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Effects of higher-order dispersion on photon-pair generation by four-wave mixing
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We present analytical results revealing the impact of higher-order dispersion on four-wave mixing in quantum
applications. We derive fundamental relations between input and output modes in dispersive four-wave mixing
processes and apply the theory to photon-pair generation. We analyze specific examples of four-wave-mixing
configurations and find that, in some cases, spectral correlations are severely affected by dispersion while
other cases are strongly unaffected. For the considered examples, we derive analytic conditions for dispersion
cancellation, resulting in highly factorable two-photon states.
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I. INTRODUCTION

Indistinguishable single photons are a key resource in
quantum photonics applications such as interference-based
linear optical quantum computing [1]. Traditionally, single-
photon sources for quantum optics experiments have been
based on spontaneous parametric down-conversion (SPDC) in
nonlinear crystals [2]. However, in recent years there has been
an upsurge of interest in photon-pair generation in optical
fibers [3–6] and integrated waveguides [7,8] through sponta-
neous four-wave mixing (SFWM). SFWM has the advantages
of low coupling losses, high system stability, possibility of
integration, and flexible schemes relying on nondegenerate
pumps.

Both SFWM and SPDC sources probabilistically produce
photons in pairs and the detection of one member of the pair
heralds the presence of the other, which can subsequently be
used in experiments [9,10]. The downside of the probabilistic
production is compensated by having a trigger event and
desirable photonic properties such as photons in the low-
loss window of commercial fibers. Generally, the heralded
photon is projected into an impure quantum state, unless the
generated photon pair is completely spectrally unentangled
[11,12]. This can be achieved through narrow spectral filtering
on one or both photons [13], but at the cost of photon rate
and heralding efficiency [14]. For this reason, there have been
many attempts to engineer parametric sources to avoid such
spectral correlations without the use of filters, relying instead
on the careful design of the waveguide dispersion [15].

Nevertheless, even in sources that are engineered to pro-
duce uncorrelated photons the single-photon purity can de-
grade significantly due to a number of parasitic effects present
in SPDC- or SFWM-based parametric sources. Research
on the impact of such effects has mostly been focused on
nonlinear phase modulation [16–18], dispersion fluctuations
[19–21], and Raman scattering [22,23]. Notably, the impact
of group-velocity dispersion (GVD) has been given very little
attention; it is easily included in models for SPDC [24], but its
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effects on spectral correlations are negligible due to the short
interaction lengths [25] and it has only been studied briefly in
the context of SFWM [17].

In this work, we seek to characterize the impact of GVD
on SFWM-based sources by developing analytical models
for photon-pair generation where GVD is included and com-
paring them to numerical solutions for the two-photon am-
plitude. In addition, we consider the impact of pump chirp
on photon purity in the presence of GVD. We focus on
one of the most used schemes for generating pure heralded
single photons, namely asymmetric group-velocity matching
using a single pump, which has been realized in photonic
crystal fibers [26,27]. We also examine a promising scheme
based on complete collision between two pumps for which
walk-off is induced by chromatic dispersion [28], waveguide
birefringence [29], or higher-order fiber modes [21].

II. DISPERSIVE FOUR-WAVE MIXING

A. Governing equations

SFWM is enabled by third-order optical nonlinearities
and consists of the annihilation of two pump photons to
produce a signal and an idler photon under energy and mo-
mentum conservation. In the standard semiclassical approach
the strong pumps are described classically, whereas the weak
signal and idler fields are described by quantum Heisenberg
annihilation operators âj (z, ω), with j = s, r signifying the
signal and idler, satisfying the equal-position commutation
relations [âi (z, ω), â†

j (z, ω′)] = δij δ(ω − ω′). In the Heisen-
berg picture (HP), the standard coupled-mode equations for
the field-operator evolution in a waveguide are

∂zâs (z, ω) = iβs (ω)âs (z, ω)

+ i

∫
dω′γpq (z, ω + ω′)â†

r (z, ω′), (1a)

∂zâr (z, ω) = iβr (ω)âr (z, ω)

+ i

∫
dω′γpq (z, ω + ω′)â†

s (z, ω′), (1b)
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where the pump function, with the Fourier transform conven-
tion f (ω) = ∫

dtf (t ) exp(iωt ), takes the form

γpq (z, ω) = γ

2π

∫
dω′Ap(z, ω′)Aq (z, ω − ω′), (2)

where Ap and Aq are the pump fields, which are treated as
classical and undepleted. The Kerr nonlinearity parameter γ

governs the interaction strength depending on the material
properties as well as the central frequency, transverse spatial
profile, and polarization of the light fields [30]. Due to the
linearity of Eqs. (1), the field evolution through the waveguide
can be conveniently expressed through input-output relations
of the form

