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Fractals, complex shapes with structure at multiple scales, have long been observed in nature: as symmetric
fractals in plants and sea shells, and as statistical fractals in clouds, mountains, and coastlines. With their highly
polished spherical mirrors, laser resonators are almost the precise opposite of nature, and so it came as a surprise
when, in 1998, transverse intensity cross sections of the eigenmodes of unstable canonical resonators were
predicted to be fractals [G. P. Karman et al., Nature (London) 402, 138 (1999)]. Experimental verification
has so far remained elusive. Here we observe a variety of fractal shapes in transverse intensity cross sections
through the lowest-loss eigenmodes of unstable canonical laser resonators, thereby demonstrating the controlled
generation of fractal light inside a laser cavity. We also advance the existing theory of fractal laser modes, first
by predicting three-dimensional self-similar fractal structure around the center of the magnified self-conjugate
plane and second by showing, quantitatively, that intensity cross sections are most self-similar in the magnified
self-conjugate plane. Our work offers a significant advance in the understanding of a fundamental symmetry of
nature as found in lasers.
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I. INTRODUCTION

The allure of fractals lies not only in their aesthetic beauty
and the mathematical beauty of their self-similarity, but also in
that such complexity can be achieved by very simple chaotic
equations. Nature seemingly utilizes this as an engineering
tool, with symmetric fractal structures appearing in many
diverse forms, from Romanesco broccoli to ammonite sutures
and ferns, while statistical fractals are seen in salt flats,
mountains, coastlines, and clouds. Popularized by Mandelbrot
[1], fractals can be thought of as the mathematical instance of
“plus ca change, plus c’est la meme chose” (“the more things
change, the more they stay the same”).

Light too can be fractal. The (dark) vortex lines in random
light fields have fractal scaling properties [2], and light’s
spatial (and spectral [3]) distribution can be directly made
fractal by interaction with a fractal object, for example, by
emitting it from a fractal antenna [4], by passing it through
a fractal aperture [5,6], or by resonating it in a cavity that
contains a fractal scatterer [7]. Perhaps more surprisingly, due
to the fractal Talbot effect, the light field behind a (nonfractal)
Ronchi grating illuminated by a uniform plane wave evolves,
on propagation, into a fractal [8,9].

A glance at intensity cross sections through the eigen-
modes of unstable canonical resonators (e.g., [10]) reveals
complex and fractal-looking structure, but the first suggestion
that these eigenmodes are fractals came only in 1998 [11,12].
This is surprising, as canonical resonators are very simple,
consisting of a pair of spherical mirrors and any apertures
in the resonator. Initially, the discussion of the mechanism
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involved mostly the round-trip magnification due to geomet-
rical imaging by the spherical mirrors, which leads to similar
patterns appearing at a cascade of different length scales, one
of the hallmarks of fractals, but it also hinted at the role of
diffraction, which gives rise to the ripples in the pattern in
the first place [13]. Clearly, without diffraction, successive
magnifications would simply make any initial pattern increas-
ingly uniform. Detailed theoretical studies of these intensity
distributions found them to be statistical fractals [9,11–17].
Upon magnification, statistical fractals look like the same
type of pattern, but not actually the same pattern. Like in all
physical fractals, the range of length scales over which this
scaling behavior holds (the scaling range) is limited [18], here
by diffraction.

