to simplify the expression for �0 in
(32), which after some algebra can be reduced to a relatively
simple expression:

�0 = 9e2

25
+ s2(1 − e2) − 2

5[1 + (s2 − 1)Lz]
. (35)

The off-diagonal terms also simplify to give

K22
13|0 = K22

31|0 = 2e2
√

14

1575h2

s2 − 1

1 + (s2 − 1)Lz
X 5 + O(X 7), (36)

which coincides with the quasistatic limit in [30].

The situation is simpler for the oe matrices as they are 2×2
diagonal when truncated at N = 2. The matrix inversion is
then trivial and we simply have for the oe-matrix elements

K11
11|0 = O(X 5) = P11

11|0
U 11

11|0
+ O(X 7), (37)

K22
22|0 = O(X 5) = P22

22|0
U 22

22|0
+ O(X 7). (38)

Since they are of order O(X 5), we only need to take the
lowest-order approximation of the numerator and denomina-
tor in these expressions. We obtain after simplifications

K11
11|0 = s2 − 1

45h4
X 5 + O(X 7), (39)

K22
22|0 = 3 − e2

225h2

s2 − 1

1 + (s2 − 1)L20
X 5 + O(X 7), (40)

where L20 is a generalization of the concept of the depolariza-
tion factor to quadrupolar excitation and is a purely geometric
property:

L20 = 3

2

1 − e2

e3

[
3 − e2

e2
atanh(e) − 3

e

]
. (41)

We will later define two more of these quadrupole factors for m = 1, 2 (in a similar fashion as in Ref. [32]). The notation is Lnm

so that we would have Lz ≡ L10 and Lx = Ly ≡ L11.
This completes the Taylor expansion of the K matrix for m = 0. In summary,

Km=0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s2 − 1

45h4
X 5 0 0 0 0

0 0 0 0 0

0 0
K0X 3

1 − �0X 2
0

e2
√

14

175
K0X 5

0 0 0
3 − e2

225h2

s2 − 1

1 + (s2 − 1)L20
X 5 0

0 0
e2

√
14

175
K0X 5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O(X 7). (42)

B. Radiative correction and T matrix for m = 0

We can now obtain the T matrix from the K matrix
using Eq. (24) (i.e., the radiative correction). This will
ensure that the resulting T matrix, despite being an ap-
proximation, better satisfies energy-conservation constraints
[24]. For the elements that are completely decoupled from
others (i.e., belonging to a 1×1 block), this correction is
straightforward:

T 11
11|0 = iK11

11|0
1 − iK11

11|0
+ O(X 7),

T 22
22|0 = iK22

22|0
1 − iK22

22|0
+ O(X 7). (43)

For the 2×2 block of K22, the exact application of the
radiative correction on the approximate K matrix requires the

inversion of a 2×2 matrix and gives

T 22
11|0 = iK0X 3

[
1 + i 14e4

30625 K0X 7(1 − �0X 2)
]

1 − �0X 2 − iK0X 3
[
1 + i 14e4

30625 K0X 7(1 − �0X 2)
] ,
(44)

T 22
31|0 = T 22

13|0

= i
√

14e2

175 K0X 5(1 − �0X 2)

1 − �0X 2 − iK0X 3
[
1 + i 14e4

30625 K0X 7(1 − �0X 2)
] .
(45)

We could simplify these expressions by removing all terms
of order O(X 7) or more. In doing so, we need to keep in
mind that for nonabsorbing particles K11 and K22 are real,
and K12 and K21 are pure imaginary matrices. The imaginary
and real parts of T then have very different dominant terms.
For T 22

11|0, for example, Im{T 22
11|0} ∼ X 3 but Re{T 22

11|0} ∼ X 6.
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Because the latter is related to the extinction cross section,
it is important to keep the dominant terms in the real part as
well as the imaginary part. For other T -matrix elements which
are ∼X 5, their real part is ∼X 10, as evident for example in
Eq. (43). If we were to neglect the O(X 10) terms and write
for example T 11

11|0 = iK11
11|0 + O(X 7), then T 11

11|0 would be pure
imaginary and the corresponding predicted extinction cross

sections [proportional to Re(T )] would be zero despite the
fact that the scattering cross sections (∝|T |2) are nonzero, a
clearly nonphysical result. It is therefore important to keep the
dominant terms of the real part of T (for real s), even if they
are of higher order than our desired approximation O(X 6).
Following this principle, we therefore have the following
simplified expressions:

T 22
11|0 = iK0X 3

1 − �0X 2 − iK0X 3
+ O(X 7), (46)

T 22
31|0 = T 22

13|0 = i
√

14e2

175

K0X 5

1 − iK0X 3
+ O(X 7). (47)

While these are not strictly energy conserving as some terms have been neglected, the condition (extinction = scattering +
absorption) will nevertheless be approximately valid within the range of validity of our expansions, even for nonabsorbing
scatterers. Those expressions will be compared to the predictions without radiative correction, for which the T matrix is then
simply given as T = iK. Refer to Ref. [24] for further discussion of the radiative correction.

In summary, the T matrix after radiative correction is given by

Tm=0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iK11
11

1 − iK11
11

0 0 0 0

0 0 0 0 0

0 0
iK0X 3

1 − �0X 2 − iK0X 3
0

√
14

175

ie2K0X 5

1 − iK0X 3

0 0 0
iK22

22

1 − iK22
22

0

0 0

√
14

175

ie2K0X 5

1 − iK0X 3
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ O(X 7). (48)

C. K matrix for m = 1

For m = 1 the expressions are more complicated due to
coupling of the matrix elements from different matrix blocks.
Details of the derivation are given in Appendix C 2 and we
here only provide the final simplified expressions.