âs (ω, zout ) =
∫

dω′[μss (ω,ω′)âs (ω′, zin )

+νsr (ω,ω′)â†
r (ω′, zin )], (3a)

âr (ω, zout ) =
∫

dω′[μrr (ω,ω′)âr (ω′, zin )

+ νrs (ω,ω′)â†
s (ω′, zin )], (3b)

where μss and μrr are the frequency-domain self-Green func-
tions and νsr and νrs are the frequency-domain cross-Green
functions. Due to the symmetry between the signal and idler
fields, we only consider the signal from this point. The self
Green function μss and cross Green function νsr can be found
perturbatively (in the classical case, this corresponds to a
zero-input idler), as

âs (ω, l) = exp[iβs (ω′)l]âs (ω, 0) (4)

âr (ω, l) = i exp[iβr (ω)l]
∫ l

0
dz

∫
dω′γpq (ω + ω′, z)

× exp{−i[βr (ω) + βs (ω′)]z}â†
s (ω′, 0), (5)

where l is the waveguide length. From these equations, the
perturbative Green functions are seen to be

μss (ω,ω′) = exp[iβs (ω)l]δ(ω − ω′), (6a)

νrs (ω,ω′) = i exp[iβr (ω)l]
∫ l

0
dz γpq (ω + ω′, z)

× exp{−i[βr (ω) + βs (ω′)]z}. (6b)

The signal-idler symmetry dictates that νrs is obtained
from νsr by swapping r ↔ s and ω ↔ ω′. This combined
with the symmetric form of the cross-Green function allows
us to give nearly identical decompositions of the two cross
functions as follows:

νrs (ω,ω′) = exp[iβr (ω)l]
∑

n

νnfrn(ω)fsn(ω′), (7a)

νsr (ω,ω′) = exp[iβs (ω)l]
∑

n

νnfsn(ω)frn(ω′), (7b)

where fjn, j = s, r is the nth Schmidt function (SF) for the
signal and idler fields with Schmidt coefficient νn. This shows
that, although the input and output SFs depend on the non-
linear interaction throughout the medium, the output function

fjn(ω) exp[iβj (ω)l], is simply a propagated and dispersed
version of the input function, fjn(ω). This is a generalization
of the result obtained in [29]. Thus, if the Schmidt functions
for a process are known, this gives a simple way to decompose
an input field and propagate it. In the following section, we
link this description to the Schrödinger picture (SP).

B. Schrödinger picture

The Heisenberg equations (1) can be generated from a
Hamiltonian Ĥ (z), which governs spatial evolution such that
∂zâs = i[Ĥ , âs] and similarly for the idler. Note that, while
this operator is, strictly speaking, a momentum operator
[18,21,31], we shall refer to it as the Hamiltonian. To generate
Eqs. (1), this operator must take the form

Ĥ (z) = i

∫
dω[βs (ω)â†

s (ω)âs (ω′) + βr (ω)â†
r (ω)âr (ω)]

+ i

∫∫
dω dω′γpq (z, ω + ω′)â†

r (ω)â†
s (ω′) + H.c.

(8)

To solve the evolution problem perturbatively, let Ĥ (z) =
Ĥ0 + Ĥ1(z) where Ĥ0 describes dispersion [the first term in
Eq. (8)] and Ĥ1 describes the SFWM interaction. Like the
Hamiltonian, the state can also be expanded as |ψ〉 = |ψ0〉 +
|ψ1〉, which decomposes the evolution equation ∂z|ψ〉 =
iĤ |ψ〉 into the two perturbative orders

∂|ψ0〉 = iĤ0|ψ0〉, (9)

∂|ψ1〉 = iĤ0|ψ1〉 + iĤ1|ψ0〉. (10)

By introducing the unitary operator U0(z) = exp (iĤ0z) gen-
erated by Ĥ0, these equations are easily solved to give

|ψ0(l)〉 = Û0(l)|ψ0(0)〉, (11)

|ψ1(l)〉 = i

∫ l

0
dzÛ0(l − z)Ĥ1(z)|ψ0(z)〉. (12)

