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Symmetry in the diffraction of beams carrying orbital angular momentum
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Diffraction of orbital-angular-momentum–carrying Laguerre-Gauss vortex (LGV) beams by N-fold rota-
tionally symmetric regular polygons is studied analytically and experimentally. The structure, symmetry, and
dependence of the diffraction pattern on the angular momentum index of the LGV beam and the number of
sides in the polygon are systematically investigated, and features and trends are identified. The evolution of the
diffraction pattern and its symmetry with the aperture position relative to the waist is also studied, leading to a
generalized Friedel’s law for diffraction of LGV beams.
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I. INTRODUCTION

Diffraction is a common occurrence when a wave field
encounters an obstacle. Far-field or Fraunhofer diffraction
of plane waves from two-dimensional objects such as an
aperture is of particular interest, of which many examples
can be found in textbooks [1,2]. It is well known that the
Fraunhofer diffraction is the Fourier transform of the incident
field distribution in the plane of the aperture multiplied by
the aperture transmission function [3]. For an incident plane
wave, the field in the plane of the aperture is a constant.
The structure of the diffracted field is then determined by the
shape and symmetry of the aperture. Of course, the aperture,
in general, has a lower symmetry than the diffraction field.
In inverse problems, the relation between the symmetry of
the diffracted field and structure of the scatterer is of inter-
est in all branches of diffraction physics [4–7]. Plane-wave
diffraction by regular polygonal apertures has been treated
in a number of classic papers, which among other things,
show that the diffraction pattern has the same rotational
and mirror symmetries as the aperture transmission function
[8–11]. For an incident field with a more complex spatial
profile than a plane wave, the structure of the diffracted field is
no longer determined solely by the symmetry of the aperture
transmission function. Of particular interest are the so-called
Laguerre-Gauss vortex (LGV) beams, which are solutions
to the paraxial scalar wave equation in circular cylindrical
coordinates [12–15]. The LGV beams have a helicoidal phase
front with a phase singularity (field null) along the beam axis,
where the spatial dependence can be written as ρ�ei�ϕ , with
� a positive or negative integer or zero. These beams carry
intrinsic orbital angular momentum (OAM) of �h̄ per photon.
The integer � is referred to as the OAM index of the beam.
With their new degree of freedom in OAM, the LGV beams
have inspired new thinking in many light-matter-interaction
processes and found novel applications [16–19]. Studies of
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scattering of LGV beams by simple apertures have revealed
many unexpected features in the diffraction pattern [20–25]
and interesting implications for the relationship between the
symmetries of the diffraction pattern and the scattering object
[7,26–28]. These investigations used slits, triangular or square
apertures, or their combination to study diffraction, primarily
as a tool to determine the magnitude and sign of the OAM
index and much less to study the symmetry in diffraction
[27,28]. In this paper we present a systematic theoretical and
experimental investigation of the interaction between discrete
geometrical symmetries of regular polygonal apertures and
the OAM of an incident LGV beam and how it constraints the
symmetry of the diffraction pattern. We discuss the structure,
symmetry, and trends in the diffraction pattern as N and �

are varied. We also discuss how these features evolve as the
longitudinal position of the aperture is changed relative to the
beam waist and present experimental evidence for theoretical
conclusions [29].

II. THEORY

Consider a two-dimensional N-sided regular polygonal
aperture A in an opaque plane screen occupying the x′-y′
plane illuminated by a monochromatic field incident from
z < 0. Throughout the paper we will consider the transmission
function of the aperture to be real. The spatial part of the
Fraunhofer field E f , observed by placing the aperture in the
front focal plane of a lens of focal length f and the detector in
the back focal plane (see the experimental setup in Fig. 4), is
given by [3]

E f (x, y; z) = ik

2π f

∫∫
dAEin(x′, y′, z) e− ik

f (xx′+yy′ )
, (1)

where Ein(x′, y′, z) represents the spatial part of the incident
wave field in the aperture plane at a distance z from the waist
of the incident beam, k = 2π/λ is the wave number, λ being
the wavelength of light, x′, y′ are the transverse coordinates
of a point in the aperture plane, and x, y are the transverse
coordinates of a point in the back focal plane of the lens.
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For an incident LGV beam (zero radial index) traveling in
direction z, the complex field amplitude is given by