For the dominant dipolar polarizability term, we have

K22
11|1 = K1X 3

1 − �1X 3
+ O(X 7), (49)

where K1 is related to the static dipolar polarizability along
the x or y axis, αxx = αyy:

K1 = 2

9h2

s2 − 1

1 + (s2 − 1)Lx
= 2

3c3

αxx

4πε0
. (50)

Lx is the standard depolarization factor (note that 2Lx +
Lz = 1):

Lx = −1

2e2

[
1 − e2

e
atanh(e) − 1

]
. (51)

�1 is obtained as a fairly complicated expression when ex-
pressed in terms of the elements of P and U, but like �0, can
be substantially simplified to

�1 = −12e2

25
+ s2 + 3e2 − 2

5[1 + (s2 − 1)Lx]
. (52)

The other matrix elements for Keo are

K22
13|1 = K22

31|1 = 2e2
√

21

525
K1X 5 + O(X 7), (53)

K21
12|1 = −K12

21|1 = ie2
√

15

150
K1X 5 + O(X 7). (54)

For the Koe matrix, we again define a generalized depolariza-
tion factor:

L21 = −2 − e2

2e4

[
3

1 − e2

e
atanh(e) − 3 + 2e2

]
, (55)

and we then have

K11
11|1 = (s2−1)[h2(2−e2)2 + 4(s2−1)L21]

90h4(2−e2)[1 + (s2−1)L21]
X 5 + O(X 7),

(56)

K22
22|1 = 2 − e2

150h2

s2 − 1

1 + (s2 − 1)L21
X 5 + O(X 7), (57)

K21
21|1 = −K12

12|1 = ie2X 5

30
√

15h2

s2 − 1

1 + (s2 − 1)L21
+ O(X 7).

(58)
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In summary,

Km=1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s2−1)[h2(2−e2 )2+4(s2−1)L21]
90h4(2−e2 )[1+(s2−1)L21] X 5 0 0

−ie2X 5

30
√

15h2

s2 − 1

1 + (s2 − 1)L21
0

0 0 − ie2
√

15

150
K1X 5 0 0

0
ie2

√
15

150
K1X 5 K1X 3

1 − �1X 2
0

2e2
√

21

525
K1X 5

ie2X 5

30
√

15h2

s2 − 1

1 + (s2 − 1)L21
0 0

2 − e2

150h2

s2 − 1

1 + (s2 − 1)L21
X 5 0

0 0
2e2

√
21

525
K1X 5 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O(X 7).

D. Radiative correction and T matrix for m = 1

The radiative correction for the eo part of the matrix is very similar to the m = 0 case and, following the same method and
arguments, we obtain

T 22
11|1 = iK1X 3

1 − �1X 2 − iK1X 3
+ O(X 7), (59)

T 21
12|1 = −T 12

21|1 = iK21
12|1

1 − iK1X 3
+ O(X 7), (60)

T 22
31|1 = T 22

13|1 = iK22
31|1

1 − iK1X 3
+ O(X 7). (61)

For the oe matrix, this time we have four elements (i.e., a 2×2 matrix), which are all O(X 5). Applying the matrix inversion and
keeping the dominant terms for both real and imaginary parts, we obtain

T 11
11|1 = iK11

11|1
1 − i

[
K11

11|1 − (K21
21|1
)2

/K11
11|1
] + O(X 7), (62)

T 22
22|1 = iK22

22|1
1 − i

[
K22

22|1 − (K21
21|1
)2

/K22
22|1
] + O(X 7), (63)

T 21
21|1 = −T 12

12|1 = iK21
21|1

1 − i
[
K11

11|1 + K22
22|1
] + O(X 7). (64)

The denominators in (62)–(64) are interesting in their own right in terms of discussing the radiative correction, as they
are different from the obvious radiative corrections of the type iK/(1 − iK ) encountered to date. In fact, when comparing the
predictions to exact numerical results, we can confirm that the expressions above are the correct ones as any other choices result
in problems for nonabsorbing particles.

In summary,

Tm=1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iK11
11

1 − i
[
K11

11 −(K21
21

)2/
K11

11

] 0 0 − iK21
21

1 − i
[
K11

11 + K22
22

] 0

0 0 − iK21
12

1 − iK1X 3
0 0

0
iK21

12

1 − iK1X 3

iK1X 3

1 − �1X 2 − iK1X 3
0

iK22
31

1 − iK1X 3

iK21
21

1 − i
[
K11

11 + K22
22

] 0 0
iK22

22

1 − i
[
K22

22 −(K21
21

)2/
K22

22

] 0

0 0
iK22

31

1 − iK1X 3
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+O(X 7).
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E. Expansions for m � 2

The only O(X 5) element for m = 2 is

K22
22|2 = X 5

75h4

s2 − 1

1 + (s2 − 1)L22
+ O(X 7), (65)

where we define another quadrupole depolarization factor:

L22 = 1

4e4

[
3

e
(1 − e2)2atanh(e) − 3 + 5e2

]
. (66)

Note these quadrupole factors L20, L21, L22 follow a sum rule
like the dipole factors Lx, Ly, Lz [31]:

L20 + 2L21 + 2L22 = 2. (67)

For T, the radiative correction is straightforward in this case
and gives

T 22
22|2 = iK22

22|2
1 − iK22

22|2
. (68)

For m = 3, the only matrix element in our truncated blocks
is K22

33|3, but it is of order O(X 7).

F. Oblate spheroids and spheres

All the results were derived for prolate spheroids but also
provide correct expressions for oblate spheroids, providing
all parameters are defined in exactly the same way. This is

in contrast to other studies where different definitions are
sometimes used for oblate spheroids (for example, for the
aspect ratio). Here, we hold the following.

(i) c as the semiheight of the spheroid along the rotation
axis so that c > a for prolate spheroids and c < a for oblate.

