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Correlation functions with single-photon emitters under noisy resonant continuous excitation
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To characterize the statistics and indistinguishability of a source, it is common to measure the correlation
functions of the emitted field using various interferometers. Here, we present a theoretical framework for the
computation of the correlation functions of a two-level system that is resonantly driven by a realistic noisy cw
excitation laser. Analytic expressions of the first- and second-order autocorrelation functions are obtained where
the various contributions of the noisy excitation source are correctly taken into account. We predict that, even
in the low power regime, the noise source has a strong influence on the two-level system dynamics, which is
not anticipated by simpler models. The characterization of photon indistinguishability in the pulsed excitation
regime is usually done by measuring the value of the zero-delay intensity correlation obtained with a Hong-
Ou-Mandel interferometer. We show that this figure is irrelevant in the cw excitation regime and we introduce
the coalescence time window, a figure of merit based on a probabilistic interpretation of the notion of photon
indistinguishability. We finally use the coalescence time window to quantify how noisy cw excitation influences
photon indistinguishability.
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I. INTRODUCTION

The resonance fluorescence, i.e., the emission of photons
by a two-level system irradiated by a resonant laser field, has
attracted much attention since an electronic transition between
two well-defined energy levels results in the emission of single
photons. The investigation of such emission dynamics under
resonant pumping started experimentally in single atoms [1]
or ions [2] and was then expanded in other systems such
as single molecules [3], color centers in diamond [4], or
semiconductor quantum dots [5]. In these latter systems, a
strong interest has been devoted to the improvement of single-
photon emission in terms of indistinguishability properties
and collection efficiencies [6–8] for the development of in-
tegrated indistinguishable single-photon sources for quantum
information applications.

The statistics and indistinguishability properties of the
emitted photons are experimentally investigated by measur-
ing the second-order intensity auto- and cross-correlation
functions, g(2) and g(2X), in a Hanbury-Brown and Twiss
experiment [9] and a Hong-Ou-Mandel interferometer [10],
respectively. These properties are closely linked to the in-
trinsic characteristics of the emitter: the lifetime T1 which is
accessible by time-resolved photoluminescence experiments
and the dephasing time T2 which is evaluated by measuring
the first-order field autocorrelation function g(1) in a Fourier
transform spectroscopy experiment (with a Michelson inter-
ferometer for example). All the involved correlation functions
are routinely used and well established in the case of a
two-level system excited by a nonresonant laser, and their
analytical expressions depend on the pumping rate, T1 and
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T2 [11]. As far as photon indistinguishability is concerned,
the zero-delay value of the g(2X) correlation function gives the
degree of indistinguishability which is intrinsically linked to
the ratio T2/2T1 under pulsed excitation [12,13]. However, in
the case of continuous excitation, the time constants of the
emitter govern the width of the correlation function, whereas
its zero-delay value is mainly imposed by the time response of
the detection system [14,15]. This makes the usual character-
ization of the photon indistinguishability inappropriate under
continuous-wave (cw) excitation.

In this context, we presented an experimental study on
photon indistinguishability where a more appropriate figure of
merit, the coalescence time window (CTW), was introduced
to measure the indistinguishability of a cw single-photon
source [16]. In the resonant Rayleigh scattering (RRS) regime
(also referred as the Heitler regime), where the spectrum
is dominated by an elastic component characterized by the
wavelength and the linewidth of the laser [17], we have
shown that the photon indistinguishability is governed by the
coherence time of the laser, ensuring the generation of highly
indistinguishable single photons in terms of CTW [16]. In this
experimental study, the correlation functions evaluated for a
resonantly driven two-level system [18] were used to analyze
the results but a precise theoretical study of the contribution of
the excitation source is still necessary since the computation
of the correlation functions of the emitted field inevitably
depends on the characteristics of the excitation source in the
RRS regime.

With nowadays laser sources, the laser coherence times
lie in the few tens of microseconds range, meaning that the
minimum HOM interferometer arm length difference should
be at least of several kilometers in order to avoid the beating
of one-photon interferences in the RRS regime. Moreover,
the basic hypothesis at stake for HOM result analysis is that
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the emission of photons at sufficiently long delays are totally
uncorrelated with each other so that the source could be re-
placed by two independent identical emitters. This hypothesis
is clearly not fulfilled under cw resonant excitation due to the
memory effect introduced by the phase of the exciting laser
field. Therefore, to restore these fundamental requirements,
we used a noisy laser source which clears this memory effect
and ensures the validity of the HOM two-photon interference
experiment. However, in doing so, the dynamics of the two-
level system is itself impacted, which leads to other mod-
ifications on the interferogram: shorter effective relaxation
constants and effective blurring of the interferograms due
to time averaging (in the case of an electronically driven
noisy source which is under the scope of this paper). In this
paper, we define the various regimes of the two-level system
dynamics under noisy continuous resonant excitation (Sec. II)
and address the question of the calculation of multiple-time
correlation functions of the field emitted by a two-level system
(Sec. III). Finally, we investigate the HOM interferometer
response (Sec. IV). In this context we discuss in details the
introduction of the CTW as a figure of merit for the photon
indistinguishability in the cw regime, and we discuss the
effect of a noisy driving on the CTW and zero-delay intensity
cross-correlation measurements.

II. EFFECTS OF A NOISY DRIVING FIELD ON THE
DYNAMICS OF A TWO-LEVEL SYSTEM

A. Two-level system dynamical equations

1. Bloch equations in the fixed frame: Liouville equation

Let us consider a two-level system governed by a Hamil-
tonian H0. The dynamics of the density matrix ρ̂ describing
the state of this system in the laboratory frame is given by the
Liouville equation:

ih̄∂t ρ̂ = [H0, ρ̂], (1)

where H0 = h̄ω0S+S−, h̄ω0 is the transition energy of the
two-level system and S+ (S−) is the raising (lowering)
ladder operator of the two-level system. An additionnal time-
dependent Hamiltonian H1(t ) allows accounting for the res-
onant driving of the two-level system. If this term is purely
resonant, it takes the form H1(t ) = h̄�1S+ cos(ω0t ) + H.c.,
where �1 is the (Rabi) angular frequency associated to
the driving amplitude. If this term is only partially reso-
nant it takes the form h̄[�̄1 + δ�1(t )]S+ cos[(ω0 + �ω)t +∫ t

0 δω(t ′)dt ′] + H.c., where δ�1(t ) and δω(t ) are the time-
fluctuating coupling amplitude and angular frequency of the
driving field and �̄1 and �ω are the secular coupling ampli-
tude and driving angular frequency, respectively.

2. Fluctuating excitation field

We consider the case where fluctuations δ�1(t ) and δω(t )
result from the fluctuations of the excitation field which we
define as

E(t ) = [〈E〉 + δE(t )] cos

(∫ t

0
ω0 + δω(t ′) dt ′

)
, (2)

where δE(t ) and δω(t ) are the time-dependent fluctuating
amplitude and angular frequency of the field, respectively.

In this work, the fluctuations are characterized by their
first-order correlation functions:

δE(t )δE(t + τ ), δω(t )δω(t + τ ), δE(t )δω(t + τ ),

(3)

where overlined quantities are averages over the noise real-
ization, which corresponds to averaging over time t . Those
are assumed to be monoexponential laws fully characterized
by their root-mean-squared (rms) amplitude at zero delay
and their correlation time τC . The respective probability den-
sity functions are assumed to be Gaussians, e.g., p(δω) ∝
exp(−δω2/2δω2). These fluctuations can be inherent to the
excitation or created artificially by driving a laser diode with
a laser coherence controller (LCC) as in Ref. [16].

3. Bloch equations in the rotating frame at the instantaneous
angular frequency

In the absence of fluctuations in the driving field, the usual
procedure consists in using the rotating wave approximation
(RWA) in the frame rotating at the laser frequency. This leads
to the well-known Bloch-Liouville equation:

ih̄∂t ρ̃ = [H̃ , ρ̃] + R[ρ̃], (4)

where H̃ = h̄[�ωS̃+S̃− + �1
2 (S̃+ + S̃−)] and the term R[ρ̃]

is a Markovian relaxation term describing the effect of the
environment on the two-level system dynamics. In the usual
weak driving case (|�1| � |�0|) these terms are the longitu-
dinal (T1) and transverse (T2) relaxations. In this frame, after
the RWA, the time dependence of the driving disappears and
these equations can be solved analytically.