Shortly after the original explanation for the fractal char-
acter of the eigenmodes of unstable resonators it was found
that the role of diffraction was particularly simple in the
plane that is geometrically imaged into itself with a magnifi-
cation M of modulus |M| > 1, the magnified self-conjugate
plane [19,20]. In this plane, shown in Fig. 1, the intensity
distribution is a diffraction-limited self-similar fractal [19],
with an example shown in Fig. 2. The mechanism, called
the monitor-outside-a-monitor effect after a video-feedback
analogy [21,22], is that each round trip through the resonator,
starting and finishing in the magnified self-conjugate plane,
can be approximated as simple scaling by a factor M of the
initial beam and addition of the aperture diffraction pattern
under spherical-wave illumination. After magnification, a
part of a self-similar pattern looks not just to be the same
pattern type as a corresponding, unscaled, part of the pattern,
but the same. Note that, with all physical fractals, this is
only true over a finite range of sizes, here limited by the
smallest size allowed by diffraction and the overall size of the
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FIG. 1. Imaging inside an unstable canonical resonator. The two
spherical mirrors, M1 (focal length f ) and M2 (focal length F ),
perform geometric imaging. We define two longitudinal coordinates,
z and Z. Both the z and the Z axes coincide with the optical
axis, but the z = 0 plane coincides with the plane S, the magnified
self-conjugate plane, and the Z = 0 plane coincides with the plane
of the mirror M2. We use z in our theoretical analysis, Z in the
experimental part. The transverse coordinates are x (not shown) and
y. Three-dimensional imaging during one round trip is indicated by
an object in the shape of the letter “P” (shown in black) and its
image, which looks like a horizontally elongated letter “b” (shown
in grey): the “P” has turned into a “b” because the transverse
magnification, M , is negative, and so the image of the “P” is upside
down; the “b” is horizontally elongated because the longitudinal
magnification, Ml , is positive and its magnitude is greater than that
of the transverse magnification. A is an aperture immediately in front
of M2. The figure is drawn for the particularly simple case of a
confocal resonator (length F + f ; the plane S then coincides with
the common focal plane) with M = −2 and Ml = +4.

beam. Suitable choice of the resonator parameters has been
predicted to lead to intensity distributions closely related to
classic fractals such as the Weierstrass-Mandelbrot function,
the Sierpinski gasket, and the Koch snowflake [19,20].

Despite these early advances, experimental observations
have been scarce. A pulse of light was injected into a passive
canonical cavity and observed to evolve over a number of
round trips into a fractal pattern [23]; curiously, that work
was never published in a peer-reviewed journal. Very recently,
small areas containing fractal structure were found in the
eigenmode of a noncanonical resonator comprising an array of
microspheres sandwiched between planar mirrors [24]—the
first observation of fractal structure in the eigenmode of an
(active) laser. These are the works that are most relevant to
this study, but the relevance is limited as they either worked
in a passive cavity and did not study the eigenmode in the
magnified self-conjugate plane [23], or in a different laser
configuration altogether [24]. Furthermore, the discussion was
entirely limited to the light structure in transverse planes,
resulting in what we will refer to as two-dimensional (2D)
fractals [25].

Here we experimentally verify the existence of self-similar
fractal light from canonical lasers by observing the 2D in-
tensity structure of laser light at the magnified self-conjugate
plane inside the cavity and studying its self-similarity directly,
rather than through the fractal dimension. Furthermore, we
show that fractals can form in the 3D intensity distributions of
light in unstable canonical resonators. We find that, around the
center of the magnified self-conjugate plane, this intensity dis-
tribution in 3D space is a self-similar fractal, albeit with differ-
ent transverse and longitudinal characteristic scaling factors.

2

84

1

SL

FIG. 2. Self-similarity of the simulated lowest-loss eigenmode’s
intensity distribution in the magnified self-conjugate plane, S. The
frames show the intensity after 20 round trips, starting with a uniform
plane wave. The self-similarity of the pattern is demonstrated by
showing its center at different magnifications (2×, 4×, 8×), resulting
in a similar pattern (rotated by 180◦ after each magnification by
a factor of 2 due to the resonator’s transverse magnification, M ,
being negative); the dotted white square in the center of the frame
marked ×1 shows the outline of the area shown in the next frame.
The horizontal dotted line is the orthographic projection of the lateral
self-conjugate plane SL, in which we demonstrate, below (see Fig. 3),
the three-dimensional (3D) self-similarity of the light. The figure is
calculated for light of wavelength λ = 632.8 nm in a resonator of
the type shown in Fig. 1 with F = 16.5 cm, f = 8.25 cm, M = −2,
and a seven-sided regular polygonal aperture of circumradius r0 =
2.4 mm. The beam’s transverse cross sections were represented by a
1024 × 1024 array of complex numbers sampled over a physical area
of size 1 cm × 1 cm. For further details of the way this simulation,
and indeed all the other simulations in this paper, was performed, see
Appendix A.

While we outline this structure in 3D space theoretically, the
experimental verification remains an open task.