E (�)
in (x′, y′, z) = const × ρ ′|�|eikz−i(|�|+1)θ

× exp

[
i�ϕ′ − ρ ′2

wwo
e−iθ

]
, (2)

where ρ ′ =
√

x′2 + y′2 and ϕ′ = tan−1(y′/x′) are the radial
and angular coordinates of a point in a plane transverse to the
direction of propagation, zR = πw2

o/λ is the Rayleigh range,
w ≡ w(z) = wo

√
1 + z2/z2

R
is the spot radius, which has its

minimum value wo at the beam waist z = 0, and θ ≡ θ (z) =
tan−1 (z/zR ) is the Guoy’s phase of the beam. The factor ei�ϕ′

describes the azimuthal variation of the phase responsible for
the helical twist of the phase front. The OAM index � is also
referred to as the topological charge of the vortex.

For an analytic description, we take the aperture transmis-
sion to be unity over the extent of the aperture A and zero
outside, and the LGV beam to be incident normally and beam
axis to pass through the center of the aperture. Then, using
polar coordinates ρ ′, ϕ′ for the aperture plane and ρ, ϕ for the
observation plane, the diffraction integral can be written as

E�(ρ, ϕ; z) = C�

∫∫
A

dρ ′dϕ′ρ ′|�|+1

× ei�ϕ′− ρ′2
wwo

e−iθ−i( kρρ′
f ) cos(ϕ−ϕ′ )

, (3)

where the factor eikz−i(|�|+1)θ (z), which does not depend on the
variables of integration, has been absorbed into the constant
C� and the aperture A is a regular polygonal of side N , which
has N-fold rotational symmetry and N mirror lines. Before
proceeding further, we can draw several general conclusions
regarding the diffraction pattern by examining the structure of
the diffraction integral (3) for an LGV beam.

We note that for � = 0 and w → ∞, the integral reduces
the plane-wave diffraction by polygonal apertures considered
in earlier investigations [8–11]. In this case, the diffraction
field reflects the symmetries of the aperture. In addition, the
diffraction profile [∝ |E f (ρ, ϕ; z|2)] has a center of inversion,
even if the aperture lacks one [5]. In contrast, for an LGV
beam (� �= 0), because of the azimuthal variation of the phase
of the incident field, the integrand does not have a center of
inversion. This can be seen by comparing E�(ρ, ϕ; z) to its
complex conjugate E∗

� (ρ, ϕ; z) and recalling cos(φ + π ) =
− cos φ. This leads to the relation

|E�(ρ, ϕ; z)|2 = |E−�(ρ, ϕ + π ; −z)|2, (4)

where we have used |E�|2 = |E∗
� |2. Equation (4) implies that,

in general, the LGV diffraction patterns do not have a center
of inversion. For the special case of an aperture at beam
waist z = 0, this reduces to the result derived in Refs. [7,26],
according to which the diffraction patterns for LGV beams of
indices � and −� from two-dimensional apertures with real
transmission function are related by a rotation of π (cen-
trosymmetric in two dimensions). For aperture positions away
from the waist, the diffraction patterns for ±� produced by
the aperture are not centrosymmetric to one another. Instead,
the pattern for � with the aperture at z and the pattern for
−� with the same aperture at −z are related by a rotation

of π . Reverting back to Cartesian coordinates, the relation (4)
can be written as |E∗

� (x, y; z)|2 = |E−�(−x,−y; −z)|2, which
shows that the patterns for � and −� are not centrosymmetric
in two dimensions, but they are related by a three-dimensional
inversion through the center of the beam in the waist plane.
Equation (4) is thus the generalized Friedel law for diffraction
of LGV beams by two-dimensional apertures. To avoid con-
fusion, we will use centrosymmetric in the rest of paper in the
sense of inversion through origin in two dimensions (x, y →
−x,−y). We return to this point later in the discussion of the
experimental results.