In the case of a noisy driving, we can still perform the
RWA in the frame rotating at the instantaneous laser angu-
lar frequency ω0 + �ω + δω(t ), but the resulting modified
Bloch-Liouville equation is now time dependent:

ih̄∂t ρ̃ = [H̃ , ρ̃] + [δH̃ (t ), ρ̃] + R[ρ̃], (5)

with δH̃ (t ) = h̄δω(t )(S̃+S̃−) + h̄ δ�1(t )
2 (S̃+ + S̃−), and the re-

laxation operator R[ρ̃] gets an extra contribution induced by
fluctuations (see Appendix A). Approximations are required
to solve this equation in specific cases as we shall see in the
next section.

4. Correlation functions

The single-photon characteristics of a two-level emitter are
characterized by its first- and second-order correlation func-
tions which involve two- and four-time temporal correlators
of the form 〈S+(t2) S−(t1)〉 or 〈S+(t4) S+(t3) S−(t2) S−(t1)〉,
respectively. In general, these times can all be different. For a
time-independent Markovian dynamics, the quantum regres-
sion theorem is the tool of choice to compute the correlation
functions [19,20]. When multiple-time correlation functions
need to be evaluated, it can be more convenient to use the
superoperator formalism to apply the quantum regression the-
orem. A straightforward method which is out of the scope of
this work. In general, the scattered light correlation functions
involve the driving source correlation function. Therefore, the
computation of the correlation functions requires a careful
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handling of the two-level system dynamics under noisy res-
onant conditions.

B. Various regimes of driving

Several regimes can be distinguished, depending on the
relative importance of the correlation time τC , the rms am-

plitudes
√

δω2,

√
δ�2

1 of the fluctuation driving terms, the

average driving term amplitudes �̄ =
√

�ω2 + �̄2
1 , and the

relaxation times T1 and T2.

1. Monte Carlo or not?

In general, the fluctuating Bloch-Liouville equation can be
solved if the relaxation rates T1 and T2 are short compared to
the coherence time τC (pseudoadiabatic regime) or if the phase

accumulations due to fluctuations
√

δω2τC and �

E

√
δE2τC are

smaller than 1 [Bloch-Purcell-Pound (BPP) regime]. If one of
these conditions is not met, the dynamics can only be solved
by Monte Carlo simulations and postaveraging over the noise
realization.

If these conditions are met, simplifications exist to solve
the fluctuating Bloch-Liouville equation analytically in the
instantaneous rotating frame. Before looking in detail at the
BPP and pseudoadiabatic cases, let us remark that the correla-
tion functions of interest (which are measured experimentally)
are expressed in the laboratory frame. It is then necessary to
handle carefully the rotating frame transformation.

2. Rotating frame blurring

The rotating frame transformation naturally conveys a fluc-
tuating dephasing term between the laboratory frame and the
frame rotating at the instantaneous laser frequency. The corre-
sponding accumulated phase describes a Brownian motion on
a circle which leads, after averaging over noise realizations,
to an effective monoexponential relaxation with a decay rate
�L = δω2τC (see Appendix B). We call the corresponding
dephasing-induced relaxation “rotating frame blurring” and
the associated time scale TL = �−1

L is the laser coherence time
in reference to the driving laser used in quantum optics. Note
that this coherence time is specific to the driving source and
can be measured using a Michelson interferometer.

The rotating frame blurring is uncorrelated with the two-
level system evolution in the laser frame as long as the laser
coherence time TL and the autocorrelation time scale τC are
sufficiently different. This condition is met if the characteristic

phase accumulation due to fluctuations
√

δω2τC is smaller
than 1.

The passage from the laboratory frame to the rotat-
ing frame at the instantaneous angular frequency of the
laser is defined in the density-matrix formalism as ρ̃(t ) =
Rt0→t ρ(t )R†

t0→t , where Rt0→t is the rotation operator at the in-
stantaneous laser angular frequency and t0 is the synchroniza-
tion instant between the two reference frames. Consequently,
Rt0→t0 = 1. From this definition, we define the expression of
operators in the rotating frame as Õ(t ) = Rt0→tO(t )R†

t0→t .
When this rotating frame transformation is applied to rais-

ing and lowering dipolar operators S±(t ), a remarkably simple

result is obtained:

S̃±(t1) = S±(t1)e∓iφt0→t1 , (6)

where φt0→t1 = ∫ t1
t0

δω(t )dt is the accumulated phase between
t0 and t1.

Applying this result to the multiple-time correlator expres-
sion in the laboratory frame leads to

〈S+(t2)S−(t1)〉 = ei(φt0→t1 −φt0→t2 )〈S̃+(t2)S̃−(t1)〉, (7)

which reduces to

〈S+(t2)S−(t1)〉 = e−iφt1→t2 〈S̃+(t2)S̃−(t1)〉. (8)

Generalization to (n > 2)-time correlators is straightforward
if phase accumulating periods do not overlap.

3. Relaxation in the rotating frame

The influence of a fluctuation term with a vanishingly
short correlation time in the Bloch equation has been well
known since the pioneering work by Bloembergen, Purcell,
and Pound (BPP) on liquid state NMR [21,22] in 1948. If
the average phase accumulation �τC during the correlation
time is much smaller than 1, it results in an effective static
relaxation term following the example in NMR of the deriva-
tion of longitudinal and transverse relaxation of a single spin
due to a time-varying magnetic field produced by its moving
first neighbors in the “nonviscous liquid” limiting case (see
Appendix A). Similarly, if this condition is not met, but

if
√

δω2τC � 1 and �

E

√
δE2τC � 1, then the more general

“viscous liquid” regime is reached and similar relaxation
operators can be found analytically [23]. Note that, in both
cases, BPP formulas can only be used in the rotating frame
at the instantaneous laser angular frequency ω0 + δω(t ) in
which the Bloch equations are time independent and can be
explicitly solved. To obtain results in the laboratory frame
requires one to take into account the rotating frame blurring
effect previously described.

4. Pseudoadiabatic evolution

Another limiting case which can be handled analytically
is the quasiadiabatic evolution which occurs if relaxation is
much faster than the correlation time, i.e., T2, T1 � τC . In
this case, the dynamics can be handled as if no fluctuating
term was present except that averaging over the statistics of
fluctuations has to be done afterwards prior to rotating frame
blurring.

In the pseudoadiabatic regime, the fluctuating term δH (t )
variation is slow compared to the typical two-level system re-
laxation time scale T2 and Bloch equations can be considered
as coupled quasistatic ordinary differential equations. Aver-
aging over the different realizations of the fluctuations has
to be taken into account once the fluctuationless correlation
function in the laboratory frame is obtained, and, at the level
of the optical Bloch equations, we are left with the usual static
case.

5. Experimental regime

Figure 1 summarizes the different regimes depending on
the amplitude and correlation time of the fluctuations of
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FIG. 1. Diagram of the different evolution regimes depending on
the angular frequency fluctuation characteristics of the continuous
driving: (i) x axis: coherence time τC of the fluctuation; (ii) y

axis: square root of the fluctuation δω2. Both axes are implicitly in
logarithmic scales. The diagonal dotted-dashed line delimitates the
left bottom side where BPP approximation can be used either in the
viscous or nonviscous regime. The vertical dashed line delimitates
the region where the pseudoadiabatic approximation is valid. In the
rest of the diagram, the correlation statistics can be reached through
Monte Carlo (MC) simulations. The red dotted line represents the re-
gion where relaxation processes decoupling is valid (see Sec. II A 3).
This line collapses with the BPP frontier if the field fluctuation
amplitudes are smaller. Note that, in the region common to BPP
and adiabatic regimes, BPP relaxation can be neglected. The red star
spots refer to the experimental conditions investigated in Ref. [16].

the source. The diagram presents three regions of interest:
the lower triangle at short correlation time and amplitude
fluctuations is the BPP regime where the fluctuations result
in effective extra relaxation terms in the Bloch equations
and a rotating frame blurring effect. The right rectangle at
long correlation times is the adiabatic regime region, where
postaveraging over realizations is responsible for the shape
of correlation response functions. Note that, in the adia-
batic regime, rotating frame decoupling dashed line delimits
the region (at small fluctuation amplitude) where adiabatic
averaging can be done independent of postaveraging over
realizations. Finally, the upper-left triangle at short correlation
time but large fluctuation amplitude cannot be computed
analytically and requires Monte Carlo simulation.