II. THEORY

A. Transverse fractals

We start by reviewing the mechanism that leads to self-
similar fractal structure at the self-conjugate plane in an unsta-
ble canonical resonator. Without loss of generality, we restrict
ourselves to confocal resonators, as these are particularly
simple but at the same time representative of all canonical
unstable resonators (with the same round-trip magnification,
M , and the same Fresnel number [26]).

Consider the example shown in Fig. 1. In such a resonator,
each mirror is spherical and so images like a lens, but in reflec-
tion. During one round trip, i.e., reflection off both mirrors,
the image produced by the first mirror is imaged again by
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FIG. 3. Self-similarity of the intensity distribution in a lateral
self-conjugate plane, SL, which contains the optical axis and inter-
sects the plane S horizontally in Fig. 2. The vertical dotted line is
the orthographic projection of the plane S. Vertically, the plots are
centered on the optical axis, z. The beam is the same as that shown
in Fig. 2. After each magnification horizontally by a factor 4 and
vertically by −2, the pattern looks similar again, which is shown
for different magnifications. The dotted box in the center of the
frame marked ×1 marks the outline of the area shown in the next
frame (×(−2) vertically, ×4 horizontally). The ×1 frame represents
a physical area of size 2 m (horizontally) by 10 mm (vertically).

the second mirror. In stable resonators this imaging explains
the eigenmodes’ structural stability [27]. In unstable canonical
resonators, one round trip images two “self-conjugate” planes
back to their original positions, one with (transverse) mag-
nification M (|M| � 1), the other with magnification 1/M

[19]. The former is the magnified self-conjugate plane, S, the
latter the demagnified self-conjugate plane, s. In a confocal
resonator, these planes are a focal distance on either side of the
two mirrors (see Fig. 1), and so the field in these planes forms
a Fourier pair. Geometrical imaging stretches, during every
round trip through the resonator, the intensity distributions in
the planes S and s by a factor M and 1/M , respectively.

Any apertures in the resonator simply add some diffractive
“decoration” to this image. After a number of round trips,
the pattern is essentially unchanged between successive round
trips (the complex amplitude cross section is unchanged apart
from a complex factor representing a uniform phase change
and loss), which means the field has settled into an eigenmode.

In our case, the lowest-loss eigenmode is reached after ap-
proximately 20 round trips. Once the eigenmode has formed,
the decoration pattern is the same during successive round
trips. Once added, it gets magnified with the rest of the
intensity distribution, which results in the presence of the
decoration pattern in a number of sizes: the pattern added
during the most recent round trip is at the original size, that
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FIG. 4. Self-similarity of the intensity distribution in the lateral
plane of a strip resonator of the type shown in Fig. 1. The different
frames show the center of the intensity distribution, successively
magnified by a factor M in the vertical direction and by M2 in
the horizontal direction. The ×1 frame represents a physical area
of size 20 m (horizontally) by 2.82 cm (vertically), centered on the
magnified self-conjugate plane and the optical axis in the horizontal
and vertical direction, respectively. The dotted box shown in the top
left frame outlines the area shown in the top right frame. The figure
was calculated for light of wavelength λ = 632.8 nm, resonator pa-
rameters F = 70.7 cm and f = 50 cm (corresponding to transverse
magnification M = −√

2), and the aperture A was a slit of width
2.08 cm. Each beam cross section was represented on a 4096-element
array of complex numbers, representing a physical width of 4 cm.

added during the previous round trip is magnified by M , that
added two round trips ago is magnified by M2, and so on. The
presence of a pattern on such a cascade of length scales is
a hallmark of self-similarity. The mechanism outlined above
is called the monitor-outside-a-monitor (MOM) effect, named
so because of analogies with video feedback [21,22].

B. 3D fractals

For the same resonator, Fig. 3 shows a lateral intensity
distribution around the center of the self-conjugate plane
S. This lateral intensity distribution shows some signs of
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FIG. 5. (a) Axial and (b) transverse intensity cross section
through the field around the self-conjugate point at the center of
the plane S in the strip resonator from Fig. 4. Like in Figs. 2–4,
the self-similarity is demonstrated by successive magnifications,
each of which stretches the part of the curve between the vertical
dotted lines to the full width. The width of the curves marked ×1
represents a physical length of (a) 2 m and (b) 2.08 cm. The intensity
range represented by the different curves has been adjusted so that
corresponding features in the curves have roughly the same vertical
size.

self-similarity: if the pattern is stretched by M in the direction
representing the transverse direction, and by a factor M2 in the
longitudinal direction, the pattern’s center (which is the point
where the plane S intersects the resonator’s optical axis) looks
similar to what it was before magnification.