(ii) h = c

a
, so that h > 1 for prolate and 0 < h < 1 for

oblate.

(iii) e =
√

h2 − 1

h
, so that 0 < e < 1 for prolate, and e is

on the positive imaginary axis i0 < e < i∞ for oblate.
(iv) X = k1c and X̃ = k1ch−2/3 in both cases.
Spheres are a special case of spheroid with h = 1 and

e = 0. Although some expressions are singular for those
values, they all have a well-defined limit. In particular, all
matrices become diagonal, K0 = K1, and

�0 = �1 = 3

5

s2 − 2

s2 + 2
, (69)

which agrees with the Taylor expansion of the electric polar-
izability within Mie theory [14].

V. ACCURACY OF NEW APPROXIMATIONS

We now assess the accuracy of these approximations by
comparing them to the exact solutions, which are computed
using publicly available codes, SMARTIES [27,29], and can
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FIG. 1. Relative error of T 22
11|m as computed to O(X 3) or O(X 5), with and without the radiative correction, compared to the exact solution.

The scatterer is a prolate spheroid of aspect ratio h = 3. We show the relative error for |T 22
11|m|2 (solid lines) and Re[T 22

11|m] (dashed lines) for
m = 0 (left) and m = 1 (right) in the case of a nonabsorbing material with s = 1.3 (top) or an absorbing material with s = 1.3 + 0.2i (bottom).
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FIG. 2. Relative error of the other T -matrix elements as computed to O(X 5), with and without the radiative correction, compared to the
exact solution. The scatterer is a prolate spheroid of aspect ratio h = 3. We show the relative error for |T i j

nk|m|2 (solid lines) and Re[T i j
nk|m] (dashed

lines) in the case of a nonabsorbing material with s = 1.3 or an absorbing material with s = 1.3 + 0.2i.

be obtained to an accuracy of at least ∼10−8. Here we use
for illustration a prolate spheroid with h = 3, but results for
higher aspect ratio and for oblate spheroids are similar and
included as additional figures in the Supplemental Material
[33].

A. Dipolar polarizability

The dipolar polarizabilities along the z and x axis are
proportional to T 22

11|0 and T 22
11|1, respectively. They are the only

O(X 3) terms and therefore dominate the optical response at
small size. We compute the relative error in |T 22

11 |2 (related
to scattering cross section) and Re(T 22

11 ) (related to extinction
cross section). For a quantity Aapprox, the relative error ε is
obtained by comparison with the exact result ASMARTIES from

ε =
∣∣∣∣Aapprox − ASMARTIES

ASMARTIES

∣∣∣∣. (70)

We consider the following approximations.
(i) O(X 3): this includes only the dominant term and is

equivalent to the Rayleigh or electrostatic approximation, i.e.,

T 22
11|0 = iK0X 3, T 22

11|1 = iK1X 3. (71)

(ii) O(X 5): this includes the derived O(X 5) correction to
the K matrix, but not the radiative correction, so we simply
have T = iK, which is equivalent to a Taylor expansion of T

to order O(X 5), i.e.,

T 22
11|0 = iK0X 3

1 − �0X 2
, T 22

11|1 = iK1X 3

1 − �1X 2
. (72)

(iii) O(X 3) − RC, where the radiative correction is applied
to the Rayleigh approximation, i.e.,

T 22
11|0 = iK0X 3

1 − iK0X 3
, T 22

11|1 = iK1X 3

1 − iK1X 3
. (73)

In this case, the dominant terms of Im(T) (∼X 3) and Re(T)
(∼X 6) are both correct to lowest order.

(iv) O(X 5) − RC, where the radiative correction is applied
to the O(X 5) approximation, i.e.,

T 22
11|0 = iK0X 3

1 − �0X 2 − iK0X 3
, (74)

T 22
11|1 = iK1X 3

1 − �1X 2 − iK1X 3
. (75)

In this case, T is correct to order O(X 6).
The accuracy of these approximations as a function of the

volume-equivalent size parameter X̃ is compared in Fig. 1 for
a prolate spheroid of aspect ratio h = 3 with either s = 1.3
(nonabsorbing) or s = 1.3 + 0.2i (absorbing). Similar plots
are provided in the Supplemental Material for other pa-
rameters, including higher-index (s = 1.7) and metallic
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FIG. 3. Accuracy of approximations for predicting the orientation-averaged extinction, scattering, and absorption cross sections. The
scatterer is a prolate spheroid of aspect ratio h = 3, either nonabsorbing with s = 1.3 (a)–(f) or absorbing with s = 1.3 + 0.2i (g)–(i). In
the top row (a)–(c) the actual predicted cross sections, suitably normalized for display, are plotted as a function of size parameter X̃ in the
nonabsorbing case (s = 1.3). Unphysical negative absorption is predicted by all approximations, but for O(X 5) − RC this only occurs for large
particles outside the range of validity of the approximation. In (d), (e), (g), (h), and (i) the relative errors (with respect to the exact results) are
plotted. Since the absorption is zero in (f), we instead plot the absolute error.

(s = √−10 + 0.5i) materials (see Supplemental Material
[33]). From these we can draw a number of conclusions.

First, the improvements in accuracy provide reassurance
that the expressions found in the previous sections are correct.

Second, the O(X 5) approximation clearly improves the
range of validity of the approximation, as expected. At a
relative error of 10−2, for example, the O(X 3) is applicable
up to X̃ ≈ 0.15–0.25, while the O(X 5) is valid up to X̃ ≈
0.5–0.6. For a particle with h = 3 in water at a wavelength
of 400 nm, this corresponds to c = 15–25 nm for O(X 3) and
c = 50–60 nm for O(X 5).