It is important to mention here that the symmetry condi-
tion implied by Eq. (4) holds not only for the LGV beams
given by Eq. (2) (Laguerre-Gauss beams of zero radial in-
dex), but also for more general types of angular-momentum–
carrying beams. For example, if we use the expression for
the field of a Laguerre-Gauss beam of nonzero radial index
[13], which differs from Eq. (2) by the multiplicative factor
L�

p[2ρ2/w(z)] exp[−i2pθ (z)], in the diffraction integral, we
again arrive at Eq. (4). Another class of orbital-angular-
momentum–carrying beams are the so-called Bessel-Gauss
beams [30,31]. Using the field of these beams, we can again
show that the relation (4) holds.

More generally, the z-dependent aspect of relation (4) will
be important not only for OAM-carrying beams, but for all
paraxial beams diffracted by real apertures. To see this, we
consider the free-space paraxial wave equation for the (scalar)
field amplitude[

∂2

∂x2
+ ∂2

∂y2
+ 2ik

∂

∂z

]
E (x, y, z) = 0. (5)

By comparing this to the equation for the complex conjugate
of the field amplitude, we find that the complex field ampli-
tude satisfies the condition

E∗(x, y,−z) = eiφoE (x, y, z), (6)

where φo is some constant phase. As a check, all the well-
known paraxial laser beam families Laguerre-Gauss, Hermite-
Gauss, Ince-Gauss, Bessel-Gauss, and Airy beams [13,30–33]
satisfy this condition. By taking the incident field Ein in Eq. (1)
to be that of a paraxial beam, which satisfies Eq. (6), we find
that the diffracted field from real apertures satisfies

E∗
f (−x,−y; −z) = − eiφoE f (x, y; z) (7)

and
|E∗

f (−x,−y; −z)|2 = |E f (x, y; z)|2. (8)

Equation (8) is the generalized Friedel’s law for paraxial laser
beams, which for LGV beams leads to Eq. (4).

For idealized beams where the dependence of the field
amplitude on the transverse coordinates and the z coordinate
(coordinate in the direction of propagation) can be factorized
as, for example, for nondiffracting Bessel beams [34], Eq. (4)
reduces to |E�(ρ, ϕ)|2 = |E−�(ρ, ϕ + π )|2.

To continue with our analytical treatment, we consider
the polygon to be inscribed in a circle of radius R, label its
N vertices, counterclockwise, 0, 1, 2, . . . , N − 1, and choose
the x′ axis to pass through the vertex labeled 0 and y′ axis
perpendicular to it as shown in Fig. 1. The integral can
then be written as the sum of integrals over N congruent
isosceles triangles. The base (b) and height (h) of isosceles
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FIG. 1. Coordinate system for the polygonal aperture.

triangles, and the angular coordinates of the vertices (ϕn) and
the midpoints of the sides (ϕn+ 1

2
) of the polygon, are given by

h = R cos(π/N ), b = 2R sin(π/N ), ϕn = 2πn

N
,

ϕn+ 1
2

= π (2n + 1)

N
, n = 0, 1, . . . , (N − 1),

(9)

and the nth triangle occupies the angular range ϕn � ϕ′ �
ϕn+1. Then the diffracted field can be written as the contri-
bution from N triangles,

E�(ρ, ϕ; z) = C�

N−1∑
n=0

∫ ϕn+1

ϕn

dϕ′
∫ ρm(ϕ′ )

0
dρ ′ρ ′|�|+1

× ei�ϕ′−( e−iθ

wwo
)ρ ′2

e−iκρ ′ cos(ϕ−ϕ′ ), (10)

where the abbreviation κ = kρ/ f has been introduced and
ρm(ϕ′) = h

cos(ϕ′−ϕ
n+ 1

2
) is the maximum height of a wedge of

angular width dϕ′ located around ϕ′. By introducing a local
angular variable φ′ relative to the midpoint of the base of the
nth triangle by

φ′ = ϕ′ − ϕ
n+ 1

2
, −π/N � φ′ � π/N, (11)

the diffracted field can be written as

E�(ρ, ϕ; z) = C�

N−1∑
n=0

e
i�ϕ

n+ 1
2

∫ π/N

−π/N
dφ′ei�φ′

∫ ρm (φ′ )