This self-similarity can be seen much clearer in Fig. 4,
which was calculated for a strip resonator, i.e., a resonator
that is invariant in one transverse direction. It can therefore be
treated as a 2D resonator with only one transverse direction,
which means that, along that transverse direction, the light
field can be represented in computer simulations by a much
greater number of grid points without increasing memory or
complexity requirements. This in turn allows an increase in
the Fresnel number by increasing the aperture size, resulting
in a lateral intensity cross section with significantly more
detail.

For that same strip resonator, Fig. 5 compares the intensity
cross sections along the transverse direction in the plane S
with that along the resonator’s optical axis. The intensity cross
section along the optical axis is not symmetrical with respect
to the position of the plane S, whereas that in the plane S
is symmetric with respect to the position of the optical axis.
Irrespective of this complication, both curves are strikingly
self-similar.
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FIG. 6. Evolution of the self-similarity of transverse intensity
cross sections upon propagation for the eigenmodes shown in
(a) Figs. 2 and 3 and in (b) Figs. 4 and 5. The self-similarity is
quantified here by −d2, the negative of the normalized squared
Euclidean distance between the central rectangle of the intensity
cross section in the transverse plane with the given z coordinate, and
the central rectangle of the same size of the intensity cross section
after being stretched in the transverse directions by a factor M . The
magnification was (a) M = −3 and (b) M = −2. The width and
height of the central rectangle were arbitrarily chosen to be 1/4 of
the width and height of the calculated intensity cross section. The
dotted vertical lines indicate the planes of the mirrors, M1 and M2,
and the magnified self-conjugate plane, S.

This observation can be explained as follows. Spherical
mirrors (and lenses) image not only any transverse plane into
a corresponding transverse plane, they image any point into a
corresponding point. For light initially traveling to the right in
the resonator shown in Fig. 1, any lateral plane that includes
the optical axis is being imaged into itself, as is the magnified
self-conjugate plane S; no other planes are being imaged into
themselves (but other surfaces are, specifically the paraboloids
z = ar2, where z and r are cylindrical coordinates as shown
in Fig. 1 and a is an arbitrary constant). One point is imaged
into itself (“self-conjugate point”), namely, the intersection of
the self-conjugate plane S with the optical axis. The volume
around this point is also imaged into itself, but the image
is distorted as the longitudinal and transverse magnifications
are different (the longitudinal magnification is the square of
the transverse magnification) and both change with position.
(Similar statements are true for light initially traveling to the
left, but we do not consider these here.) Close to the self-
conjugate point, the longitudinal magnification is constant.
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FIG. 7. Experimental setup, (a) schematic and (b) photo with the
laser running. (a) The cavity comprised two concave mirrors, M1

(radius of curvature R1, corresponding to focal length f = R1/2)
and M2 (radius of curvature R2, focal length F = R2/2), and an
output coupler (OC) angled at 45◦ with a 99.8% reflectivity. The
geometrical length of the cavity was G, and that of the Nd:YAG
gain medium was g. S is the magnified self-conjugate plane. A
polygonal aperture (A) was positioned in front of M2. The intensity
cross section in the self-conjugate plane S was captured outside the
cavity at a distance R2/2 from M2 using a CCD camera. (b) Clearly
visible is the gain-medium assembly (bright yellow, center) and the
mounts for the end mirrors and the output coupler. The two tubes
(light blue, bottom left) connecting to the gain-medium assembly are
cooling tubes for the gain medium.

This imaging of the volume around the center of the plane
S is indicated in Fig. 1.

As before, the effect of any apertures in the system is the
addition of a diffractive decoration pattern, which is now 3D.
In a 3D extension of the MOM effect, this pattern gets added
to the field during each round trip and magnified during each
subsequent round trip, again resulting in its presence on a
cascade of length scales, complicated and enriched by the
different characteristic stretch factors in the longitudinal and
transverse directions.