These equations have a simple interpretation. The zero-
order state evolves simply under Ĥ0, while the first-order
state is produced by a series of creation events, through
Ĥ1(z), followed by propagation for the remaining waveguide
length, through Û0(l − z). Rewriting the first-order expression
slightly to

|ψ1(l)〉 = iÛ0(l)
∫ l

0
dzÛ

†
0 (z)Ĥ1(z)Û0(z)|ψ0(0)〉

= iÛ0(l)
∫ l

0
dzĤint (z)|ψ0(0)〉, (13)

reveals a transition to the interaction picture where the in-
teraction Hamiltonian Ĥint (z) = Û

†
0 (z)Ĥ1(z)Û0(z) is obtained

from Ĥ1 by simply replacing the Schrödinger field operators
by their corresponding z-dependent Heisenberg operators,
which evolve according to ∂zâj = i[Ĥ0, âj ] = iβj âj , so that
âj (z) = âj exp(iβj z), for j = s, r . We note that with the
Hamiltonian in Eq. (8), the operator Û0(l) may be replaced
by the complex number exp{i[βs (ω′) + βr (ω′′)]l} inside the
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double frequency integral in Eq. (8). By writing the two-
photon part of the state as

|ψ1〉 =
∫∫

dωs dωrν(ωs, ωr )â†
s (ωs )â†

r (ωr )|vac〉, (14)

where the field operators are Schrödinger operators âs (ωs ) =
âs (0, ωs ), we see from Eqs. (13) and (8) [with âj replaced
by âj (z)] that the joint wave function ν(ωs, ωr ) can be
identified as

ν(ωs, ωr ) = i

∫ l

0
dz γpq (z, ωs + ωr )

× exp{i[βs (ωs ) + βr (ωr )][l − z]}. (15)

With Eq. (3) as the definition of the frequency-domain Green
functions, the two-photon amplitude ν and the Green function
are related as [29]

ν(ωs, ωr ) =
∫

dω μss (ωs, ω)νrs (ωr, ω). (16)

This relation shows that the Green functions from Eq. (6)
in the HP and the two-photon amplitude Eq. (15) in the
SP are consistent with the fact that the SP SFs correspond
to the output HP SFs. For convenience, we let ν(ωs, ωr ) =
A(ωs, ωr ) exp{i[βs (ωs ) + βr (ωr )]l/2}. This is a difference of
an overall spectral phase from pure dispersion, which does not
affect the spectral intensity or any two-photon correlations.
We will refer to A(ωs, ωr ) as the joint spectral amplitude
(JSA). In addition, we, from this point, let the waveguide
coordinate run from −l/2 to l/2 for convenience, i.e., we
substitute z → z − l/2. Note that this means that an unchirped
pump input is chirped at z = 0 (the waveguide midpoint). Like
the Green functions, the JSA can be Schmidt decomposed [12]

A(ωs, ωr ) =
∑

n

λnfsn(ωs )frn(ωr ), (17)

where λn are real coefficients and fsn, frn are SP SFs, which
are identical to the Heinsenberg functions in Eqs. (6) evalu-
ated at the waveguide midpoint. From such a decomposition
the spectral purity P of a single photon heralded from the
two-photon state is easily determined as

P =
∑

n

λ4
n

/(∑
n

λ2
n

)2

. (18)

This expression can be found in the standard way from
the trace of the square of the density operator after tracing
out the idler photon and using the decomposition Eq. (17). In
simple cases, analytic expression for the purity can be found,
but one is often forced to calculate it numerically through a
singular value decomposition and Eq. (18).

C. Gaussian pumps and phase mismatch

In this section we introduce the pumps explicitly and derive
a general expression for the JSA with higher-order dispersion,
which is used in subsequent sections. With the definitions
in the previous section, we can from Eq. (15) write the

JSA as

A(ωs, ωr ) = i

∫ l/2

−l/2
dzγpq (z, ωs + ωr )

× exp{−i[βs (ωs ) + βr (ωr )]z}

= iγ

2π

∫∫
dz dωAp(0, ωa + ω)Aq (0, ωa − ω)

× exp[i�β(ω)z], (19)

where ωa = (ωs + ωr )/2 is the average frequency and we
assume that the pump fields evolve under only dispersive ef-
fects, i.e., ∂zAj = iβj (ω)Aj . This is often reasonable with the
relatively weak pump powers used in photon-pair-generation
experiments. With these definitions, the wave-number mis-
match is

�β(ω) = βp(ωa + ω) + βq (ωa − ω) − βs (ωs ) − βr (ωr )