0
dρ ′

× ρ ′|�|+1e−( e−iθ

wwo
)ρ ′2

e
−iκρ ′ cos(ϕ−ϕ

n+ 1
2
−φ′ )

, (12)
with

ρm(φ′) = h

cos φ′ . (13)

Thus the diffracted field is the superposition of fields produced
by N isosceles triangle sources with the epoch angle varying,
counterclockwise, in steps of 2π�/N , starting with π�/N
for n = 0. Additional contribution to the phase comes from
the integral as it yields, in general, a complex quantity that
depends on ρ, ϕ, n, and N . As a quick check of this form, we
see that in the limit N → ∞, with 2π/N → dψ , ϕn+ 1

2
→ ψ ,

and ρm = h/ cos φ′ = R cos(π/N )/ cos φ′ → R, we get

E�(ρ, ϕ; z) = C�

ei�ϕ

2π

∫ 2π

0
dψe−i�(ϕ−ψ )

∫ R

0
dρ ′ ρ ′|�|+1

× e−( e−iθ

wwo
)u2−iκu cos(ϕ−ψ )

= C�ei�ϕ
∫ R

0
dρ ′ ρ ′|�|+1e−( e−iθ

wwo
)u2

J�(κu), (14)

which is the correct limit for diffraction from a circular
aperture of radius R [25].

Returning to Eq. (12), the dependence on n via ϕn + 1
2 in

each term in Eq. (12) can be factored out by expanding the

exponential e
−iκρ ′ cos (ϕ−ϕ

n+ 1
2
−φ′ )

in a series of Bessel functions
[35]. The sum with respect to n can then be performed, leading
us to

E�(ρ, ϕ; z) = C�

∞∑
p=−∞

(−1)|p|(−i)|pN−�|e−i(pN−�)ϕ

×
∫ π/N

−π/N
dφ′eipNφ′

∫ ρm (φ′ )

0
dρ ′ρ ′|�|+1

× e−( ρ′2
wwo

)e−iθ
J|pN−�|(κρ ′). (15)

A careful inspection of this expression shows that a Bessel
function of order zero occurs in this series only when |pN −
�| = 0 for some p, i.e., when the OAM index � is an integer
multiple of N . This, in turn, means that the center (ρ = 0) of
the diffraction pattern will be bright if � is a multiple of N and
dark for all other values of �, since a Bessel function of order
other than zero vanishes at the origin, Jm(0) = 0 (m �= 0). By
utilizing the small argument expansion of Bessel functions
near the axis (ρ → 0), we can see that even when � is a
multiple of N , the intensity at the center decreases as 1/N2

so that in the limit of a circular aperture (N → ∞) the center
is always dark [25].

For numerical evaluation of the diffraction patterns, the
radial integral in Eq. (12) can be expressed in terms of an
incomplete � function [36], which is a built-in function in
many computer programs. In practice, it is more efficient to
evaluate the diffraction integral directly as a two-dimensional
fast Fourier transform (FFT) using MATLAB or MATHEMATICA

using the results derived here as checks to ensure the accuracy
against any numerical artifacts.

Figure 2 shows the diffraction patterns computed by eval-
uating the diffraction integral (3) using the FFT in MATLAB

for N = 3, 4, 5 and different � when the aperture is at beam
waist, where the incident beam phase fronts are planar with
θ (0) = 0, w(0) = wo. These calculations were carried out
by choosing the radius of the irradiance maximum to be
equal to the radius of the circle circumscribing the polygon.
This is similar to the condition under which the experiments
described later in the paper were carried.

First we note that the diffraction patterns from an N-sided
polygonal have N-fold rotational symmetry, reflecting the
symmetry of the aperture. Thus the patterns for N = 3, 4, 5
have, respectively, three-, four-, and fivefold rotational sym-
metry. Second, for polygons with an odd number of sides
(N = 3 and 5 in Fig. 2), the diffraction pattern lacks a center
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FIG. 2. Irradiance patterns in the diffraction of LGV beams by an
equilateral triangle (N = 3), square (N = 4), and pentagon (N = 5)
placed at the beam waist for � values as indicated in the image
frames. The lower left corner of the image frames labeled 1 shows
the orientation of the apertures.

of inversion, whereas for polygons with an even number of
sides (N = 4 in Fig. 2), it has a center of inversion. This
is in contrast to the diffraction of a plane wave, where the
diffraction pattern always has a center of inversion even if the
aperture does not [5].