C. Self-similarity of transverse fractals

The mechanism for the emergence of fractals in the trans-
verse intensity cross sections, described in Sec. II A, suggests

Z=230mmZ=200mm

Z=100mmZ=0mm

FIG. 8. A few of the transverse intensity patterns recorded inside
the resonator with parameters F = 250 mm, f = 75 mm, and G =
343 mm, and a hexagonal aperture of circumradius r0 = 2 mm. The
effective length of the resonator, which takes into account the effect
of the refractive index of the gain medium (see Appendix D), is L =
308.5 mm. The self-conjugate plane S is positioned at Z = ZS =
231.8 mm, the magnification was M = −3.32.

that the cross section is most self-similar in the magnified self-
conjugate plane, but this has never been tested quantitatively.

Here we provide the first quantitative evidence for this
argument. For the intensity cross section in one transverse
plane at a time we calculate the normalized squared Euclidean
distance, d2, between the center of this intensity cross section
and the center of the same intensity cross section, stretched by
a factor M (see Appendix B for details). This is a measure of
the difference between the stretched and unstretched centers
of the intensity cross section, and −d2 is therefore a measure
of their similarity. We then plot −d2 as a function of the z

coordinate of the transverse plane, defined as the Cartesian
coordinate aligned with the optical axis such that the plane
z = 0 is the magnified self-conjugate plane (Fig. 1). From
the above argument we expect a peak at z = 0, that is, in the
magnified self-conjugate plane S.

Figure 6 shows such curves, calculated for the two eigen-
modes discussed earlier, namely, that of a resonator with a
heptagonal aperture and transverse magnification M = −3
(Figs. 2 and 3), and that of a strip resonator with transverse
magnification M = −√

2 (Figs. 4 and 5). The expected peak
at z = 0 is clearly visible and, especially in the case of the
strip resonator, reaches close to d2 = 0, proving the near-
exact—but diffraction-limited—self-similarity of the intensity
cross section in the magnified self-conjugate plane.

Note that these results can be replicated with other mea-
sures of difference between images, and we did this with
Euclidean distance and image Euclidean distance [28] (IMED,
which we calculated only for the strip-resonator eigenmode).
These gave a curve with a different shape to those shown
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Z=240mmZ=230mmZ=220mm

×(-3.32) ×(-3.32) ×(-3.32)

FIG. 9. Self-similarity of the intensity cross sections in different transverse planes near the predicted position of the self-conjugate plane,
Z = ZS = 231.8 mm. The images in the top row show the central ≈4 mm × 4 mm of the experimentally recorded intensity cross sections in
the transverse planes Z = 220 mm (left), Z = 230 mm (center), and Z = 240 mm (right). The images in the bottom row show the centers
of the corresponding top-row images, stretched by a factor M = −3.32, that is, stretched by a factor of 3.32 and rotated by 180◦. To show
structure over a wider intensity range, the brightness of each pixel is proportional to the logarithm of the recorded intensity.

in Fig. 6, but always produced a very prominent peak in the
magnified self-conjugate plane.

III. EXPERIMENT

We constructed a laser, sketched in Fig. 7, consisting of
a flash-lamp pumped Nd:YAG gain medium (6.35 mm ×
76 mm) inside an L-shaped, unstable cavity comprising two
concave, high-reflectivity, spherical end mirrors, M1 and M2,
and a 45◦ output coupler positioned at the apex of the L. The
radius of curvature of mirror M1 is R1, and that of M2 is R2;
their focal lengths are respectively f = R1/2 and F = R2/2.
The geometrical length of the resonator is G. An aperture in
the shape of a regular hexagon was positioned in front of the
end mirror with the greater focal length, M2.

Like that sketched in Fig. 1, our cavity is canonical and
unstable, and as such it contains magnified and demagnified
self-conjugate planes. Unlike that sketched in Fig. 1, our cav-
ity was not confocal, and so the positions of the self-conjugate
planes did not simply coincide with the focal planes, but
their Z coordinate was calculated from the geometric-imaging
properties of the cavity (see Appendix D). The output beam

was captured using a CCD camera (Spiricon SPU260 Beam-
Gage), placed in an image plane of S. Note that the field
depends on the propagation direction (even in stable canonical
resonators [29]), and the camera has been placed to record
the image in the magnified self-conjugate plane, S, not the
demagnified self-conjugate plane, s, which corresponds to the
same plane but the opposite propagation direction.