Third, the radiative correction is critical to correctly predict
the real part of T (and therefore the extinction cross section)
for nonabsorbing scatterers. In fact, for absorbing particles,
the radiative correction also improves further the approxima-
tion in the case of the O(X 5) approximation. This is expected
since the radiative correction adds the correct terms up to
O(X 6). Applying the radiative correction to the Rayleigh ap-
proximation does not improve results for absorbing scatterers
as the terms of order O(X 5) are important but not included.

In the relative error plots we can also quantify the ac-
curacy of a particular approximation from the gradient on

a log-log scale: for an approximation of the type f (x) =
C1XC2 (1 + C3XC4 ) + O(XC5 ), the relative error should have a
gradient of C5 − C2 (for small enough X ). Hence we see the
O(X 3) approximations have a slope of 5 − 3 = 2, the O(X 5)
approximations have a slope of 6 − 3 = 3, and the O(X 6)
approximations have a slope of 7 − 3 = 4.

B. Other matrix elements

The same tests can be carried out on the nine other nonzero
independent T -matrix elements, as illustrated in Fig. 2 (and
comparable figures in the Supplemental Material [33]). For
all of those, the leading order is O(X 5) and we again consider
the accuracy with or without the radiative corrections, both for
|T i j

nk |2 and for Re(T i j
nk ). These again confirm the validity of the

derived expressions and lead us to similar conclusions as those
obtained for the dipolar polarizability. In these other matrix
elements, the radiative correction is of order X 10 and does
not improve much the approximation for absorbing scatterers
(unlike for the dipolar polarizability). The radiative correction
does remain crucial to avoid zero extinction and negative
absorption in the case of nonabsorbing scatterers.
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C. Derived quantities

One of the main advantages of the T -matrix framework
is the possibility to compute efficiently orientation-averaged
properties [4]. The orientation-averaged extinction cross sec-
tion is obtained from the trace of T, so up to order X 6 only
depends on T 11

11|m, T 22
11|m, and T 22

22|m. Explicitly,

〈Cext〉 = −2π

k2
1

Re
{
T 11

11|0 + T 22
11|0 + T 22

22|0

+ 2
[
T 11

11|1 + T 22
11|1 + T 22

22|1 + T 22
22|2
]}+ O(X 7). (76)

The orientation-averaged scattering cross section is com-
puted from the sum of the squares of the elements of T. We
have 11 independent nonzero matrix elements to O(X 6) and
therefore

〈Csca〉 = 2π

k2
1

{∣∣T 11
11|0|2+

∣∣T 22
11|0
∣∣2+∣∣T 22

22|0
∣∣2+2

∣∣T 22
31|0
∣∣2

+ 2
∣∣T 11

11|1
∣∣2+2

∣∣T 22
11|1
∣∣2+4

∣∣T 12
12|1
∣∣2+4

∣∣T 21
21|1
∣∣2

+ 4
∣∣T 22

31|1
∣∣2+2

∣∣T 22
22|1
∣∣2+2

∣∣T 22
22|2
∣∣2}+O(X 7). (77)

The accuracy of the new approximations for the
orientation-averaged cross sections is illustrated in Fig. 3
(and comparable figures in the Supplemental Material [33]),
including and not including the radiative corrections. These
follow the same trends as for the individual matrix elements.

VI. CONCLUSION

We have obtained Taylor expansion in the long-wavelength
or low-frequency limit of all the elements of the T matrix
for prolate and oblate spheroidal particles up to order O(X̃ 6),
where X̃ is the size parameter. The coefficients of these
expansions are simple expressions in terms of the relative
refractive index s and aspect ratio h. The resulting approxi-
mation expands the range of validity of the commonly used
Rayleigh approximation from size parameters of the order of
X̃ ≈ 0.2 up to X̃ ≈ 0.6 depending on the parameters. For a
particle in water of aspect ratio h = 3 at a wavelength of 400
nm, this corresponds to maximum dimensions of 40 nm for
the Rayleigh approximation, increasing to 120 nm for our new
approximations. This new approximation is therefore applica-
ble to a much wider range of nanoparticles commonly syn-
thesized and studied, for which the Rayleigh approximation is
typically inadequate. In addition, this study provides further
insight into the importance of the radiative correction and the
related K matrix [24] and how it can be used effectively to
obtain more accurate and physical results with approximations
of the T matrix. This work is intended as a simple alternative
to the full T -matrix calculations to further study the optical
properties of nanoparticles.
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APPENDIX A: INTEGRAL FORMS
OF MATRIX ELEMENTS

The elements of the P, Q, and U matrices can be computed
from integrals of Bessel functions. The only difference is the
type of Riccati-Bessel functions used, ψn for P, ξn for Q, and
χn for U:

ψn(x) = x jn(x), χn(x) = xyn(x),

ξn(x) = xhn(x) = ψn(x) + iχn(x), (A1)

where jn, yn, and hn are the spherical Bessel and Hankel
functions.