By examining the evolution of the diffraction pattern with
OAM index � for fixed N , we find that the diffraction pattern
has a null at the center for all values of � except when �

is a multiple of N . For example, for N = 3, the patterns
have a bright center for � = 0, 3, 6, . . . and a dark center
for � = 1, 2, 4, 5. Similarly, for N = 4, the center is bright
for � = 0, 4, 8 . . . , dark for � = 1, 2, 3, 5, 6, 7, and for N = 5
the center is bright for � = 5, 10, 15 . . . and dark in all other
cases.

Focusing now on the diffraction pattern in the central
region, where most of the diffracted light is concentrated, we
observe that the patterns have a nested structure—the central
feature of the pattern for � > N is the pattern for � − N .
This is most clearly seen in the patterns for N = 3, where
the central feature of the pattern for � = 4 is the pattern
for � = 1(= 4 − 3), and the central feature of the pattern
for � = 5 is the pattern for � = 2(= 5 − 3). Likewise, the
central feature for � = 7 is the pattern for � = 4(= 7 − 3),
which in turn encloses the pattern for � = 1(= 4 − 3). This
nesting pattern is present in the diffraction by polygons with
N > 3 as well, although it is not as well resolved as in the

-zR 0 zR
1

1

FIG. 3. Evolution of the diffraction of an � = 1 LGV beam by a
triangular aperture as the aperture position is varied from one side of
the waist (z = −zR ) to the other (z = zR ).

case of small N . Certain broad features of the diffraction
pattern can be understood by considering the diffraction to
be an interference of waves diffracted by the edges of the
polygon. This has been discussed for a triangular N = 3
aperture yielding a triangular lattice of bright spots [22,23,37].
A similar approach for a square aperture can be seen to lead
to the square-lattice-like structure seen for N = 4 patterns.
Successively larger values of � reveal correspondingly larger
portions of triangular, square, and other types of lattices
formed by the interference of edge-diffracted waves.

For aperture positions away from the waist, the incident
phase front in the aperture plane has a radially varying phase
and a z-dependent Guoy’s phase, resulting in a significantly
altered diffraction pattern. This is shown in Fig. 3, which com-
pares the diffraction patterns for a triangle (N = 3) aperture at
the waist (z = 0) and one Rayleigh range away (±zR ) from
the waist. The patterns have N-fold rotational symmetry for
all aperture positions, but only at the waist are the patterns
for −� and � related by a rotation of 180o. Away from the
waist, the pattern for � at z is related to the pattern for −� at
−z by a rotation of 180o, in agreement with Eq. (4). In going
from z = 0 to zR , the patterns rotate and outer portions of the
pattern acquire a shear. The sense of rotations for positive and
negative � are opposite and, the shear, evident in the outer
portions of the pattern, depends on the sign of z reflecting its
origin in Guoy’s phase.

III. EXPERIMENT

These features of the LGV diffraction from polygonal aper-
tures are readily observed by illuminating polygonal apertures
with LGV beams. The LGV beams were created by diffracting
a collimated fundamental Gaussian beam from a spatial light
modulator (SLM) controlled by a computer (see Fig. 4). The
computer could be programmed to write the phase grating of
any desired LGV mode on the sensitive surface of the SLM.
The LGV beams with different OAM index were produced in
reflected light. An appropriately placed aperture after the SLM
selected an LGV beam of desired OAM index and blocked
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Aperture Plate

f
f CCD

FIG. 4. An outline of the experimental setup.

the unwanted beams. The LGV beams with OAM index up to
� = 10 were produced this way. Figure 4 shows an outline of
the experimental setup used for observing the diffraction of
LGV beams by regular polygonal apertures.