In Ref. [16] in which the emitter is a self-assembled
InGaAs quantum dot, T1 and T2 are subnanosecond and the
laser fluctuations are driven by an external LCC that has a
bandwidth limited to 250 MHz by the electronics. Using a
Hanbury-Brown and Twiss interferometer [16], we obtain the
characteristic correlation time of the laser field τC ∼ 4 ns
and the driving field fluctuation amplitude δE2/E2 � 3%.
Consequently τC > T1, T2, and the amplitude is chosen such
that decoupling occurs on the HOM interferometer path differ-
ence, i.e., 1/�L < �t = 43.5 ns (9 m propagation in an opti-
cal fiber), whereas the rotating frame decoupling condition is
given by �LτC ∼ 0.1 � 1. With this fluctuating source, the

regime of driving is pseudoadiabatic. In this regime, when the
rotating frame decoupling condition is met, the optical Bloch
equation is unperturbed in the instantaneous rotating frame,
and, as we shall see in the next section, in the weak driving
limit the interferogram can be understood using a straight-
forward unperturbed cw-driving interpretation. Consequently,
the pseudoadiabatic regime is of particular relevance for the
characterization of two-level system emitters.

We note that this framework can also be used to understand
the symmetric situation where a noise-free excitation is used,
but the two-level system is subject to energy fluctuations
due to the evolution of its surrounding. Note that, in this
configuration, there is no rotating frame averaging effect.
If energy fluctuations are small enough, their effect can be
classified depending on their frequency content in nonvis-
cous (BPP) relaxation (high frequencies), viscous relaxation
(medium frequencies), and pseudoadiabatic averaging (low
frequencies).

Having now classified the various dynamical regimes of
a two-level system under resonant noisy excitation, let us
now turn to the determination of the associated two-time
correlation functions.

III. FIRST- AND SECOND-ORDER
CORRELATION FUNCTIONS

First- and second-order normalized correlation functions
g(1) and g(2) are the tools of choice to characterize field
coherence and single-photon characteristics of a radiated e.m.
field. They are measured using a Michelson inteferometer
and a Hanbury-Brown and Twiss interferometer, respectively.
If the two-level system is either nonresonantly excited or
resonantly excited with a monochromatic excitation, the the-
oretical calculation of these correlation functions is seamless.
It is more complex however under noisy resonant driving due
to rotating frame blurring and pseudoadiabatic averaging over
noise realizations.

A. Rotating frame blurring effect on g(1) and g(2)

We define the normalized correlation functions g(1)(τ ) =
G(1)(τ )/G(1)(0) and g(2)(τ ) = G(2)(τ )/G(2)(∞) from the
non-normalized correlation functions G(o)(τ ), where o is
the correlation function order. Let us first consider the non-
normalized first-order correlation function G(1):

〈S+(t + τ )S−(t )〉 = eiφt→t+τ 〈S̃+(t + τ )S̃−(t )〉. (9)

Hence, after averaging over the fluctuations in the Brownian
motion limiting case and normalization,

g(1)(τ ) = e−�L|τ |eiωLτ g̃(1)(τ ). (10)

For G(2), phase accumulation cancels and, assuming
τ > 0,

〈S+(t )S+(t + τ )S−(t + τ )S−(t )〉
= 〈S̃+(t )S̃+(t + τ )S̃−(t + τ )S̃−(t )〉, (11)

so that

g(2)(τ ) = g̃(2)(τ ). (12)
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B. Adiabatic averaging effects

In the adiabatic case, averaging over excitation field fluc-
tuations prior to rotating frame blurring has to be taken into
account. The general expression reads

G̃(1,2)(τ ) =
∫∫∫∫

dE1 dE2 dδω1 dδω2

× p(E2, δω2, t2; E1, δω1, t1)G̃(1,2)
E2,δω2,τ |E1,δω1,0,

(13)

where G̃
(1,2)
E2,δω2,τ |E1,δω1,0 is computed using (for example)

the quantum regression theorem with driving parameters
(E2, δω2), while the equilibrium density matrix is computed
using parameters (E1, δω1).

The two-level system dynamics is characterized by a sat-

uration parameter s = �2
1T1T2

1+(�ωT2 )2 , where h̄�1 = dE and d is
the dipole amplitude of the considered transition. If s < 1,
the two-level system is characterized by a linear response to
driving and the system is in the weak driving regime. Con-
versely, if s � 1, the two-level system is in the strong driving
regime and is characterized by various nonlinear response
signatures such as Mollow triplet or Rabi oscillations. The
complex pseudoadiabatic expression (13) can be simplified in
several limiting cases, in particular in the weak driving regime
s < 1.

Before considering those cases, let us note that in the
pseudoadiabatic regime√

δω2 =
√

�L

τC

� 1

T1
,

1

T2
,

i.e., typical energy fluctuations of the laser are much smaller
than the radiative linewidth so that energy fluctuations can be
neglected.

1. Long correlation driving

If the driving correlation time τC is much longer than
T1,2 which corresponds to the characteristic time scales
of the G̃(1,2) decay, we can consider that the field char-
acteristics are frozen on each realization of the experi-
ment so that p(E2, δω2, t2; E1, δω1, t1) � p(E1, δω1)δ(E2 −
E1)δ(δω2 − δω1). Consequently,

G̃(1,2)(τ ) =
∫∫

dE dδω p(E, δω) G̃
(1,2)
E,δω. (14)

For weak driving, linear response theory allows one to fur-
ther simplify this expression since G̃

(1,2)
E,δω is well reproduced

by its Taylor expansion up to second order. After integrating
over E and δω, the following expression is obtained:

G̃
(1,2)
E,δω � 1 + C

2
G̃

(1,2)√
E2,

√
δω2

+ 1 − C

2
G̃

(1,2)√
E2,−

√
δω2

,

where C = Eδω√
E2

√
δω2

due to the symmetric response of G̃(1,2)

to E and δω. Neglecting the driving energy fluctuation, we get
the simple results

G̃
(1,2)
E,δω � G̃

(1,2)√
E2,0

.

2. Short correlation driving

In practical uses of a noisy source, the interferogram can be
recorded on a time scale which is comparable to τC such as in
Ref. [16]. In the weak driving case, by using Taylor expansion,
it is possible to obtain a long but explicit expression in terms
of the correlation functions of the driving field multiplied by
correlation functions at remarkable fields.

In the case of the first-order autocorrelation function, the
calculation is dramatically simplified in the weak driving
regime. In this case G̃

(1)
E2,τ |E1,0 = α−2E2E1g̃

(1)(τ ), where α is
a constant (defined in Sec. IV C), and averaging over driving
field energy and amplitude fluctuations leads to

G̃
(1)
E2,τ |E1,0 = α−2(E

2 + δE(t )δE(t + τ ))g̃(1)(τ ).

The normalized g̃(1) is obtained by dividing the latter expres-

sion by G̃
(1)
E,δω(0), and we obtain

g̃(1)(τ ) = g̃(1)(τ )

(
1 − Q−2(1 − e−τ/τC )

1 + Q−2

)
, (15)

where Q−2 = δE2/E
2
. Q can be seen as the quality of the cw

source: the noisier the source, the smaller is Q.
Figure 2 represents g̃(1)(τ ) [panel (a)] and g(2)(τ ) [panel

(b)] obtained by numerical integration in the weak driving
limit. In both cases, we observe that driving field fluctuations
indeed modify qualitatively the correlation response function.
Furthermore, in the presence of driving field fluctuations, we
observe that correlation response functions are independent of
cross correlation ε between energy and amplitude fluctuations
of the noisy driving. We can conclude that, as pseudoadiabatic
relaxation results from the field amplitude fluctuations alone,
whereas rotating frame blurring results from energy fluctua-
tions alone, in the weak-coupling regime, the two mechanisms
are independent even in the presence of cross correlation
between the two driving field fluctuations. Equation (15) cap-
tures quantitatively the first-order correlation function g̃(1)(τ )
in the weak-coupling regime [Fig. 2(a)].