Expressions below are given for Q only, as the others are
easily derived by replacing ξn. Here we recap the simplified
expressions obtained in [28] and provide new expressions
for the diagonal of Q. The letters K and L are used for the
integrals to comply with previous work [28], but should not
be confused with the K-matrix elements or the depolarization
factors also denoted L. Note that these integrals are exact
for axisymmetric particles of any size. Below we assume
ξn = ξn(x), ψn = ψn(sx) to shorten expressions, and the
prime denotes the derivative,

Q12
nk = AnAk

s2 − 1

s
K1

nk, (A2)

Q21
nk = AnAk

1 − s2

s
K2

nk, (A3)

Q11
nk = −iAnAk

[
−sL1

nk + L3
nk + L2

nk − L4
nk

s

]
, (A4)

Q22
nk = −iAnAk

[
−L1

nk + L3
nk

s
+ L2

nk − L4
nk

]
, (A5)

where

An =
√

2n + 1

2n(n + 1)
, (A6)

K1
nk = m

∫ π

0
dθ dndkξnψ

′
kxθ , (A7)

K2
nk = m

∫ π

0
dθ dndkξ

′
nψkxθ , (A8)

L1
nk =

∫ π

0
dθ sin θ τndkξnψkxθ , (A9)

L2
nk =

∫ π

0
dθ sin θ dnτkξnψkxθ , (A10)

L3
nk =

∫ π

0
dθ sin θ dkψ

′
k[xθ τnξ

′
n − n(n + 1)dnξn]

≡ L31
nk + L32

nk , (A11)

L4
nk =

∫ π

0
dθ sin θ dnξ

′
n[sxθ τkψ

′
k − k(k + 1)dkψk (sx)]

≡ L41
nk + L42

nk . (A12)
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dn and τn are angular functions (related to Wigner’s d func-
tion) [4,28] defined in terms of the associated Legendre func-
tions Pm

n :

Pm
n (cos θ ) = sinm θ

(
d

d cos θ

)m

Pn(cos θ ), (A13)

dn = (−1)m

√
(n − m)!

(n + m)!
Pm

n (cos θ ),

πn = mdn

sin θ
, τn = d

dθ
dn. (A14)

For off-diagonal elements (n �= k), the four Li integrals are
not linearly independent and we may therefore also use the
following simplifications:

Q11
nk = iAnAk

s2 − 1

s

n(n + 1)L2
nk − k(k + 1)L1

nk

n(n + 1) − k(k + 1)
, (A15)

Q22
nk = iAnAk

s2 − 1

s

[
L3

nk + sn(n + 1)
(
L2

nk − L1
nk

)
n(n + 1) − k(k + 1)

]
. (A16)

For diagonal elements (n = k), we moreover have

L1
nn = L2

nn, sL31
nn = L41

nn, (A17)

and we therefore instead use

Q11
nn = L51

n + iAnAn
s2 − 1

s
L1

nn, (A18)

Q22
nn = L52

n + iAnAn
s2 − 1

s
L31

nn, (A19)

where

L51
n = −iAnAn

s

(
sL32

nn − L42
nn

)
= − i

s

2n + 1

2

∫ π

0
dθ sin θ dndn[ξ ′

nψn − sξnψ
′
n], (A20)

L52
n = −i

AnAn

s

(
L32

nn − sL42
nn

)
= − i

s

2n + 1

2

∫ π

0
dθ sin θ dndn[sξ ′

nψn − ξnψ
′
n]. (A21)

These expressions are convenient because (i) for s = 1, we
have L51

n = L52
n = 1, which implies that Q is the identity as

desired (all the other terms contain an s2 − 1 factor), and
(ii) L51

n and L52
n are analogous to the terms appearing in Mie

theory, and in some sense a generalization of these.
We have derived and used here an alternative form with

similar features. One can show using integration by parts that

sL3
nn − L4

nn

=
∫ π

0
dθ sin θ (πnπn + τnτn)[ξ ′

nψn − sξnψ
′
n]+(s2−1)L1

nn

(A22)

and

L3
nn − sL4

nn =
∫ π

0
dθ sin θ (πnπn + τnτn)[sξ ′

nψn − ξnψ
′
n]

+ s2 − 1

s
L7

nn, (A23)

where

L7
nn = n(n + 1)

∫ π

0
dθ sin θτndnxθ

ξnψn

x2
. (A24)

If we also define

L61
n = i

s

2n + 1

2

∫ π

0
dθ sin θ (πnπn + τnτn)[sξnψ

′
n − ξ ′

nψn],

(A25)

L62
n = i

s

2n + 1

2

∫ π

0
dθ sin θ (πnπn + τnτn)[ξnψ

′
n − sξ ′

nψn],

(A26)

we then have

Q11
nn = L61

n , (A27)

Q22
nn = L62

n − iAnAn
s2 − 1

s
L7

nn. (A28)

These expressions are used in the next section to determine
the asymptotic behavior of the matrix elements for low size.

APPENDIX B: SIZE DEPENDENCE
OF MATRIX ELEMENTS

1. Integrals for P, Q, and U

We investigate the lowest orders in X for the P and Q
matrices in order to determine where to truncate them when
computing the T matrix. We can expand the Bessel functions
in powers of x to obtain analytic expressions for the low
orders. At lowest order, we can use ξn(x) ∼ x−n and ψn(x) ∼
xn+1. The hat above the integral letters below will be used
when it applies to the P matrix (i.e., ξn replaced by ψn). The
U matrix behaves asymptotically like the Q matrix. We have
the following.

K1
nk, K2

nk ∝ X −n+k+1 determines Q12
nk, Q21

nk .

K̂1
nk, K̂2

nk ∝ X n+k+2 determines P12
nk , P21

nk .
L1

nk, L2
nk ∝ X −n+k+2 determines Q11

nk for n �= k.

L̂1
nk, L̂2

nk ∝ X n+k+3 determines P11
nk for n �= k.

L3
nk, L4

nk ∝ X −n+k determines Q22
nk for n �= k.

L̂3
nk, L̂4

nk ∝ X n+k+1 determines P22
nk for n �= k.

L61
n , L62

n , L7
nn ∝ X 0 determines Q11

nn and Q22
nn.

L̂61
n ∝ X 2n+3 (note this is a special case as the highest-order

terms cancel) determines P11
nn .

L̂62
n , L̂7

nn ∝ X 2n+1 determines P22
nn .

These justify the small size behavior of all matrix elements
given in the main text.