= �β0(ωs, ωr ) + k(ωs, ωr )ω + 1
2 (β2p + β2q )ω2,

(20)

where the last equality is an expansion in dispersion param-
eters up to second order around a point of perfect phase
matching, i.e., the center of the two-photon state which we
take as ωs = ωr = 0. The expansion is given in terms of the
expressions

�β0(ωs, ωr ) = 1
2 (β2p + β2q )ω2

a − β1sωs − 1
2β2sω

2
s

− β1rωr − 1
2β2rω

2
r , (21)

k(ωs, ωr ) = (β2p − β2q )ωa + β1p − β1q, (22)

where βnj , j = s, r, p, q is the nth derivative of β at the
central frequency of field j . For convenience, we omit
the arguments in future reference to these quantities. For the
remainder of this paper, the pumps are assumed to be chirped
Gaussians, which at the fiber midpoint take the forms

Aj (0, t ) = √
Pj exp

(
− (1 + iCj )t2

2T 2
j

)
, j = p, q, (23)

Aj (0, ω) = Aj0 exp

(
− (1 − iCj )ω2

2σ 2
j

)
, j = p, q, (24)

with Aj0 = σ−1
j

√
2πPj (1 − iCj ) and σj =

√
1 + C2

j /Tj so

that |Aj0| = √
2πPjTj . Notice that in this notation, Cj is the

chirp at the waveguide midpoint since this is more convenient
in the following analysis. In terms of the input parameters,
they are

Cp = Cin + (
1 + C2

in

)β2pl

2T 2
in

, (25)

Tp = Tin

[(
1 + Cin

β2pl

2T 2
in

)2

+
(

β2pl

2T 2
in

)2
]1/2

, (26)

with Cin = 0 for unchirped input, and similarly for the pump
q. Since the pump pulse durations change throughout the
waveguide, but the spectral width σj does not, it is often useful
to express quantities in terms of σj to avoid confusion.
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The integrals in Eq. (19) are difficult to evaluate analyti-
cally. However, results may be obtained for the most experi-
mentally interesting cases. In the following sections we focus
on one example of degenerate FWM (using a single pump)
and one example of nondegenerate FWM (using two distinct
pumps).

III. DEGENERATE FWM

A. Approximate solution

In this section we consider degenerate pumps, i.e., Ap =
Aq , which simplifies the phase mismatch in Eq. (20)
to �β(ω) = �β0 + β2pω2. Carrying out the z integral in
Eq. (19) gives

A(ωs, ωr ) = iγ l

2π

∫
dωAp(ωa + ω)Ap(ωa − ω)

× sinc

(
�β(ω)l

2

)
, (27)

where we take Ap(ω) to mean the field at the waveguide
midpoint. This integral is commonly dealt with by neglecting
the second-order contribution, and thus GVD, to �β(ω). We
include it by expanding the sinc function in Eq. (27) with
argument �β(ω)l/2 = �β0l/2 + β2pω2l/2 with respect to
β2pω2l/2

sinc

(
�β(ω)l

2

)
= sinc

(
�β0l

2

)

+ 1

2
β2pω2l sinc′

(
�β0l

2

)
. (28)

This expansion is correct to order β2
2pω4l2, consistent with

neglecting third- and higher-order dispersion. With this ap-
proximation, the integral in Eq. (27) is now a simple Gaussian
integral that can be carried out to give

A(ωs, ωr ) = i
√

πγ lPp

σp

√
1 − iCp exp

(
− (1 − iCp )ω2

a

σ 2
p

)

×
[

sinc

(
�β0l

2

)
+sinc′

(
�β0l

2

)
β2pσ 2

pl

4(1−iCp )

]
.

(29)

Recombining this expression into a single sinc function,
which is still consistent with the order of approximation, gives
the final expression

A(ωs, ωr ) = i
√

πγ lPp

σp

√
1 − iCp exp

(
− (1 − iCp )ω2

a

σ 2
p

)

× sinc

([
�β0 + β2pσ 2

p

2(1 − iCp )

]
l

2

)
. (30)

Even though the corrective term in the sinc function does not
depend on ωs and ωr , it can influence the spectral correlations.
However, simply ignoring this term and giving the phase-
matching function as sinc(�β0l/2) (not truncated at order
β1) can give a good approximation in some cases, and is an
approach taken by some authors [32]. We shall refer to this

FIG. 1. Absolute value of analytical JSA (a) without and (b) with
dispersion with β1s lσp = 100, giving a high initial purity β2r lσ

2
p = 2,

β2p = 0 and unchirped input. (c)–(d) show the corresponding numer-
ical figures using a split-step algorithm reproducing the analytical
amplitudes.

as a zero-order approximation. We note that in the case of
SPDC, the JSA can always be given in this form without
any approximations [11]. In the following we discuss a num-
ber of important consequences of the inclusion of GVD in
Eq. (30).