When pseudoadiabatic averaging has a negligible influ-
ence, i.e., in Ref. [16] δE2/E2 � 3% � 1, we finally recover
g(1)(τ ) = e−�L|τ |eiωLτ g̃(1)(τ ) � e−�L|τ |eiωLτ g̃(1)(τ ) used in
the case of monochromatic (non-noisy) excitation.

For g(2), pseudoadiabatic averaging is more complex and
Taylor expansion has to be conducted up to fourth order. The
result takes the form

g
(2)
E,�ω(τ ) � (1 + A(Q)e−τ/τC + B(Q)e−2τ/τC )g̃(2)(τ ), (16)

where A and B are dimensionless coefficient functions of
Q. We recognize that the driving field fluctuations induce an
extra bunching at short times reminiscent from the classical
bunching that is observed in the noisy excitation second-order
autocorrelation function as is observed on Fig. 2(b). Figure 3
illustrates how A(Q) and B(Q) are obtained by fitting nu-
merical simulations [such as Fig. 2(b)]. A characteristic fit
is represented on Fig. 3(a). The result of a series of fits is
represented on Fig. 3(b).

Finally, Fig. 4 gives an example of numerically computed
g̃(1) and g(2) in the strong driving limit (s ∼ 1), i.e., when
inelastic scattering starts to dominate. As expected, linear
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FIG. 2. g̃(1) (a) and g(2) (b) in the weak driving limit obtained
by numerical integration of the Liouville equations taking into ac-
count pseudoadiabatic averaging. The simulations are represented
by symbols and are computed for a resonant excitation and for
τC = 4 ns, T1 = 0.34 ns, T2 = 0.5 ns, � = 0.1 rad/ns, and conse-
quently a saturation parameter s = 1.7 × 10−3 (weak driving). In

both cases,
√

δ�2 =
√

δω2 = 0.1 rad/ns which corresponds to Q =
1. The rotating frame blurring is not included in the calculation.
Both g̃(1) and g(2) simulations have been done with a correlation
factor between driving field amplitude and energy fluctuations ε = 0
(circles) and 0.8 (dots). The fluctuationless theories are represented
as dashed lines and fail at describing the simulations. The weak
driving pseudoadiabatic theories (15) and (16) are represented as
thick lines and reproduce accurately the simulations.

response theory does not correctly capture the correction due
to the pseudoadiabatic averaging as can be seen on Figs. 4(a)
and 4(b) for g(1) and g(2), respectively. Moreover, as opposed
to the weak driving case, the fluctuation correlation factor
ε has a visible consequence on the pseudoadiabatic result
in contrast with the weak driving regime. However, despite
smaller correlation functions than predicted by the linear re-
sponse theory, we remark that qualitative features are partially
preserved, such as relevant time scales and extra bunching in
g(2) at small delays.

IV. APPLICATION TO A HONG-OU-MANDEL
INTERFEROMETER

A. Photons indistinguishability

The Hong-Ou-Mandel interferometer allows for measuring
the second-order intensity cross-correlation function g(2X).

FIG. 3. (a) Reduced difference g(2) (τ )
g(2) (τ )

− 1 between the pseudoa-

diabatic simulation g(2)(τ ) and the fluctuation-free g(2)(τ ) for the
case considered in Fig. 2(b) (thick black line). The solid red line
indicates the fit result using the model proposed in Eq. (16) with
τC = 4 ns, Q = 1, A = 1, and B = 0.5. (b) Coefficients A (black)
and B (red) as a function of 1/Q obtained from fitting numerical
integrations of a postaveraged Bloch-Liouville equation for Q =
[0.1; 5]. Thin plain lines are guides for the eye.

Figure 5 shows the principle of the basic Hong-Ou-Mandel
interferometer we consider first. The fields emitted by two
independent sources are sent at the two inputs of a 50:50
beam splitter. Two detectors measure the intensity of light at
the two outputs of the beam splitter. If the response time of
these detectors is faster than the mutual coherence time of
the fields, a fourth-order (or two-photon) interference effect
can be detected. To characterize the interference, the cross-
correlation function g(2X) of the intensity measured by the
two detectors is calculated. This measurement is based on the
idea that, if the detectors both detect a photon, it will bring
a peak in the correlation function. In the case of single pho-
tons, this can happen only if the photons are distinguishable.
Therefore, for a single-photon source, a nonzero g(2X) implies
that detected photons are distinguishable to a certain degree.
In practice, a dip in the g(2X) measurement is the signature of
indistinguishable photons.

It is also possible to measure g(2X) using only one source:
a first beam splitter divides the emitted field into two arms
and a second beam splitter recombines the field. If the path
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FIG. 4. g̃(1) (a) and g(2) (b) in the strong driving limit obtained
by numerical integration of the Liouville equations taking into ac-
count pseudoadiabatic averaging. The simulations are represented by
symbols and are computed for a resonant excitation and for τC =
4 ns, T1 = 0.34 ns, T2 = 0.5 ns, � = 2 rad/ns, and consequently
a saturation parameter s = 0.68 (strong driving). In both cases,√

δ�2 =
√

δω2 = 2 rad/ns, which corresponds to Q = 1. The rotat-
ing frame blurring is not included in the calculation. Both g̃(1) and
g(2) simulations have been done with a correlation factor between
driving field amplitude and energy fluctuations ε = 0 (circles) and
0.8 (dots). The fluctuationless theories are represented as dashed
lines and the weak driving limit theory as thick lines. Both fail at
describing the simulations when fluctuations are large.

difference between the two arms is longer than the field
coherence length, the two fields incoming on the second beam
splitter are completely independent.

Up to now, we only considered our system to be two pho-
tons interfering on a beam splitter. We have implied an exact
and controlled time of emission of the photons, or at least
a control of the delay between subsequent photons, similar
to what would happen with a two-level system excited by a
mode-locked pulsed laser [13]. But if the emitter is cw excited,
the detection times of the photons and thus the delays between
these detections are random. This means that instead of being
able to probe exact photon delays using accurately controlled
and ultrashort excitation pulses, the experiment needs to time
the photon arrivals accurately enough to resolve the change
in intensity correlation due to two-photon interference as a
function of the detection delay. This also means that if the
distinguishability of the photons only arises from the driving

correlation
module

START

STOPD1

D2

SA

SB

FIG. 5. Cross-correlation experiment to characterize the indistin-
guishability of photon emission of two identical sources. The HOM
uses only one source at consecutive times using an extra beam splitter
and an asymmetric delay on the two arms.

energy fluctuations, as is most often the case, it just decreases
the mutual coherence time of the two fields and therefore
only reduces the width of the indistinguishability dip, and not
its amplitude. The ability of the detection system to resolve
this dip is what governs its amplitude, which then cannot
be used to characterize indistinguishability in a cw HOM
experiment. Therefore, a new figure of merit is required to
assess indistinguishability in a cw experiment.

B. Coalescence time window

The choice of a figure of merit is dictated by several key
considerations, potentially contradictory.

(1) It has to be a meaningful quantity, preferably unrelated
to a precise modelization. In this case, it should be inter-
pretable in terms of conditional probabilities.

(2) It has to be independent of a precise measurement
apparatus. (SPD response; interferometer alignment.)

(3) It has to allow quantitative comparisons between var-
ious single-photon sources, the fluctuating driving source
being considered part of the single-photon source itself.

An interpretation in terms of conditional probabilities of
photon emission is possible with a two-level system only if
this source has been characterized as a single-photon source,
i.e., in a previous HBT experiment, the G(2) drops to zero at
null delay. Supposing this is true, the new figure of merit is
built as follows.