2. Proof of lowest-order X dependence for T and R matrices

In order to determine the orders of T, we must first de-
termine the orders of R by inverting Q. For this we use the
blockwise matrix inversion formula:[

R11 R12

R21 R22

]
=
[

Q11 Q12

Q21 Q22

]−1

, (B1)
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where

R11 = (Q11 − Q12[Q22]−1Q21)−1,

R12 = −R11Q12[Q22]−1,

R21 = −[Q22]−1Q21R11,

R22 = [Q22]−1 + [Q22]−1Q21R11Q12[Q22]−1.

We first focus on general axisymmetric particles for which
the X dependence of P and Q was derived. In order to use
(B1), we first need to determine the order of [Q22]−1. This
can be done by induction on the matrix truncation order N .
For this proof our inductive assumption is that for a general
N×N matrix M with Mnk ∝ X k−n, then [M−1]nk ∝ X k−n. The
base case (N = 1) is trivial. For the inductive step, we use the
blockwise decomposition, but with N×N , N×1, 1×N , and
1×1 blocks:

[M]−1(N + 1 × N + 1)

=
[

A B

C D

]−1

=

⎡
⎢⎣

E −EBD−1

−D−1CE D−1 + D−1CEBD−1

⎤
⎥⎦,

where

E = [A − BD−1C]−1. (B2)

We need to show that

Enk ∝ Ank ∝ X k−n, (B3)

[−EBD−1]n ∝ Bn ∝ X N+1−n, (B4)

[−D−1CE]k ∝ Ck ∝ X k−N−1, (B5)

D−1 + D−1CEBD−1 ∝ D ∝ X 0. (B6)

These can easily be proved from the definition of matrix
product. For example, Eq. (B3) follows from

Ank − [BD−1C]nk = Ank − D−1BnCk ∝ X k−n. (B7)

The rest (B4)–(B6) follow from similar straightforward
derivations. This then proves the inductive assumption.

To find the orders of R, we will also require to know the
inverse for matrices with Mnk ∝ X k−n+2−2δnk , which can also
be proven by induction to be [M−1]nk ∝ X k−n+2−2δnk .

Then for R11 we have

[Q12[Q22]−1Q21]nk =
N∑

p=1

N∑
q=1

Q12
np[Q22]−1

pq Q21
qk (B8)

∝
∑
p,q

. . . X p−n+1X q−pX k−q+1 (B9)

∝ X k−n+2. (B10)

None of these orders dominate the elements in Q11, so
we have [Q11 − Q12[Q22]−1Q21]nk ∝ X k−n+2−2δnk ⇒ R11

nk ∝
X k−n+2−2δnk . The derivations for the other blocks in R are

similar and it turns out that the orders are exactly the same
as for Q. Then for T

[
T11 T12

T21 T22

]
=
[

P11R11 + P12R21 P11R12 + P12R22

P21R11 + P22R21 P21R12 + P22R22

]
(B11)

and again the orders of T can be found from straightforward
matrix multiplication to be identical to those of P.

For particles with mirror symmetry, the orders for P and
Q are the same as in the general case, but half the elements
are zero, as discussed in Sec. II C. The same derivation would
show that the orders for R and T are the same as for the
general case except for the zero elements which are zero by
symmetry.

3. Special case of spheroids

For spheroids we have to modify the derivation to account
for the elements of Q below the diagonal of each block, which
are all O(X 0) as shown in [22]. This may be expressed as

Q11
nk ∝ X [n<k](k−n+2), Q22

nk ∝ X [n<k](k−n),

Q12
nk ∝ X [n<k](k−n+1), Q21

nk ∝ X [n<k](k−n+1), (B12)

where [n < k] = 1 if n < k and zero otherwise. Note that half
of those matrix elements are zero, but this does not affect the
derivation. To find the order of R21, for example, we need the
product

[[Q22]−1Q21]nk ∝
N∑

p=1

. . . X [n<p](p−n)X [p<k](k−p+1), (B13)

which can be broken down into two cases. First, for n < k,
the sum may contain terms with p � n < k resulting in order
X k−p+1, or n < p < k giving X k−n+1, or n < k � p giving
X p−n. From this we simply take the dominant order: X k−n+1.
Second, for n � k it can be shown using similar arguments
that [[Q22]−1Q21]nk ∝ X 0. Following through with similar
derivations for all the other terms, we find again that R
behaves asymptotically like Q and T like P.

APPENDIX C: TAYLOR EXPANSIONS
OF MATRIX ELEMENTS

1. Multipole truncation and matrix inversion

The first step in determining the Taylor expansions is to
find the truncation needed to reach a specific accuracy. For
a matrix product, it is relatively easy to track the orders.
To compute the matrix Keo = Peo[Ueo]−1 to order X 5, we
have seen in the main text that both Peo and [Ueo]−1 can be
truncated at multipole N = 3. But when carrying the matrix
inversion of Ueo, any matrix element of the inverse depends in
principle in a nontrivial way on all the other matrix elements.
Truncating at multipole N = 5 and writing out leading orders
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explicitly, we have for spheroidal particles

Ueo =

⎡
⎢⎢⎢⎢⎢⎢⎣

u11
22X 0 u11

24X 4 u12
21X 0 u12

23X 2 u12
25X 4

u11
42X 0 u11

44X 0 u12
41X 0 u12

43X 0 u12
45X 2

u21
12X 2 u21

14X 4 u22
11X 0 u22

13X 2 u22
15X 4

u21
32X 0 u21

34X 2 u22
31X 0 u22

33X 0 u22
35X 2

u21
52X 0 u21

54X 0 u22
51X 0 u22

53X 0 u22
55X 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(C1)

where the coefficients ui j
nk are all of order X 0. We have shown

in the previous section that the inverse, whose matrix elements
are denoted v

i j
nk , has the same leading orders. By carrying

the inversion explicitly using the inversion formula with the
matrix of cofactors (or using a symbolic calculation software),
one finds that the leading orders of the nine elements v

i j
nk

associated with a multipolarity of 3 or less (i.e., with 1 �
n, k � 3) only depend on the ui j

nk with a multipolarity of 3 or
less (i.e., with 1 � n, k � 3). In order to obtain Keo to order 5,
we moreover need to expand u22

11 to the next order (X 2). Again,
we can show that this next order correction only depends on
terms of multipolarity of 3 or less.