B. Asymmetric scheme for factorability

Two degenerate schemes have been widely used to gen-
erate factorable two-photon states from which pure single
photons can be heralded. In the symmetrically group-velocity-
matched scheme, the signal and idler walk off symmetrically
from the pump (one is faster, the other is slower), resulting
in a central circular uncorrelated peak in the JSA, which
can be subsequently filtered without significant losses. This
scheme has been used both with SPDC [33–35] and SFWM
[36–39]. Due to the symmetric spectral shape of the JSA, this
scheme is less susceptible to GVD than the asymmetrically
group-velocity-matched scheme in which either the signal or
idler copropagates with the pump [12]. This scheme produces
a JSA that is spectrally broad in the idler frequency and
spectrally narrow in the signal frequency (or vice versa),
see Fig. 1(a). Consequently, inclusion of GVD introduces
a significant degree of curvature to the JSA, as shown in
Fig. 1(b), calculated by Eq. (30). This increases spectral cor-
relations, and for this choice of parameters which represents
a large, but not unrealistic, amount of dispersion, reduces
the heralded single-photon purity from a near-unit value to
81.8%, calculated through Eq. (18). The corresponding plots
from a numerical split-step scheme [30,40] are shown in
Figs. 1(c) and 1(d) and are identical to the analytical solutions.
The split-step scheme is based on a nonlinear-Schrödinger-
like propagation equation for the JSA, whereby any desired
effects, such as higher-order dispersion, can be included.
The impact of GVD on the Schmidt decomposition of the
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FIG. 2. (a) Absolute square of the Schmidt coefficients and
(b)–(d) signal and idler Schmidt functions with and without disper-
sion for the parameters used in Fig. 1, showing significant degrada-
tion in purity and distortion of the Schmidt functions.

state is shown in Fig. 2, with black indicating no GVD and
red indicating that GVD is present. As expected from the
increased correlation, the Schmidt coefficients, apart from
the first, increase in value when GVD is introduced. The
first signal SF fs1 is nearly unchanged except for a slight
shift. The idler SF fr1 is, however, distorted to account
for the more narrow spectral distribution of the central part
of the state due to its curvature. The second SFs, which
account for the primary part of departure from a perfectly
factorable state, are significantly different with and without
dispersion. In the case of no dispersion, these functions de-
scribe the correlation remaining in the sinc ripples, inherent
to the asymmetric scheme, due to the finite interaction length.
However, when GVD is introduced, the resulting curvature
becomes the dominant departure from perfect factorability,
and the SFs fs2 and fr2 partially produces the curvature in the
GVD-distorted JSA.

The origin of the correlations introduced by GVD are
evident from the correction to the sinc argument compared
to the case without GVD:

1

4
β2p(ωs + ωr )2 − 1

2
β2sω

2
s − 1

2
β2rω

2
r + β2pσ 2

p

4(1 − iCp )
.

(31)

Due to the asymmetric nature of the JSA, GVD-induced
correlations arise dominantly from terms proportional to ω2

r ,
i.e., (1/2)(β2p/2 − β2r )ω2

r . Thus, the impact of GVD is de-
termined by an effective dispersion parameter β2p/2 − β2r . In
particular, when β2p = 2β2r we expect a large degree of dis-
persion cancellation. This is confirmed by Fig. 3, which shows
the heralded single-photon purity as a function of idler GVD
for different degrees of pump GVD. This figure additionally
confirms that the behavior is nearly completely determined
by the value of |β2p/2 − β2r | from the pairwise similarity of
the plotted lines. For the figure we chose β2s = 0, but for the

FIG. 3. Heralded single-photon purity versus idler dispersion for
varying amount of pump dispersion (indicated adjacent to the lines)
with β1s lσp = 100 and unchirped input, i.e., σp = 1/Tin, showing
the purity-degrading effects on the asymmetric scheme.

degree of asymmetry considered here, this parameter has no
influence on the purity. The figure illustrates that, while the
purity always decreases with increasing idler GVD, the impact
is significantly smaller when β2p ≈ 2β2r , as predicted. This
shows that nearly perfect dispersion cancellation is possible.
However, in real fibers designed for the asymmetric scheme,
the GVD often has opposite sign for the pump and idler, en-
hancing the negative effect instead of inhibiting it [17,26,32].