(1) The two-photon component response is measured as
G

(2X)
⊥ − G

(2X)
‖ , where G

(2X)
⊥ is the intensity correlation func-

tion measured at the output of the HOM interferometer when
the two arms’ fields are cross-polarized, while G

(2X)
‖ is the

equivalent when the arms’ fields are co-polarized.
(2) The two-photon response at delay τ divided by the

response with orthogonal polarizations, G
(2X)
⊥ , defines the

visibility VHOM(τ ) and can be interpreted as the conditional
probability of having two indistinguishable photons separated
by a delay τ in the interferometer knowing that two single
photons have been emitted.

(3) From this last quantity, we can extract the theoretical
CTW which is obtained as the average duration of the visi-
bility VHOM(τ ), i.e.,

∫
VHOM(τ )dτ . The CTW is independent

of the SPD response time provided this response time is short
compared to CTW.
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FIG. 6. Scheme of the Hong-Ou-Mandel interferometer. Beam-
splitter A separates the field scattered by the two-level system. A
delay �t is set between the two arms. Time-delayed fields beat on
beam splitter B and the time correlation between the outcoming fields
are characterized through the time correlation of two identical single-
photon time-resolved detectors.

In this case, particularly relevant with nowadays lasers,
CTW can be interpreted as the characteristic time over which
the photons are considered indistinguishable.

The CTW corresponds to the area under the curve of two-
photon interference visibility. This means that the widening
of the visibility curve due to the convolution of the measured
G(2X) by the detectors will have only a small effect on the
value of the CTW as long as it remains long compared to
the response time of the detectors. Note that the CTW is
well defined for fast detectors as opposed to what has been
interpreted in early literature, e.g., in [24].

Under pulsed excitation, the two-photon interference visi-
bility at zero delay of a two-level system at the low power limit
is equal to T2/2T1, which characterizes how far the system is
from the radiative limit. Hence a decreasing T2/2T1 lowers the
value of the visibility at zero delay. On the contrary, under cw
excitation, the value of the visibility at zero delay is always
zero when accounting for the time response of the detectors.

In contrast, under cw excitation, when T2/2T1 equals 1, the
CTW is equal to the sum of the laser coherence time and the
residual area due to the single-photon dynamics usually equal
to T1. A decreasing T2/2T1 lowers the CTW and, when T2/2T1

is zero, the CTW is zero as well. The imperfections of the
measurement (in particular interference visibility) also result
in a reduction of the CTW by decreasing the visibility. How-
ever, these defects can be accounted for and CTW can be used
to compare emitters in terms of photon indistinguishability.

C. Expression of the correlation functions
for the HOM experiment

In this section, we describe the HOM interferometer re-
sponse function. At this stage, we assume that the physical
source of photons is a pointlike electric dipole.

The HOM setup considered is represented on Fig. 6. With
this geometry, the electromagnetic field radiated by the source
is split by a first beam splitter A and recombined on a
second one B, the propagation delay between the two arms
being fixed. Similar to a HBT interferometer, the correlation
function of the interfering field on the second beam splitter is
measured.

Therefore, we are interested in the probability density
function (PDF) of joint photodetection

w(r1, t1, r2, t2) =
∑
f

|〈f |T E(+)(r2, t2)E(+)(r1, t1)|i〉|2,

(17)

where |i〉 and |f 〉 are the initial and final states of the electric
field, respectively. E(+)(r, t ) and E(−)(r, t ) are the positive
and negative energy electric-field operators at position r and
time t , respectively, with r1,2 standing for the positions of the
two photodetectors and t1,2 for the detection times. T is the
time-ordering operator. From this initial PDF expression we
obtain the equivalent density-matrix expression [18]:

w(r1, t1, r2, t2)

= Tr(E(−)(r1, t1)E(−)(r2, t2)T †T E(+)(r2, t2)E(+)(r1, t1)ρ̂),

(18)

where Tr stands for the trace operator and ρ̂ is the density
matrix describing the state of the complete electric field. The
electric field at point r1,2 and time t1,2 is a function of the field
at point r0 (the position of the small emitter) and former times.

The notations we will use to introduce these correlation
functions of the e.m. field are introduced on Fig. 6: the source
and detectors D1 and D2 are positioned at r0, r1, and r2,
respectively. The beam splitter A (B) has transmission and
reflection coefficients tA (tB) and rA (rB). The input and output
ports are labeled in 1 (in 2) and out 1 (out 2), respectively,
and their positions are, e.g., rB

in 2 for the input port 2 of beam
splitter B. Propagation delays are indicated using the spatial
reference of the path, i.e., tAB for the delay between splitters
A and B on the short arm of the interferometer.

We account for the polarization of light in the interfer-
ometer which can be controlled on the long arm through
the use of a half wave plate. The light on the short arm is
assumed to be linearly polarized and define the polarization
�ex , whereas the light polarization on the long arm is polarized
along cos φ�ex + sin φ�ey .

The following equations are the propagation relations of
the e.m. fields in the various elements of the HOM interfer-
ometer:

�E(+)(r1, t1) = �E(+)(rB
out 1, t1 − tB1

)
,

�E(+)(r2, t2) = �E(+)
(
rB

out 2, t2 − tB2
)
. (19)

Mixing at beam splitter B:( �E(+)
(
rB

out 1, t
)

�E(+)
(
rB

out 2, t
)
)

=
[

tB irB

irB tB

]( �E(+)
(
rB

in 1, t
)

�E(+)
(
rB

in 2, t
)
)

. (20)

Propagation in the two arms between beam splitters A and B:

�E(+)
(
rB

in 1, t
) = E(+)

(
rA

out 1, t − tAB
)�ex,

�E(+)
(
rB

in 2, t
) = E(+)

(
rA

out 2, t − tAB − �t
)

× (cos φ �ex + sin φ �ey ). (21)

Mixing at beam splitter A:( �E(+)
(
rA

out 1, t
)

�E(+)
(
rA

out 2, t
)
)

=
[

tA irA

irA tA

]( �E(+)
(
rA

in 1, t
)

�E(+)
(
rA

in 2, t
)
)

. (22)
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TABLE I. HOM weights. The terms are identified by their in-
dexes ε1, ε2, ε3, ε4.

Term Value Term Value

0000 |tA|4|tB|2|rB|2 1000 −|tA|2|rB|2t∗
At∗

BrArB cos φ

0001 −|tA|2|rB|2tAtBr∗
Ar∗

B cos φ 1001 |tA|2|rA|2|rB|4
0010 |tA|2|tB|2t∗

AtBrAr∗
B cos φ 1010 −|tA|2|rA|2t2

Br∗2
B cos2 φ

0011 −|tB|2|rB|2t∗2
A r2

A cos2 φ 1011 |rA|2|rB|2t∗
AtBrAr∗

B cos φ

0100 |tA|2|tB|2tAt∗
Br∗

ArB cos φ 1100 −|tB|2|rB|2t2
Ar∗2

A cos2 φ

0101 −|tA|2|rA|2t∗2
B r2

B cos2 φ 1101 |rA|2|rB|2tAt∗
Br∗

ArB cos φ

0110 |tA|2|tB|4|rA|2 1110 −|tB|2|rA|2tAtBr∗
Ar∗

B cos φ

0111 −|tB|2|rA|2t∗
At∗

BrArB cos φ 1111 |tB|2|rA|4|rB|2

Input fields:

�E(+)(rA
in 1, t ) = E(+)(r0, t − t0A)�ex,

�E(+)(rA
in 2, t ) = �0. (23)

Combining the latter relations, we obtain

�E(+)(r1, t1) = tAtBE(+)(r0, t )�ex − rArBE(+)(r0, t − �t )

× (cos φ �ex + sin φ �ey ), (24a)

�E(+)(r2, t2) = itArBE(+)(r0, t + τ )�ex + irAtBE(+)(r0, t

+ τ − �t )(cos φ �ex + sin φ �ey ), (24b)

where we have defined

t = t1 − tB1 − tAB − t0A, (25a)

t + τ = t2 − tB2 − tAB − t0A. (25b)

Assuming that the emitter is weakly coupled to the electric
field and only emits through electric dipolar radiative transi-
tions, then E(±)(r0, t0) = αS∓(t0), where S is the total dipole
operator of the emitter transitions and α is a coefficient deter-
mined by both setup and emitter properties and proportional to
oscillator strength of the two-level system transition of interest
and collection efficiency of the interferometer [25].