A similar analysis can be carried out for the oe matrix,
where it can be concluded that truncation at multipolarity
N = 2 is sufficient to compute Koe to order X 5. We reiterate

that this is a special property of spheroidal particles and would
not apply to another general shape.

2. Accuracy to O(X 5)—inverting Ueo

Following up from the previous section, we now calculate
explicitly Keo to order X 5. Truncating all matrices at multipo-
larity N = 3 and tracking orders during matrix inversion and
multiplication, one can show that the only relevant terms in
the expansions for Ueo and Peo are

Ueo =
⎡
⎣ u22 u21 u23X 2

u12X 2 u11 + u(2)
11 X 2 u13X 2

u32 u31 u33

⎤
⎦, (C2)

Peo =

⎡
⎢⎢⎣

0 p21X 5 0

p12X 5 p11X 3 + p(2)
11 X 5 p13X 5

0 p31X 5 0

⎤
⎥⎥⎦, (C3)

where we have omitted the superscripts in unk and pnk .
These coefficients, which are of order X 0 by construc-
tion, can be calculated by substituting the appropriate
power series for the integrands of K and L (or K̂
and L̂) integrals. [Ueo]−1 is obtained by direct inversion
as

[Ueo]−1 =

⎡
⎢⎢⎣

1
u22

X 0 + O(X 2) − u21
u11u22

X 0 + O(X 2) − u11u23−u13u21
u11u22u33

X 2 + O(X 4)

− u12u33−u13u32
u11u22u33

X 2 + O(X 4) 1
u11

X 0

1−�uX 2+O(X 4 ) − u13
u11u33

X 2 + O(X 4)

− u32
u22u33

X 0 + O(X 2) u21u32−u22u31
u11u22u33

X 0 + O(X 2) 1
u33

X 0 + O(X 2)

⎤
⎥⎥⎦, (C4)

where

�u = u13u21u32 − u13u22u31 − u12u21u33 + u(2)
11 u22u33

u11u22u33
. (C5)

Note that we used 1 + ax2 + O(x4) = [1 − ax2 + O(x4)]−1 for reasons that are explained in the text.
Carrying out the matrix multiplication Keo = Peo[Ueo]−1 and keeping only terms of order X 5 or less, we get

Keo =

⎡
⎢⎢⎣

0 p21

u11
X 5 0

u11u33 p12+u13u32 p11−u11u32 p13−u12u33 p11

u11u22u33
X 5 p11

u11
X 3 1

1−�X 2+O(X 4 )
u11 p13−u13 p11

u11u33
X 5

0 p31

u11
X 5 0

⎤
⎥⎥⎦+ O(X 7), (C6)

where

� = p(2)
11

p11
− u(2)

11

u11
+ u21

u22

(
u12

u11
− p12

p11

)

−
(

u21

u22

u32

u33
− u31

u33

)(
u13

u11
− p13

p11

)
. (C7)

When m = 0, all unk and pnk with n + k odd are also zero
as they belong to the off-diagonal blocks, which yields a
much simpler expression for �. All these expressions can be
further simplified once these coefficients have been calculated
explicitly.

3. Accuracy to O(X 5)—inverting Uoe

A similar analysis can be carried out for Uoe. Expressions
are somewhat simpler since the matrix can be truncated at
multipolarity N = 2. Also, the only relevant terms in the
expansions for Uoe and Poe are the dominant terms:

Uoe =
[

u11
11 u12

12X 2

u21
21 u22

22

]
, Poe =

[
p11

11X 5 p12
12X 5

p21
21X 5 p22

22X 5

]
.

(C8)

The block superscripts are here written explicitly as the coef-
ficients are different to those defined in the eo case.

013853-15



MATT MAJIC et al. PHYSICAL REVIEW A 99, 013853 (2019)

Carrying out the matrix inversion, we have

[Uoe]−1 =
⎡
⎣ 1

u11
11

0

− u21
21

u11
11u22

22

1
u22

22

⎤
⎦+ O(X 2), (C9)

from which we deduce

Koe =

⎡
⎢⎣
(

p11
11

u11
11

− p12
12u21

21

u11
11u22

22

)
X 5 p12

12

u22
22

X 5

(
p21

21

u11
11

− p22
22u21

21

u11
11u22

22

)
X 5 p22

22

u22
22

X 5

⎤
⎥⎦+ O(X 7). (C10)

4. Calculating expansion coefficients for the integrals

To demonstrate the method for calculating the Taylor ex-
pansion of the matrix elements from the integrals, we use U 22

11|0
as an example and compute the first two orders, u11 and u(2)

11 .
The exact expression we choose to start from is

U 22
11 = L52

1 + 3i

4

s2 − 1

s
L31

11, (C11)

where

L31
11 =

∫ π

0
dθ sin θ d1τ1χ

′
1ψ

′
1xθ , (C12)

L52
1 = 3i

2s

∫ π

0
dθ sin θ d1d1[χ1(x)ψ ′

1(sx) − sχ ′
1(x)ψ1(sx)].