Perhaps the most important consequence of GVD is the
limit it imposes on the maximum achievable purity for the
asymmetric scheme. Figure 4 shows the purity versus fiber
length for varying pump pulse duration, with and without
GVD for realistic fiber parameters in a photonic crystal
fiber. Without GVD, the purity increases monotonically and
goes asymptotically to unity as the fiber length is increased.
However, when GVD is accounted for, the purity increases
to some maximum value and then starts to decrease due
to GVD, resulting in an optimal fiber length for any given

FIG. 4. Purity versus fiber length for different pulse durations
(indicated next to the lines) and unchirped input. Dashed lines
indicate the case with no GVD and circles are results from a
numerical split-step routine. The parameters used are β1s = 1.14 ×
10−11 m−1 s, β2p = 2.1 × 10−26 m−1 s2, β2r = −1.3 × 10−26 m−1 s2,
β2s = 3.6 × 10−26 m−1 s2 [17]. GVD prevents a monotonic increase
in purity with fiber length.
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FIG. 5. Purity versus input pump chirp for varying amounts
of GVD (indicated next to the lines) for our analytical solution
(solid lines), the zero-order approximation without the correction to
�β0 (dotted lines), and numerical values from the split-step solver
(circles), showing good agreement even for strong dispersion for
most chirps. The purity exhibits a weak dependence on pump chirp,
even for strong dispersion.

pulse duration. Furthermore, for a given amount of GVD,
this maximum value decreases with decreasing pump pulse
duration, due to the increased effect of GVD for shorter
pulses. This has consequences for the design of experiments
using this scheme which is often constrained by available fiber
length, e.g., a few meters in the case of photonic crystal fibers
[17] due to fiber inhomogeneities. Our results show that in
a dispersive fiber there is an optimal pump pulse duration,
depending on the maximum available fiber length. The results
are confirmed with a split-step routine (circles in Fig. 4). The
excellent agreement indicates that the expansion we used for
the sinc function gives a very good approximation.

Finally, we investigate the effect of pump chirp on the
quantum state. The temporal pump chirp included in our
model has two consequences for the generated state. The first
is a spectral broadening, which has an obvious effect on the
impact of dispersion, as shown in Fig. 4. The second, which
can be isolated by fixing the pump spectral width σp to varying
constant values, is shown in Fig. 5, with solid lines showing
our analytical model, dotted lines a naive model without the
corrective term in the sinc from the Taylor expansion, and
circles from the numerical split-step scheme, all for varying
GVD, measured by β2plσ 2

p . We first note that the analytical
solution presented here performs much better than the simple
analytical approximation, but shows some deviation when the
pump is unchirped at the waveguide midpoint. At these points
the analytical solution nearly coincides with the zero-order so-
lution, indicating that higher-order terms are needed to capture
the effect of GVD. Importantly, our analytical solution shows
good agreement with the numerical solution for unchirped
inputs, which is common in experimental situations. The
figure shows that the optimal purity is always obtained for
a pump pulse that is unchirped at the waveguide midpoint.
However, the effect is modest even for large amounts of
dispersion.

IV. NONDEGENERATE FWM

We now turn our attention to the case in which the pumps
are nondegenerate (in, e.g., frequency, polarization, or spatial
mode) and denote them by Ap and Aq . In general, these
fields travel with different group velocities in the waveguide,
making analytic progress difficult when GVD is included,
although it is tractable when GVD is neglected [15]. However,
simple analytical expressions can be found when the two
pump fields are allowed to pass completely through each
other. This can enable perfectly factorable two-photon states
and is therefore experimentally interesting [21,28,29].

Recall the JSA given in Eq. (19)

A(ωs, ωr ) = iγ

∫
dωAp(ωa + ω)Aq (ωa − ω)

× 1

2π

∫ l/2

−l/2
dz exp[i�β(ω)z]. (32)

A complete collision occurs in the limit l → ∞, and is
approximately achieved if the pump-pump walk-off is much
larger than their duration, i.e., |β1p − β1q |l 	

√
T 2

p + T 2
q , or,

equivalently, l 	 lcol for the collision length

lcol =
√

T 2
p + T 2

q

|β1p − β1q | . (33)

In the complete-collision limit l → ∞, the z integral becomes
a delta function with contributions only for �β(ω) = 0,
that is,

A(ωs, ωr ) = iγ

∫
dωAp(ωa + ω)Aq (ωa − ω)δ[�β(ω)].