Lens L1 forms a waist of the LGV beam. A second lens
L2 was placed, downstream from L1, such that the aperture
was in its front focal plane and a CCD camera in its back
focal plane. This arrangement, known as “2 f ” arrangement,
ensures that the CCD camera records the far-field (Fraun-
hofer) diffraction [3]. In the experiment, the aperture-L2-CCD
combination was moved as a single unit along the beam
axis, without changing the relative distances between the
three elements. This allowed the aperture to be placed at any
position relative to the beam waist along the beam axis and
record the diffraction pattern.

In the experiment, it was necessary to control the location
of the beam waist and the fundamental Gaussian beam spot
radius wo. This is because the irradiance pattern of the LGV
beam consists of single bright ring whose radius wm is given
by wm = √

� + 1 wo, where � is the OAM index of the beam
and minimum spot radius wo of the fundamental (� = 0)
Gaussian beam [38]. Thus as the OAM index of the LGV
beam increases, the radius of the irradiance maximum also
increases. This means that in studies of � dependence of
diffraction, as � increases the size of the maximum irradiance
ring may grow so large that the polygon interacts essentially
with the low-intensity core of the beam, making the record-
ing of the pattern difficult. Furthermore, the apertures were
etched on a glass plate coated with a thin layer of chrome,
and when the radius of irradiance maximum exceeded the
aperture size, a significant beam leaked through the glass
plate to overwhelm the diffraction pattern. For this reason,
the experiments were conducted with wm ≈ R, where R is
the radius of the circle circumscribing the polygon. This also
means that the spatial scales in recorded diffraction patterns
are not directly comparable, but it allows recording of the
structure of diffraction pattern, which is our main interest.
For this purpose, several different lenses with focal lengths
ranging from 35 to 75 cm were used for L1, allowing us to
create a beam radius wo varying from from 150 to 400 μm.
The LGV beams generated were collimated, placing the beam
waist after the lens L1 nominally in the back focal plane of
the lens. For locating the waist plane more accurately, a CCD

1 -1 4 -4

2 -2

3 -3

5 -5

6 -6

FIG. 5. Recorded LGV diffraction irradiance from a regular tri-
angular aperture (N = 3) at the beam waist for � values as indicated
in the frames. Frames for ±� have been paired for easy comparison.

camera was used, which also allowed a determination of the
radius wm of the maximum intensity ring of the LGV beam.

The experiments were carried out first by placing the aper-
tures at beam waist and illuminating them with LGV beams
with different values of OAM index �. Then the aperture
position was varied relative to the waist of the beam to study
the effects of the LGV beam’s quadratic radial phase profile
and Gouy’s phase on diffraction.

IV. RESULTS AND DISCUSSION

Figure 5 shows the recorded irradiance patterns resulting
from the diffraction of LGV beams of different OAM index
� from an equilateral triangular aperture placed at the waist
of the incident beam. These experimentally recorded patterns
agree with the corresponding theoretical patterns of Fig. 2.
In particular, they lack a center of inversion, display a nested
structure as a function of �, and have a bright center for � =
±3 and ±6, i.e., when � is a multiple of N , and a dark center
for all other values of �.

In the experiment, LGV beams of both positive and nega-
tive � values were used. These are also shown in Fig. 5. The
patterns for OAM index ±� are related by a rotation of 180o,

as predicted by Eq. (4) for aperture position at the beam waist
(z = 0).

In carrying out the experiment, the intensity of the incident
beam had to be adjusted from one frame to another so as
not to saturate the detector. For this reason the intensities in
different frames are not directly comparable. In some cases,
detector saturation could not be avoided over the entire frame.
In such cases, the saturated regions appear as red in the
grayscale images. The slight curvature seen in diffraction
images for higher � values is not a detector artifact but a
property of the diffraction pattern itself. As mentioned in the
discussion of the experiment in Sec. III, the experiments were
carried out by adjusting the radius wm = wo

√
� + 1, where the

incident beam has maximum irradiance, to be nearly equal to
the radius R of the circle circumscribing the polygon. This
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1 2 3 4

5 6 7 8

FIG. 6. Recorded LGV diffraction patterns from a square aper-
ture (N = 4) at the beam waist for positive � values as indicated in
the frames.

curvature effect is enhanced for wm values smaller than R
and is suppressed for wm > R. Numerical evaluations can
reproduce this effect as well. Evidence of this can be seen in
the theoretically computed diffraction patterns shown in Fig. 2
for � > 4, in the case of a triangular aperture, and � > 6, in
the case of a square aperture. These theoretical patterns were
computed for wm = R.