By neglecting the thermal e.m. field at input port 2 of beam
splitter A, we obtain the following expression:

w(r1, t1, r2, t2)

=
∑

(ε1,ε2,ε3,ε4 )∈{0,1}
Aε1,ε2,ε3,ε4〈S+(t − ε1�t )S+(t + τ − ε2�t )

× T †T S−(t + τ − ε3�t )S−(t − ε4�t )〉, (26)

where T † is the backward time-ordering operator acting on the
left part of the equation. These time-ordering operators guar-
antee that causality is verified in the measurement process.
Values Aε1,ε2,ε3,ε4 are given in Table I.

In the case of a noisy excitation source, the various terms in
the Hong-Ou-Mandel expression (26) and the corresponding
phase accumulation terms are listed in Table II which reads
as follows: let us consider term number 1; it corresponds to
the following timings {0, τ, τ, 0}; hence its formal expression
is 〈S+(t )S+(t + τ )T †T S−(t + τ )S−(t )〉 and its prefactor is
A0,0,0,0, the value |tB|2|rB|2(|tA|4 + |rA|4) of which is obtained
using the relations (18) to (25). We recognize that term 1 is
simply the intensity autocorrelation function G(2)(τ ) which is
insensitive to the rotating frame transformation.

A more interesting case is the term number 8, which is
sensitive to the rotating frame transformation since

〈S+(t−)S+(t + τ − �t )T †T S−(t + τ )S−(t − �t )〉
= eiφ0→−�t+φτ−�t→τ

× 〈S̃+(t−)S̃+(t + τ − �t )T †T S̃−(t + τ )S̃−(t − �t )〉.
We can then compute the average over phase fluctuations
(rotating frame blurring), which corresponds to

eiφ0→−�t+φτ−�t→τ = e−2�L|τ |.

Hence Table II contains all the information necessary to
compute the HOM interferometer response in the BPP case
and it includes the rotating frame blurring effect.

Three- and four-times correlation terms play an important
role in the case of cw excitation when rotating frame blurring
is absent. Among these, terms 4, 5, 6, 7, and 9 correspond

TABLE II. Terms of the Hong-Ou-Mandel interferometer response function (first 3 columns) and the effect of the rotating frame blurring
described in Sec. II B 2 (columns 4 and 5). K is e−�L(|�t |+|τ |) if |τ | < |�t | and e−2�L|�t | otherwise. Terms 1,2,3 are the usual two-time intensity
correlation functions, whereas terms 4 to 9 are three- and four-time correlation functions. Among those last terms and for long delays between
the two arms, only term 8 is significant under noisy resonant driving and it can be interpreted as the two-photon interference response of the
interferometer, with the other terms corresponding to one-photon interferences.

No. Factor Term Phase Averaged fluctuations Meaning

1 |tB|2|rB|2(|tA|4 + |rA|4) {0,τ, τ ,0} 0 0 G(2)(τ )

2 |tA|2|rA|2|tB|4 {0, τ − �t, τ − �t, 0} 0 0 G(2)(τ − �t )

3 |tA|2|rA|2|rB|4 {−�t, τ, τ, −�t} 0 0 G(2)(τ + �t )

4* |tA|2|tB|2t∗
AtBrAr∗

B cos φ {0, τ, τ − �t, 0} φτ→τ−�t e−�L|�t |

5* |rA|2|rB|2tAt∗
Br∗

ArB cos φ {0, τ, τ + �t, 0} φτ→τ+�t e−�L|�t |

6* −|tA|2|rB|2tAtBr∗
Ar∗

B cos φ {0, τ, τ, −�t} φ0→−�t e−�L|�t |

7* −|tB|2|rB|2t∗2
A r2

A cos2 φ {0, τ, τ − �t,−�t} φ0→−�t + φτ→τ−�t K

8* −|tA|2|rA|2t∗2
B r2

B cos2 φ {0, τ − �t, τ, −�t} φ0→−�t + φτ−�t→τ e−2�L|τ | Two-photon interference

9* −|tB|2|rA|2t∗
At∗

BrArB cos φ {0, τ − �t, τ − �t,−�t} φ0→−�t e−�L|�t |
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to one-photon interferences, i.e., the beating of the photonic
field with itself for delays below the field coherence time.
These one-photon interferences are analogous to classical
interferences observed in a Mach-Zehnder interferometer. As
they correspond to one-photon properties, they hinder the
interpretation of the Hong-Ou-Mandel experiment as a way to
measure the indistinguishability of photons which is provided
by the two-photon properties.

The use of a noisy laser source allows one to decrease the
laser coherence time TL = �−1

L . If the laser coherence time
is sufficiently small compared to the delay between the two
arms, i.e., �t � 1

�L
, one-photon interference terms 4, 5, 6, 7,

and 9 are wiped out and only terms 1, 2, 3, and 8 (in Table II)
remain and we can write the simplified unnormalized second-
order intensity cross-correlation function (obtained for φ =
π/2):

G(2X)(τ ) =RT [(R2 + T 2)G(2)(τ ) + T 2G(2)(τ − �t )

+ R2G(2)(τ + �t )] − 2R2T 2 e−2�L|τ |

× 〈S̃+(0)S̃+(τ − �t )S̃−(τ )S̃−(−�t )〉, (27)

where we assume identical beam splitters A and B so that
R = |rA|2 = |rB|2 and T = |tA|2 = |tB|2. If we further assume
that �t � T1, T2, the last term which is a four-time correla-
tion function factorizes in a product of two-time correlation
functions as follows:

〈S̃+(0)S̃−(τ )〉〈S̃+(τ − �t )S̃−(−�t )〉 = |G̃(1)(τ )|2.

This simplification can be simply understood as the loss of
memory of the state of the two-level system at time τ − �t

seen from τ .
The assumptions �t � 1

�L
, T1, T2 are realized experimen-

tally in Ref. [16] and the final expression is

G(2X)(τ ) =RT [(R2 + T 2)G(2)(τ ) + T 2G(2)(τ − �t )

+ R2G(2)(τ + �t ) − 2RT e−2�L|τ ||G̃(1)(τ )|2],

(28)

from which the normalized expression is obtained:

g(2X)(τ ) = G(2X)(τ )/[2RT (R2 + T 2)I
2
], (29)

where I 2 is the squared-field average intensity. Note that this
response obtained under cw driving differs from the one under
nonresonant driving [26], which has been sometimes used in
the non-noisy resonant driving regime, e.g., in [27–29]. The
difference lies in the introduction of the |G̃(1)(τ )|2 term, which
describes the influence of the driving resonant source.

Expressions (28) and (29) are only valid in the BPP regime.
In the pseudoadiabatic regime, it is necessary to further av-
erage over realizations. In this case, a special care must be

devoted to the averaging |G̃(1)(τ )|2 which leads to |G̃(1)(τ )|2,
since the HOM interferogram involves first-order correlation
functions at two different times zero and �t . By substituting
this result into (28), we obtain an effective relation in the
noisy weak driving limit between the normalized correlation
functions:

g(2X)(τ ) = W2(τ )g(2)(τ ) + α2W2(τ − �t )g(2)(τ − �t ) + W2(τ + �t )g(2)(τ + �t )

α2 + 1
− W1(τ )|g̃(1)(τ )|2, (30)

with

W1(τ ) = α e−2�L|τ |

1 + α2

1

(1 + Q−2)2
[(1 + Q−2e−τ/τC )2 + 2Q−2e−�t/τC (1 + 2Q−2e−�t/τC ) + Q−2(e−|�t+τ |/τC + e−|�t−τ |/τC )]

and

W2(τ ) = 1
2 (1 + A(Q)e−|τ |/τC + B(Q)e−2|τ |/τC ),

where α = R/T . Expression (29) is recovered when fluctua-
tion amplitudes are small (Q−2 → 0). The new contributions
describe the effect of the driving bunching on the HOM
interferogram as observed on Fig. 2 and discussed in the
following section.