(34)

With higher-order dispersion, the equation �β(ω) = 0 may
have multiple solutions. We focus on the particular solution ω0

which has the property that ω0 = 0 when ωs = ωr = 0, thus
giving a JSA centered around ωs = ωr = 0. Other solution
have frequency detunings that are much greater than the pump
spectral width and would in an experimental situation be
removed with spectral filtering. In the edge case of �β ′(ω0) =
0 the integral is undefined and it is zero if the solution ω0 does
not exist. Thus, by defining

F (ωs, ωr ) =
{|�β ′(ω0)|−1, ω0 exists and �β ′(ω0) 
= 0,

0, otherwise,

(35)

we may write the integral simply as

A(ωs, ωr ) = iγ F (ωs, ωr )Ap(ωa + ω0)Aq (ωa − ω0). (36)

In the case where dispersion up to second order is included,
we can obtain explicit expressions for ω0 and �β ′(ω0):

�β(ω) = �β0 + kω + 1
2 (β2p + β2q )ω2, (37)

ω0(ωs, ωr ) = −k + √
k2 − 2(β2p + β2q )�β0

β2p + β2q

, (38)

�β ′(ω0) =
√

k2 − 2(β2p + β2q )�β0, (39)
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FIG. 6. JSA (a) with and (b) without dispersion. The dashed line
indicates cutoff from the Heaviside function in Eq. (40). We here
assume pairwise group-velocity matching β1p = β1s and β1q = β1r

and the parameters β2l/T 2
p = 4, Tp = Tq , β2p = β2, β2q = β2s =

0.9β2, and β2r = 0.2β2 with pumps unchirped at the collision point.
Even strong GVD only perturbs the state weakly.

where �β0 and k are as defined in Eqs. (21) and (22).
Additionally, the requirement of existence of ω0 is simple
for this quadratic frequency dependence, yielding the more
transparent result

A(ωs, ωr ) = iγ
�[�β ′

0(ω0)]

�β ′
0(ω0)

Ap(ωa + ω0)Aq (ωa − ω0),

(40)

where � is a Heaviside function. For the remainder of this
section we focus on Gaussian pumps with equal duration
Tp = Tq . In this case, the effect of GVD on the otherwise
uncorrelated state in Fig. 6(a) is seen in Fig. 6(b). The
inclusion of GVD introduces a spectral cutoff for the state
through the Heaviside function, indicated by the dashed line.
This forces the state away from its uncorrelated circular shape
and introduces correlations, thus reducing purity from unity
to 95.3%. However, an extremely large amount of dispersion
is necessary to achieve this effect (β2lσ

2
p ≈ 4), compared to,

e.g., the asymmetric case analyzed in the previous section.
Note that the singularity at the cutoff is integrable due to its
square-root dependence on frequency, but may cause some
numerical problems unless care is taken. Similarly to the
asymmetric case, we illustrate the properties of the Schmidt
decomposition with and without dispersion in Fig. 7. Unlike
for the asymmetric scheme, the first SFs are only very slightly
distorted from their initial Gaussian shape. However, there are
now many active Schmidt modes, that combine to create the
distortion and cutoff shown in Fig. 6.

To quantify the impact of GVD, we perturbatively expand
ω0 = ω1 + δω. To lowest order

ω1 = β1sωs + β1rωr

β1p − β1q

. (41)

This corresponds to a complete neglect of GVD and is in
agreement with previous results [28,29]. The correction is
found to be

δω = β2p(ωa + ω1)2 + β2q (ωa − ω1)2 − β2sω
2
s − β2rω

2
r

2(β1p − β1q )
,

(42)

which has a complicated dependence on the dispersion param-
eters. Near complete dispersion cancellation is obtained when

FIG. 7. (a) Absolute square of the Schmidt coefficients and
(b)–(d) signal and idler Schmidt functions with and without disper-
sion for parameters identical to Fig. 6. GVD introduces additional
Schmidt modes, but the smallness of the coefficients result in only
weak perturbations.