Figure 6 shows the recorded diffraction patterns for a
square aperture illuminated by LGV beams of different OAM
indices. All diffraction patterns have a fourfold rotational
symmetry and a center of symmetry reflecting the symmetries
of a square aperture. The patterns recorded for negative OAM
index coincided with those for positive �, in agreement with
the implications of Eq. (4), and are not shown here. As a
function of OAM index �, the diffraction patterns for � = 1–4
are distinct and shown in the top row. For � > 4, the patterns
have a nested structure: the pattern for � = 5 has an � = 1
pattern as its core, the � = 6 pattern has an � = 2 pattern as its
core, and so on. Although the core evolves with � somewhat,
in general appearance, the pattern for � > N has the pattern
for � − N as its core. Finally, we note that the patterns for
� = 4 and � = 8 have a bright center, in agreement with the
discussion following Eq. (15). These profiles agree with the
theoretical profiles in Fig. 2 for N = 4.

Diffraction patterns for LGV beams with −5 � � � 5 scat-
tered from a regular pentagon (N = 5) at the beam waist are
shown in Fig. 7. The patterns for ±�, paired together for ease
of comparison, are centrosymmetric to one another. The last
two frames for � = ±10 also obey this relation. Additionally,
together with the � = ±5 frames, they illustrate that the center
of the diffraction pattern is bright when � is a multiple of N .
They also exhibit a nested structure observed for N = 3 and
N = 4 apertures. Similar patterns were recorded for apertures
with N = 6 − 9, and in all cases they confirm the structures
and trends predicted in the preceding section.

So far, we have studied diffraction patterns for the apertures
placed at the beam waist, where the LGV beam phase fronts
are planar and, for normally incident beams, the phase in the
plane of the aperture is constant. Away from the waist, the
phase fronts are spherical—the phase has a quadratic radial
dependence as well as a dependence on z via the Guoy’s
phase. Because of these two additional phase contributions,
the diffraction patterns of LGV beams evolve as the aperture
is moved away from the waist.

1 1

2 2

3 3

4 4

5 5

10

1 1

2 2

3 3

4 4

5 5

10

FIG. 7. Recorded LGV diffraction patterns from a regular pen-
tagon (N = 5) at the beam waist for � values as indicated in the
frames.

Figure 8 shows an experimentally recorded evolution of
diffraction patterns for triangular and square apertures as their
position is varied from −zR to zR relative to the beam waist

FIG. 8. Recorded LGV diffraction patterns from triangle and
square apertures placed at z = −zR , 0 and zR as indicated for �= ±1.
The top two rows are for a triangular aperture and the bottom two for
a square aperture. The lower left corner of frames labeled 1 show the
orientation of the apertures.
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FIG. 9. Recorded LGV diffraction patterns from polygonal aper-
tures placed at z = 0 for � = N as indicated.

z = 0. Note that these patterns show a rotation as well as a
shear as the apertures move from −zR to zR . While the rotation
of the patterns continues monotonically in the same sense
(depending on the sign of �) in crossing the waist, the sense of
shear reverses in crossing the waist. The �-dependent rotation
is caused by the Guoy’s phase dependence on the OAM index
of the beam, while the shear of the pattern is caused by the
quadratic radial dependence of the phase of the incident beam
[24,26]. For all positions, the patterns for the triangle and
square have, respectively, threefold and fourfold rotational
symmetry. For the square, they all have a center of inversion,
whereas for N = 3 they lack a center of inversion.