D. Application to the characterization of
single-photon indistinguishability

Let us finally discuss the implications for the character-
ization of a single-photon emitter. As seen in the previous
section, a necessary requirement is that laser fluctuations are
sufficient to wipe out one-photon interferences and restore
a meaning to the HOM interferogram. When this condition
is met, it is possible to analyze the contributions of the
fluctuation effects on the HOM interferogram.

Before presenting the results, let us first recall that, as
reported in Sec. III B 2, g(1) and g(2) correlation functions are

independent of the correlation strength between the amplitude
and phase fluctuations of the driving field. This observation is
also true for the HOM response g(2X). This occurs because
of the decoupling between the rotating frame blurring and
pseudoadiabatic averaging. It turns out to be a very fortunate
fact since (i) the characterization of the amplitude-phase cor-
relation is experimentally not trivial and (ii) the randomization
of a laser source by a random driving is most likely to
induce a large amplitude-phase correlation. This desirable
property is not met above saturation, but this regime is less
relevant for photon indistinguishability characterization. As a
consequence, simulations reported in this section have been
done using a driving field with decoupled amplitude and phase
fluctuations, the coupled cases yielding identical results.

Figure 7(a) represents the HOM response computed with-
out and with laser phase fluctuation effects highlighting the
contribution due to rotating frame blurring: in the absence
of phase fluctuations, TL → ∞ and is consequently larger
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FIG. 7. Comparison of computed HOM interferograms obtained
without and with noisy driving. (a) Effect of the driving energy
fluctuations alone on HOM interferograms g

(2X)
‖ ; the rotating frame

blurring effect is captured by the laser coherence time TL = �−1
L =

0, 20, ∞ ns (green, orange, and blue, respectively). Inset: zoom
around zero delay. (b) Effect of the driving field amplitude fluctua-
tions Q = 1, ∞ (red and orange, respectively) for a fixed laser coher-
ence time TL = 20 ns. The reference cross-polarized interferogram
g

(2X)
⊥ for Q = 1 (black) is represented as well. (c) Visibility com-

puted from panel (b) as V (τ ) = |g(2X)
‖ (τ ) − g

(2X)
⊥ (τ )|/g(2X)

⊥ (τ ). All
simulations are done for a delay �t = 43 ns, a field correlation time
4 ns, a field amplitude � = 0.1 rad/ns corresponding to a saturation
parameter s = 1.7 × 10−3, T1 = 0.34 ns, T2 = 0.5 ns, and driving
field amplitude fluctuation parameter Q = 5.8 (Q−2 = 3%).

than the interferometer delay �t , the normalization of the
HOM response is not trivial, and the three-time correlators
have a non-negligible contribution spoiling the interferogram
interpretation. In the opposite limit where TL → 0, only inten-
sity second-order correlation terms survive and the scattered
single photons are completely distinguishable.

From the interferogram of panel (a), we obtain g(2X)(0).
In all cases considered here, the simulations with balanced
beam splitters α = R/T = 1 yield to g(2X)(0) = 0. Indeed,
from Eq. (30) we expect g(2X)(0) = 1

2 ( α−1
α+1 )2. Even in the

FIG. 8. CTW function of the laser coherence time TL for various
driving field amplitude fluctuation strengths Q−2 indicated on the
figure. Simulation parameters are identical to Fig. 7, lower panel. For
TL � τc, the decoupling condition between rotating frame blurring
and Bloch evolution is not fulfilled and the simulation result is not
accurate. For TL � �t , the CTW can be computed but it cannot be
interpreted due to the single-photon self-interference terms as in the
noiseless continuous excitation regime.

unbalanced beam-splitters case, g(2X)(0) is independent of the
saturation parameter. This fully confirms that g(2X)(0) has no
meaning both in the continuous excitation regime and the
noisy resonant driving regime.

The HOM response is also computed without and with
driving field amplitude fluctuation effects [panel (b)] high-
lighting the bunching contribution due to adiabatic averaging
at short times mostly observable on the crossed-polarized
correlation function g(2X) at characteristic delays τC . The
comparison between the co- and crossed-polarized interfero-
grams allows for the computation of visibility [panel (c)] from
which the CTW is obtained.

Figure 8 represents the CTW when varying the laser coher-
ence time TL at a fixed saturation s0 = 1.7 × 10−3. The limits
of validity of the computation are represented on the graph
and the interferometer delay �τ is represented as reference.
One can observe that the CTW and the laser coherence time
are positively correlated, the CTW being always shorter than
TL. This latter feature is induced by the classical bunching
of the driving that is transferred to the elastically scattered
photons and which destroys single-photon indistinguishability
characteristics.

Figure 9 represents the CTW as a function of the sat-
uration parameter. The CTW largely depends on the driv-
ing amplitude due to the change in the ratio of elastically
and inelastically scattered photons. As expected, the ratio
CT W/TL reduces with the driving field amplitude fluctuation
strength Q−2 due to bunching. In the experiment of Ref. [16]
Q−2 ∼ 3%, so that pseudoadiabatic averaging brings only a
small correction to the theoretical CTWs reported in this paper
which were computed using Eq. (29).

In general, the CTW scales with the laser coherence time
TL, and is maximized when light is elastically scattered by the
two-level system (below saturation) and for a lifetime limited
two-level system (T2 = 2T1). Note that those requirements are
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FIG. 9. CTW/TL function of the driving amplitude expressed in
terms of saturation parameter s0 for various driving field amplitude
fluctuation strengths (on the figure) and a fixed laser coherence time
TL = 20 ns. Above saturation (s0 � 1), the linear approximation to
the pseudoadiabatic regime used in this paper is not valid anymore
(although a limit theory can be done for small Q−2.) The simulation
parameters are the same as in Fig. 7.

qualitatively similar for the maximization of indistinguisha-
bility in the pulsed excitation regime.

V. CONCLUSION

In this work we have explored the influence of a noisy
source on the driving of single-photon emitters and in particu-
lar on the statistics and indistinguishability of the emitted pho-
tons. A wide range of behaviors is expected, but only a portion
of them, for which the dynamics is sufficiently well behaved,
is simply interpretable and usable for the realization and
characterization of antibunched light sources. In particular,
we have shown that the zero-delay intensity autocorrelation
value g(2X)(0) used as a figure of merit for photon indistin-
guishability in the pulsed excitation regime has no meaning
in the continuous excitation regime. Consequently, we have
introduced and justified an adequate figure of merit for photon
indistinguishability in the continuous excitation regime: the
coalescence time window. We have verified using numerical
simulations that, in the relevant regimes for continuous quan-
tum optics, the CTW indeed provides valuable information
on single-photon indistinguishability and we have shown how
it is affected by the noisy driving source characteristics. It
appeared that the maximization of the CTW in the noisy
continuous excitation regime has similar requirements with
the g(2X)(0) minimization in the pulsed excitation regime,
namely that the two-level system should be linewidth-limited
and operated in the elastic regime (low intensity). These
results will allow classification and comparison of cw indis-
tinguishable single-photon sources for quantum optics and
quantum cryptography.
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APPENDIX A: BLOCH-PURCELL-POUND RELAXATION

If correlation times of fluctuations are much faster than
the two-level system dynamics in the rotating frame, the
Bloch-Purcell-Pound (BPP) relaxation regime is reached. We
won’t repeat the BPP derivation and its assumptions which
are available in Ref. [22] (Chap. VIII). In this appendix we
provide explicit expressions for the BPP relaxation terms in
the case of a two-level system in the “nonviscous liquid” case
(�τC � 1) (we do not assume extreme narrowing here which
is unphysical in the case of light emitters). As a starting point,
we consider the Hamiltonian H (t ) = H0 + H 1 + δH1(t ) and
go in the rotating secular frame defined by H0 + H 1 so that
the evolution equation reads

ih̄∂t ρ̃(t ) = [δH̃1(t ), ρ̃(t )]. (A1)

Integrating by successive approximations up to the second
order leads to

∂t ρ̃(t ) = −1

h̄2

∫ t

0
dt ′[δH̃1(t ), [δH̃1(t ′), ρ̃(0)]]. (A2)

Using the usual series of assumption for Markovian
decoherence [22], the following expression is obtained:

∂t ρ̃(t ) = −1

h̄2

∫ ∞

0
dτ [δH̃1(t ), [δH̃1(t − τ ), ρ̃(t )]]. (A3)

Assuming |H0| � |H 1|, the fluctuating Hamiltonian reads
[22]

δH̃1(t ) � h̄�
δE(t )

E
S̃x + h̄δω(t )S̃z. (A4)

Consequently, we deduce the corresponding collapse opera-
tors for the Lindblad equation:

L1 =
√

2τC

(
�

2

E
2 δE2 − �

E
δωδE

)
S̃x,

L2 =
√

2τC

(
δω2 − �

E
δωδE

)
S̃z, (A5)

L3 =
√

2τC

�

E
δωδE(S̃x + S̃z).