δω = 0 for all ωs and ωr . This requirement leads to the three
equations

βsqβ2p − βspβ2q = βpqβ2s , (43a)

βrqβ2p − βrpβ2q = βpqβ2r , (43b)

βrqβsqβ2p + βrpβspβ2q = 0, (43c)

where βij is the group-slowness difference between field i and
j . This set of equations determines three of the four GVD
parameters, which are all proportional to the remaining one. In
the simplest, and arguably the most experimentally interesting
case of pairwise group-velocity matching (β1p ≈ β1s and
β1q ≈ β1r ) these equations reduce to β2p = β2s and β2q =
β2r , i.e., the effects of dispersion cancel if the copropagating
fields experience similar GVD. This is more likely to be the
case if the fields are spectrally close to each other. Conversely,
if all the fields experience nearly the same GVD (β2s ≈ β2r ≈
β2p ≈ β2q), these equations reduce to the single equation
βrqβsq + βrpβsp = 0, which is exactly the condition for hav-
ing a factorable JSA with two identical Gaussian pumps [29].
Thus, if a collision-based scheme, using spectrally identical
Gaussian pumps, is designed to produce a factorable JSA, the
scheme is automatically robust to the effects of GVD. Unlike
for the asymmetric scheme, implementations of this scheme
can easily partially fulfill the requirements for dispersion
cancellation using two modes that experience approximately
equal GVD [23,29].

The effect of dispersion cancellation is confirmed by Fig. 8,
which shows the purity versus the amount of GVD for four
different combinations of dispersion parameters. As noted,
the case where all four GVD parameters are nearly identical
(blue curves with stars) is extremely robust to dispersion, with
purities exceeding 0.999 for even large amounts of dispersion.
The little remaining correlation is contained in the remaining
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FIG. 8. Purity versus GVD for different relative values of the
GVD parameters. The solid lines show the case where the pumps are
unchirped at the waveguide midpoint while the dashed lines indicate
unchirped pumps at the input with l = 10lcol. The overlayed symbols
indicate four different cases for the dispersion parameters. In all
cases the purity is nearly unaffected by the introduction of GVD.

factors in Eq. (40), indicating that the Gaussians contain the
deciding part of the correlation. Introducing a slight asymme-
try (red curve with squares) barely degrades performance. If
one of the GVD parameters are much smaller than the others
(yellow curves with circles and purple curves with crosses),
which is possible with this configuration [21], the effect is
again larger, especially if the pump dispersion is low, but the
overall effect is still very small. This shows that the scheme is
generally very robust and GVD is unlikely to be a concern
in any real system. This is in contrast to the asymmetric
scheme for pure photon generation described earlier, where
realistic amounts of GVD could cause severe degradations
in purity. The figure also shows the impact of pump chirp.
We see that as for the asymmetric scheme, prechirping the
pumps so they are unchirped at the collision point improves
the heralded purity. However, the improvement is very modest
and would likely be insignificant compared to other sources
of degradation such as waveguide inhomogeneity, nonlin-
ear phase modulation, or incomplete pump collision in real
systems.

V. CONCLUSION

In this paper, we make a detailed study of the effects of
dispersion on spontaneous four-wave mixing in the quantum
regime. In the Heisenberg picture, we derive formulas for the
Green functions and describe the general properties of their
Schmidt decompositions. Although the Schmidt coefficients
and the Schmidt functions are determined by the nonlinear
interaction between the pump, signal, and idler, the output
Schmidt functions are just the delayed and dispersed images
of the input Schmidt functions. In the interaction picture,
we derive an expression for the two-photon amplitude and
describe the properties of its Schmidt decomposition. In par-
ticular, we show that its Schmidt functions are the output
Heisenberg Schmidt functions. These results are valid for
degenerate and nondegenerate four-wave mixing, arbitrary
dispersion, and arbitrary pump pulses.

These results were then applied to two experimentally
interesting examples, namely photon-pair generation using
the asymmetrically group-velocity-matched scheme (β1p =
β1s 
= β1r ) and a complete pump-pump collision scheme
(β1p 
= β1q), both of which are useful for generating heralded
single photons in spectrally pure quantum states.

We find an approximate expression for the two-photon
amplitude in the asymmetric scheme and show that, although
near-perfect dispersion cancellation is possible, photon-pair
generation is negatively affected in waveguides with realistic
dispersion. Notably, the introduction of higher-order disper-
sion yields an optimal pump pulse duration for a given length
of waveguide.

Lastly, we find an exact analytical solution for the collision
scheme and use it to show that this scheme is generally
extremely resistant to the negative effects of dispersion. Also
in this case we derive analytical conditions for dispersion
cancellation and argue that in real implementations partial
dispersion cancellation is realistic.
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