We note also that for both apertures, when they are placed
at the waist (z = 0), the � = ±1 diffraction patterns are 180o

rotated versions of one another. This relation breaks down for
aperture positions away from the waist. This breakdown is
most apparent in the sense of shear in the outer portions of
the patterns. For example, a comparison of the ±1 patterns
for a triangle at z = −zR shows that a 180o rotation of � = −1
pattern may get the main bright lobs to overlap with those in
the � = 1 pattern but the sense of shear in the outer regions
will be incorrect. On the other hand, a 180o rotated pattern
for � = −1 at z = −zR will reproduce the pattern for � = 1
at z = zR . Similar comments hold for the diffraction patterns
produced by the square aperture. Thus when the apertures
are placed one Rayleigh range away from the waist, the
diffraction patterns for � = ±1 are not centrosymmetric to
each other; rather, the pattern for � = 1 produced by the
aperture placed at z = zR is centrosymmetric to the pattern for
� = −1 produced by the aperture placed at z = −zR . Thus the
generalized relation for LGV diffraction embodied in Eq. (4)
holds irrespective of the symmetry of the aperture as long as
the aperture transmission function is real.

Conclusions regarding the symmetry of the diffraction pat-
tern for Laguerre-Gauss beams of zero radial index considered
in this paper will apply to Laguerre-Gauss beam of nonzero
radial index as well, though the detailed spatial structure of
the corresponding diffraction pattern will differ significantly
from that for the LGV beams. This can be seen by recalling
that the field of a nonzero radial index beam is obtained by
multiplying the field of a pure vortex beam given in Eq. (2)
by an appropriate associated Laguerre polynomial, which is a
real function of the radial variable ρ [12,13], and this will not
affect the argument used in arriving at Eq. (4).

We also studied the diffraction of LGV beams by polygons
up to N = 9. As the number of sides increases, the diffraction
patterns become increasingly similar to the diffraction by
a circular aperture. Figure 9 shows the diffraction patterns

produced by regular polygons with N = 6–9 for LGV beams
of OAM index � = N . Increasing circular symmetry of the
pattern as N increases is easily seen in these patterns. The
bright spot in the center for the � = N pattern is still present,
but its intensity decreases as N increases, as noted in the dis-
cussion following Eq. (15). In the N → ∞ limit, the aperture
shape becomes a circle and, of course, the central bright spot
disappears as the diffraction pattern becomes that of a circular
aperture [25,39].

V. CONCLUSIONS

In conclusion, we have studied the diffraction of Laguerre-
Gauss vortex beams from regular polygons (N-fold ro-
tationally symmetric) analytically and experimentally. The
dependence of diffraction on symmetry of the aperture,
orbital-angular-momentum index �, and aperture position rel-
ative to the beam waist has been investigated. For odd-N
apertures, the diffraction lacks a center of inversion, whereas
for even-N , it has a center of symmetry. Thus, overall, the
diffraction pattern has the rotational as well as the inversion
symmetry of the aperture. For apertures located at the waist,
where the phase fronts are planar, the diffraction patterns for
±� are related by a rotation of 180o. For other locations of
the aperture, this relationship no longer holds. Instead, a more
general relation represented by Eq. (4) holds.

For fixed N , the patterns are distinct for 1 � � � N ,
whereas for � > N , the central pattern displays a nested struc-
ture in that the central pattern for � contains the pattern for
� − N . This means that the pattern for � > nN (n is a positive
integer > 1) contains the patterns for � − N , which contains
the pattern for � − 2N , and so on, the innermost pattern being
that of � − nN .

For aperture positions away from the waist, diffraction is
affected both by the quadratic radial dependence of phase
and Guoy’s phase contribution to it. Their effect is manifest
in the overall rotation of the pattern and shear in the outer
portions of the pattern. We also find that Eq. (4) represents
an extension of Friedel’s law for LGV beams, which itself
is a special case of a more general symmetry relation (8)
for the diffraction of paraxial beams by real apertures. It
should be pointed out that Eq. (4) is not a consequence of the
symmetry of the aperture; it is a property of paraxial vortex
beams scattered by any two-dimensional apertures with real
transmittance functions, independent of the symmetry of the
aperture. Experimentally recorded diffraction profiles confirm
analytically and numerically predicted structure and trends
of the diffraction of LGV beams from regular polygonal
apertures as functions of N and �.
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