In the “nonviscous liquid” case (
√

δω2τC � 1), extended
and complex collapse operators can be found using a sim-
ilar method by going into the doubly tilted rotating frame;
see [22,23]. A remarkable property of the resulting collapse
operators is their τC

1+�2τ 2
C

dependence.

APPENDIX B: FLUCTUATING FRAME AVERAGING

In this Appendix, we show how to compute exactly the
averaging over dephasing for the fluctuation characteristics
defined in Sec. II A 3. It consists in averaging the dephasing
term over phase distribution:

eiφ0→t =
∫

R

eiφμ(φ, t |0, 0) dφ, (B1)
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where μ(φ, t |0, 0) is the conditional phase distribution. If this
distribution is assumed to be a normal law of mean zero and
variance φ2

0 (t ), then integration leads to

eiφ0→t = e− φ2
0 (t )

2 . (B2)

The usual assumption [e.g., see Ref. [18] (Chap. 11.4)]
consists in considering that the phase results from the accu-
mulation of a white Gaussian noise and consequently follows
a Brownian trajectory. Consequently, the corresponding phase
distribution at time t is a normal law of mean zero and
variance φ2

0 (t ) = 2δω2τCt . This concludes the computation of
the averaging in this simple case which is

eiφ0→t = e−�Lt , (B3)

with �L = δω2τC .
This approximate result is the useful one in most cases.

However, it may be interesting to go beyond the Brownian
motion approximation: first to investigate the validity of this
approximation and second to obtain an exact result in the
general case considered in Sec. II.

This computation is possible in the case where two extra
assumptions over the energy fluctuation statistics are made.

(i) The fluctuations result from a memoryless process.
(ii) The two-time correlation functions of the fluctuations

maximize Shannon entropy.
Those two assumptions are not very restrictive since they

correspond to the case where fluctuations result from a low-
pass filtered white Gaussian noise which is close from the
typical experimental realization (random or Johnson-Nyquist
noise generator feeding a linear circuit). It can be shown that
the method used here is valid for any filtered white Gaussian
noise.

Assumptions over the fluctuations of δω imply that it is
governed by the following Langevin equation:

dδω

dt
= −δω/τC + η(t ), (B4)

where η is a white Gaussian noise of autocorrelation function
η(t )η(t ′) = 2δω2

0δ(t − t ′)/τC . Note that, from now on, the

equilibrium variances are labeled δω2
0 to distinguish them

from the “out-of-equilibrium” variances δω2 involved in the
Langevin equations. It can be easily shown that this results in
the following statistics: δω(t + τ )δω(t ) = δω2

0e
−t/τC and that

δω’s PDF is a normal law of mean zero and variance δω2
0.

Phase accumulation φ is related to δω through the equation

dφ

dt
= δω. (B5)

From Eqs. (B4) and (B5) we deduce the following differential
equations for the variance and covariance:

dφ2

dt
= 2φδω, (B6)

dφδω

dt
= − 1

τC

φδω + δω2, (B7)

for which the solution is

φ2(t ) = 2δω2
0τC

[
t + τC

(
e
− t

τC − 1
)]

. (B8)

At times longer than τC , the phase accumulation of the
Brownian motion is recovered, while at shorter times than
τC the phase variance evolves as δω2

0t
2, which can be under-

stood as the ballistic behavior of phase accumulation at short
times.

APPENDIX C: PSEUDOADIABATIC AVERAGING

To realize the pseudoadiabatic integral, the joint distribu-
tion p(δE2, δω2, t2; δE1, δω1, t1) is required. We will work in
the reduced representation where time units are in τC , and
angular frequencies (field amplitude) units are in the corre-
sponding equilibrium standard deviation of the equilibrium
distribution, i.e., the dimensionalized equations are recovered

using the following substitutions: δω → δω/

√
δω2

0, δE →
δE/

√
δE2

0 , and t → t/τC . Using the assumptions on the
random variables δE and δω defined in Sec. II A 2, we can
write the corresponding Langevin equations:

dδω

dt
= −δω + η1(t ),

dδE

dt
= −δE + η2(t ), (C1)

where η1,2(t ) are two Langevin forces with the follow-
ing correlation characteristics: η1(t ′)η1(t ) = η2(t ′)η2(t ) =
2δ(t − t ′), η1(t ′)η2(t ) = η2(t ′)η1(t ) = 2εδ(t − t ′), where ε

is the correlation coefficient between energy and amplitude
fluctuations. This is the unique set of Langevin equations
given the constraints on the model provided in Sec. II A 2.
Using the Itô transform, one gets the corresponding Fokker-
Planck equation:

∂p

∂t
=

(
∂2

∂δω2
+ ∂2

∂δE2
+ 2ε

∂2

∂δE∂δω

)
p

+ ∂ (δωp)

∂δω
+ ∂ (δEp)

∂δE
. (C2)

This partial differential equation has a simple generalized
Gaussian solution fully characterized by its first- and second-
order moments. Equations giving the dynamics of those mo-
ments are obtained using the Langevin equations (C1):

dδω

dt
= −δω,

dδĒ

dt
= −δĒ,

dδω2

dt
= −2δω2 + 2η1δω,

dδE2

dt
= −2δE2 + 2η2δE,

dδEδω

dt
= −2δEδω + η2δω + η1δE. (C3)

The source terms in the right-hand side second-moment
equations (C3) are respectively 2η1δω, 2η2δE, η2δω +
η1δE. Their values are obtained using the following
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considerations:

η1δω = η1(t )δω(t ) = 1
2 [η1(t )δω(t+) + η1(t )δω(t−)].

But η1(t )δω(t−) = 0 since, due to causality, there is no corre-
lation between η1(t ) and δω(t−).

Now,

η1(t )δω(t+) = η1(t )δω(t−) +
∫ t+

t−
dt ′

∂

∂t ′
η1(t )δω(t ′).

Using the Langevin equations and the Langevin force cor-
relation function, we find that the integral in the right-hand
term is simply given by the integral of a Dirac function so that
η1(t )δω(t+) = 2. Finally, we then have η1δω = 1. Identically,
η2δE = 1, η2δω = ε, and η1δE = ε.

The set of linear differential equations (C3) is easily solved
and allows one to obtain the joint distribution analytically.
Consequently,

p(δE2, δω2, t2; δE1, δω1, t1)

= Nμ1,�1
(δE1, δω1)Nμ2 (t2−t1 ),�2 (t2−t1 )(δE2, δω2), (C4)

where Nμ,�(δE, δω) are bidimensional normal laws of mean
μ and variance � and

μ1 =
[

0
0

]
, (C5)

μ2 =
[
δω1

δE1

]
e−t , (C6)

�1 =
[

1 ε

ε 1

]
, (C7)

�2 =
[

1 ε

ε 1

]
(1 − e−2t ). (C8)

As expected, the joint probability density function is
memoryless so that it depends only on t2 − t1. In the
two limiting cases we recover familiar results: if t2 =
t1, then Nμ2 (t2−t1 ),�2 (t2−t1 )(δE2, δω2) = δ(δE2 − δE1)δ(δω2 −
δω1) and, if t2 − t1 � 1, then p(δE2, δω2, t2; δE1, δω1, t1) =
p(δE1, δω1)p(δE2, δω2).

Finally, we note that for this model the statistics of the
phase accumulation necessary to compute rotating frame av-
eraging are unchanged by the correlated statistics between
energy and amplitude of the driving field.
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