One of the intensity cross sections observed in the mag-
nified self-conjugate plane is shown as part of Fig. 7(a). It
has the expected complex structure characteristic of a fractal.
In almost all images we note an unexpectedly bright central
intensity peak. We speculate that it is due to a low divergence
mode that is also able to lase in the cavity.

For one set of parameters, namely, F = 250 mm, f =
75 mm, G = 343 mm, and a hexagonal aperture A of circum-
radius r0 = 2.5 mm we imaged intensity cross sections in a
number of transverse planes across the resonator to positions
outside of the resonator, where we recorded them on a CCD
camera, with examples shown in Fig. 8. Geometrical imaging
inside our resonator is relatively simple as the gain medium is
well approximated by a medium with homogeneous refractive
index and homogeneous gain coefficient; additional details
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Z=240mm

Z=230mm

Z=220mm

×(-3.32)

1
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1
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FIG. 10. Intensity cross sections corresponding to horizontal cuts
through the centers of the transverse intensity distributions shown in
Fig. 9. In the curves marked ×(−3.32), the part between the vertical
dotted lines of the curve marked ×1 is stretched to the full width.
Like in Fig. 5, the intensity range represented by each curve has been
adjusted so that corresponding features in the curves have roughly
the same vertical size, and the curves have been shifted vertically to
make them distinguishable.

can be found in [29]. The magnified self-conjugate plane
is located at ZS = 231.8 mm [calculated using Eq. (D9)],
and the round-trip transverse magnification is M = −3.32
[calculated from Eq. (D10)].

Figures 9 and 10 allow visual assessment of the self-
similarity of the intensity cross sections recorded in three
transverse planes near the self-conjugate plane S. When
stretched by the transverse magnification M , the centers of
the intensity cross sections show some similarity to the un-
stretched intensity cross sections; for example, dark, centered
hexagons or circles of approximately the same size are present
in the stretched and unstretched intensity cross sections shown
in Fig. 9, especially in the planes Z = 230 mm and Z =
240 mm, which are closest to the self-conjugate plane S. In
the curves corresponding to the plane Z = 230 mm shown
in Fig. 10, there is some evidence that the stretched curve
approximates the envelope of the unstretched curve, but the
self-similarity over several magnifications, which is clearly
evident in the simulations shown in Fig. 5, is absent.

We analyzed the recorded intensity cross sections quan-
titatively by evaluating their self-similarity and plotting the
evolution of this self-similarity upon propagation—the exper-
imental analog to the curves shown in Fig. 6. The result is
shown in Fig. 11. The mirror planes are in no way special,
which was also the case in the plot calculated from simu-
lated data (Fig. 6). The self-similarity is greatest around the
expected position of the plane S, but the sharp peak visible
in the curves shown in Fig. 6 is absent. Note that, as long as
the cavity is unstable, there are self-conjugate planes inside
the resonator, irrespective of whether or not it is confocal. We
expect the fact that these self-conjugate planes are imaged

200mm 300mm0

0

-0.2

-0.4

Z

-d2
SM2 M1

100mm

FIG. 11. Evolution of the self-similarity upon propagation of
measured transverse intensity cross sections. Like in Fig. 6, the plot
shows the negative normalized squared Euclidean distance, −d2,
as a function of axial coordinate Z. The predicted position of the
self-conjugate plane S, Z = ZS = 231.8 mm, is indicated by a dotted
black line surrounded by a grey area representing experimental
uncertainties. The planes of the mirrors, M1 and M2, and the self-
conjugate plane, S, are indicated by vertical dotted lines.

into themselves with nonunit magnification to result in a
sharp peak in a plot of self-similarity vs propagation distance,
just like in the case of a simulated confocal cavity shown
in Fig. 6. One possible explanation for the absence of this
peak is that, due to the theoretical sharpness of the peak
(Fig. 6), we did not record the intensity in a plane close
enough to S despite sampling a plane only 1.8 mm from S.
Another possible explanation is that the lack of the sharp
peak is caused by experimental imperfections. One type of
such experimental imperfections, including thermal effects
and errors on mirror curvatures and distances, could have
resulted in S being located further than expected from the
nearest plane that was sampled. Another type, experimental
imaging imperfections, most likely due to the effect of the
gain medium (which images only in the paraxial limit), could
have led to fine detail in the intensity cross section missing.