(C13)

The Bessel functions in the integrand have the following
Taylor expansions:

χ ′
1(x)ψ ′

1(sx) = 2s

3
x−1 − s(2s2 + 5)

15
x + O(x3),

sχ ′
1(x)ψ1(sx) − χ1(x)ψ ′

1(sx)

= 1
3 s(s2 + 2) − 1

30 s(s2 − 1)(s2 + 10)x2 + O(x4).

Inserting these we have

L31
11 = − 2s

3

∫ π

0
dθ cos θ sin2 θxθx−1

+ s(2s2 + 5)

15

∫ π

0
dθ cos θ sin2 θxθx + O(X 4),

L52
1 = − i

s2 + 2

3

+ i
(s2 − 1)(s2 + 10)

20

∫ π

0
dθ cos2 θ sin θx2 + O(X 4).

Putting these together and rearranging, we obtain
expressions for u11 and u(2)

11 for m = 0 in terms of angular
integrals involving x(θ ) and xθ (θ ) and other angular functions.

We found that in general the angular integrals appearing
in the unk coefficients can be expressed in terms of Legendre
polynomials of the second kind Qm

n ≡ Qm
n (ξ0), where ξ =

ξ0 = 1/e = h/
√

h2 − 1 is the spheroidal coordinate defining
the surface of the spheroid. These integrals are also related to

the depolarization factors, for example, Lz can be written as

Lz = 1

3
+ 1

2

∫ π

0
dθ cos θ sin2 θxθx−1 = (ξ 2

0 − 1)Q0
1.

(C14)

5. All coefficients for Keo, m = 0

For reference, we list below the expressions obtained for
the coefficients needed to compute Keo for m = 0. Note that
Qm

n ≡ Qm
n (ξ0):

p11 = − 2i

9h2
(s2 − 1),

p(2)
11 = i

s4 − 1

225h2

5ξ 2
0 − 4

ξ 2
0

,

p13 = −4is2(s2 − 1)

225
√

14h2ξ 2
0

,

p31 = 1

s2
p13,

u11 = −i[1 + (s2 − 1)Lz],

u(2)
11 = −i

s2 − 1

10

(
ξ 2

0 − 1
)[

(2s2 + 5)
Q0

2

ξ0
− (s2 + 10)Q0

1

]
,

u13 = −2is2(s2 − 1)

25
√

14h2

[
Q0

1 − 3

2

(
5ξ 2

0 − 1
)
Q0

3

]
,

u31 = −3i
√

14

4
(s2 − 1)

[
ξ 2

0 Q0
3 − ξ0Q0

2 − 2s2
(
ξ 2

0 − 1
)
Q0

3

]
,

u33 = −is2

[
1 + (s2 − 1)

(
ξ 2

0 − 1
)3

2

(
5ξ 2

0 − 1
)
Q0

3

]
.

6. All coefficients for Keo, m = 1

We also list below the expressions obtained for the coef-
ficients needed to compute Keo for m = 1. For expressions
involving Legendre functions of the second kind Qm

n (ξ0)
for m = 1, we note that the proper branch cut in the com-
plex plane must be taken. Correct expressions are given in
Appendix C 7:

p11 = − 2i

9h2
(s2 − 1),

p(2)
11 = i

s4 − 1

225h2

5ξ 2
0 − 3

ξ 2
0

,

p12 = s2(s2 − 1)

45
√

15h2ξ 2
0

,

p13 = −4is2(s2 − 1)

225
√

21h2ξ 2
0

,

u11 = −i[1 + (s2 − 1)Lx],

u(2)
11 = −i

s2 − 1

20

ξ0

h2

[
(s2 + 10)

ξ0

h
Q1

1 − (2s2 + 5)Q0
2

]
,

u12 = s2(s2 − 1)

20
√

15h

(
Q1

3 − Q1
1

)
,
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u21 = −5(s2 − 1)

2
√

15

ξ0

h
Q1

2,

u22 = −is2,

u13 = −i
s2(s2 − 1)

25
√

21h

[
15ξ 2

0 − 11

4
Q1

3 − Q1
1

]
,

u31 = −i

√
21

24
(s2 − 1)

ξ0

h

[
3(2s2 − 1)ξ0Q1

3 + 4Q1
2

]
,

u32 = −
√

35

8
s2(s2 − 1)

ξ 2
0

h
Q1

3,

u33 = −is2

[
1 − s2 − 1

8

ξ 2
0

h

(
15ξ 2

0 − 11
)
Q1

3

]
.

7. Legendre functions

All Qm
n of lowest order can be conveniently expressed in

terms of Q0 given by

Q0
0 = Q0 = 1

2
ln

ξ + 1

ξ − 1
= acoth(ξ ) = atanh(e). (C15)

The others are

Q0
1 = ξQ0 − 1, (C16)

Q0
2 = 3ξ 2 − 1

2
Q0 − 3ξ

2
, (C17)

Q0
3 = ξ (5ξ 2 − 3)

2
Q0 − 15ξ 2 − 4

6
, (C18)

Q1
1 = (ξ 2 − 1)Q0 − ξ√

ξ + 1
√

ξ − 1
, (C19)

Q1
2 = 3ξ (ξ 2 − 1)Q0 − 3ξ 2 + 2√

ξ + 1
√

ξ − 1
, (C20)

Q1
3 = 3(ξ 2 − 1)(5ξ 2 − 1)Q0 − ξ (15ξ 2 − 13)

2
√

ξ + 1
√

ξ − 1
, (C21)

Q2
2 = 3(ξ 2 − 1)Q0. (C22)

These are defined for ξ on the complex plane minus the
real interval between −1 and 1. The factors

√
ξ + 1

√
ξ − 1

should be left separate (not expressed as
√

ξ 2 − 1) to give
correct results for all ξ , in particular ξ negative imaginary (for
oblate spheroids). These functions coincide with Maple and
the type 3 Legendre in the Wolfram documentation.
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