Finally, we investigated the generation of these fractal
modes in several laser resonator configurations of differing
magnification factors (and Fresnel numbers), as detailed in
Table I, with the results shown in Fig. 12. Most of the
lasers had hexagonal apertures, but we also experimented
with an aperture in the shape of the third iteration of the
Koch snowflake, a shape approximating a fractal. We do not
analyze the intensity cross sections in the laser with the Koch-
snowflake aperture in any detail here, but note that it is not
surprising that the resulting diffraction patterns are fractals
[30] as there are several mechanisms [31] at work that all

TABLE I. Resonator parameters used to design fractal cavities of
various magnifications.

R1 (mm) R2 (mm) M

200 400 2.0
200 500 2.5
150 500 3.3
100 500 5.0
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FIG. 12. Collage of experimentally obtained intensity cross sections measured close to the self-conjugate plane S inside a variety of
laser cavities. The edge of the aperture in the central column is that of the third iteration of the Koch snowflake (the first iteration being an
equilateral triangle), and the other apertures are regular hexagons. r0 is the circumradius of the apertures, M is the approximate transverse
round-trip magnification, and NF is the Fresnel number. Like in Fig. 9, brightness is proportional to the logarithm of intensity.

simultaneously shape the eigenmode intensity cross sections
into fractals.

IV. DISCUSSION AND CONCLUSION

When not considered in the context of resonators, the exis-
tence of 3D self-similar fractal light fields is surprising: the 3D
intensity distribution of any light field is fully determined by
any transverse cross section, and so the lowest-loss eigenmode
is fully determined by its cross section in the magnified self-
conjugate plane. The existence of self-similar transverse cross
sections whose corresponding beams—their 3D diffraction
patterns—are also self-similar is far from obvious. While we
have attempted to observe this experimentally, the experi-
mental requirements on imaging are at present prohibitive. In
the 2D case we have been able to confirm the emergence of
fractal light from carefully constructed lasers. We have shown
experimentally that fractals can be created directly from such
laser cavities, confirming a theoretical prediction of some

decades. While the experimental confirmation of 2D fractals
reported here concludes an open question in the community,
the extension of the theory to three dimensions opens new
exciting avenues for further exploration.

APPENDIX A: RESONATOR SIMULATIONS

The simulations of the resonator, shown in Figs. 2–6, were
performed using the open-source [32] package Young TIM,
available [33] as a runnable JAVA archive, together with a very
brief user guide.

Young TIM represents a transverse cross section through
a monochromatic light beam on a rectangular regular grid
of points covering a rectangular area in a transverse plane.
At each point, the complex electric field is represented by a
complex number u, enabling representation of the amplitude,
which is |u|; the phase, which is arg(u); and the intensity,
which is |u|2. The software assumes uniform polarization
across the beam, which is a good approximation in the
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paraxial limit, in which we operate here. The complexity
of the simulation is limited by the memory requirements of
calculating a new transverse beam cross section while storing
others.

Propagation from one transverse plane into another
through empty space is performed using a standard Fourier
algorithm [34] (but without using the Fresnel approximation
to simplify the expression for the z component of the wave
vector). This algorithm performs a plane-wave decomposition
of the beam, and calculates the sum of all individual plane-
wave components in the new transverse plane. Transmission
through optical elements such as apertures and lenses is sim-
ulated by multiplying the complex numbers that represent the
beam by a position-dependent factor that represents a change
in amplitude (in the case of apertures), a change in phase (in
the case of lenses), or both.

Repeated propagation through a laser resonator is per-
formed by treating each mirror like a lens of the same focal
length, and—despite the fact that the propagation direction
is reversed by reflection off a mirror—propagating the beam
always through a positive distance.

Young TIM has a number of special additional features;
perhaps most relevant to this work is the ability to calculate
measures of the self-similarity (see Appendix B) of the inten-
sity cross section of the beam in the laser resonator.

APPENDIX B: SELF-SIMILARITY AND NORMALIZED
SQUARED EUCLIDEAN DISTANCE

In Figs. 6 and 11 we plot the negative normalized squared
Euclidean distance, −d2, between the centers of unstretched
and stretched intensity distributions. We interpret this as a
measure of the self-similarity of the center of intensity cross
sections.

The normalized squared Euclidean distance, d2, is a mea-
sure of the difference between two intensity distributions. If
the two intensity distributions are I1(xi, yj ) and I2(xi, yj ), d2

is defined as

d2 = 1

2

|(I1 − I1) − (I2 − I2)|2
|I1 − I1|2 + |I2 − I2|2

, (B1)

where |I |2 = ∑
i,j I (xi, yj )2, I = [

∑
i,j I (xi, yj )]/(NxNy ),

and where all sums are over Nx by Ny values of xi and yj .
In all cases, the unstretched intensity distribution, I1, was

known on a discrete grid of points, and it was required to
calculate the stretched (by a factor M , the transverse mag-
nification) intensity distribution, I2, on the same grid. For a
particular grid position (xi, yj ) we calculated the value of the
stretched intensity distribution there as

I2(xi, yj ) = I1(xi/M, yj/M ), (B2)

whereby the stretching is relative to the origin. In general, the
position (xi/M, yj/M ) does not coincide with one of the grid
positions on which the unstretched intensity distribution was
known; we used bilinear interpolation between the intensity
at the four neighboring represented positions [35] to approxi-
mate this value.

It is clear that stretching the unstretched and stretched
intensity distributions are not similar far away from the center,
where the unstretched intensity is close to zero (compare, for

example, the frames marked “×1” and “×2” in Fig. 2). For
this reason, we sum only over the center of each pattern,
specifically the central rectangle of width and height 1/4 of
the width and/or height of the area on which the unstretched
intensity cross section is represented.

APPENDIX C: EXPERIMENTAL DATA

Raw data representing the experimentally obtained inten-
sity on a square grid of points in different transverse planes in
a number of resonators are available at [33]. Two MATHEMAT-
ICA documents, also available at [33], were used to visualize
and evaluate these data:

(1) plot log(intensity) images.nb was used to
plot the individual images shown in Fig. 12.

(2) analysis.nb was used to calculate the images shown
in Fig. 9, the curves shown in Fig. 10, and the curve showing
the evolution of the self-similarity upon propagation of exper-
imental intensity cross sections (Fig. 11).

APPENDIX D: CALCULATION OF THE PARAMETERS OF
THE MAGNIFIED SELF-CONJUGATE PLANE

Here we calculate the Z coordinate of the magnified
self-conjugate plane S, ZS , and the transverse round-trip
magnification, M , for the nonconfocal cavities used in our
experiment.

Our cavities contain a gain medium with refractive index
n and geometrical length g. When seen from a paraxial
direction, this gain medium appears to be of length g/n, so
it appears to be a distance g − g/n shorter than it actually is.
The cavity itself therefore appears to be shorter by the same
distance, so the presence of the gain medium has the effect
that the cavity has an effective length

L = G −
(
g − g

n

)
= G −

(
1 − 1

n

)
g. (D1)

From now on, all lengths considered are effective (that is,
apparent) lengths.

To calculate the position of the plane S, we consider
successive imaging of the self-conjugate plane S due to mirror
M1 and due to mirror M2. Imaging of S by M1 into the
intermediate image plane Z = Zi follows the equation

1

L − ZS

+ 1

L − Zi

= 1

f
, (D2)

where L − ZS and L − Zi are the object and image distances,
respectively; the transverse magnification is

MT,1 = − L − Zi

L − ZS

. (D3)

Similarly, M2 images the intermediate image plane to the final
image plane Z = Zf according to the equation

1

Zi

+ 1

Zf

= 1

F
(D4)

with transverse magnification

MT,2 = −Zf

Zi

. (D5)
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The overall transverse magnification of the final image is then

M = MT,1MT,2. (D6)

As it is conjugate to itself, the image of S must be in the plane
S again, and so

Zf = ZS. (D7)

It is straightforward to show that, in the confocal case
(L = F + f ),

ZS = F, M = −F

f
. (D8)

In the nonconfocal case,

ZS = 2f L − L2 + √
d

2(f + F − L)
, (D9)

and

M = 2f F

2f F − 2f L − 2FL + L2 + √
d

, (D10)

where

d = L(L − 2f )(L − 2F )(L − 2f − 2F ). (D11)
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