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Broadband pseudothermal states with tunable spectral coherence generated via nonlinear optics
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It is well known that the reduced state of a two-mode squeezed vacuum state is a thermal state, i.e., a state
whose photon-number statistics obey a geometric distribution. More exotic broadband states can be realized
as the reduced state of two spectrally entangled beams generated using nonlinear optics. We show that these
broadband “pseudothermal” states are tensor products of states in spectral Schmidt modes, whose photon-number
statistics obey a geometric distribution. We study the spectral and temporal coherence properties of these states
and show that their spectral coherence can be tuned—from perfect coherence to complete incoherence—by
adjusting the pump spectral width. In the limit of a cw pump, these states are tensor products of true thermal states
but with different temperatures at each frequency. This could be an interesting state of light for investigating the
interplay between spectral, temporal, and photon-number coherences.
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I. INTRODUCTION

Thermal states are of fundamental and practical inter-
est. Although they are diagonal in the photon-number and
coherent-state bases, they can behave nonclassically. They
can be used for generating nonclassical states [1,2] or for
mediating entanglement between quantum systems [3]. They
can also be used for quantum information protocols such as
continuous-variable quantum key distribution [4] and improv-
ing the efficiency of quantum state tomography [5].

In quantum information, one often deals with single-mode
thermal states. There, the relevant property is the photon-
number statistics—the thermal state density matrix is diagonal
with a geometric probability distribution.

In quantum optics, when considering many radiation
modes, the temperature T takes a more central role, as it
determines the light’s spectral radiance according to Planck’s
law. For multimode thermal light, one can speak about its
spatial, spectral, temporal, and momentum coherence.

Incoherence in these degrees of freedom can be useful.
Spatially incoherent light has been used for ghost imaging [6–
12], subwavelength lithography [13], and improving diffrac-
tion pattern visibility [14] and spatial resolution [15]. Broad-
band spectrally incoherent light has been used for resolution-
enhanced optical coherence tomography [16], optical guiding
of microscopic particles [17], and noisy-light spectroscopy
[18,19].

Various methods exist for generating incoherent light.
Spatially incoherent, pseudothermal light can be generated
by sending a cw laser through a rotating ground-glass disk
[20,21]. Broadband, spectrally incoherent light can be gen-
erated by a thermal source, e.g., a hollow cathode lamp [9].
Other approaches use amplified spontaneous emission from
quantum dots, [22,23], warm atomic vapor [24], and modified
dye lasers [25]. Here, we focus on light generated in one
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arm of a broadband twin-beam state, such as that generated
via spontaneous parametric downconversion (SPDC) [26,27]
or spontaneous four-wave mixing (SFWM) [28]. Spectral
entanglement between the beams makes each individual beam
spectrally incoherent.

Photon statistics and coherence can be studied by mea-
suring correlation functions. Various groups measured such
functions on light generated via nonlinear optics. These in-
clude measurements of time-resolved temporal correlation
functions in cw-pumped SPDC [29], time-averaged temporal
correlation functions in two-mode SPDC [26,30], frequency
cross- and autocorrelation functions in two-mode SPDC
[31], multiphoton statistics of single-mode SPDC [32], and
frequency-resolved spectral correlation functions and mul-
tiphoton statistics in harmonic generation [27]. Theory has
also been done on photon-number statistics [33] and spatial
correlation functions [6,7] of downconverted light. But to
the best of our knowledge, no one has written down the
reduced density operator for one arm of an arbitrary spectrally
entangled twin-beam state, nor has anyone computed its time-
resolved temporal and frequency-resolved spectral correlation
functions.

In this paper, we show that the density operator describing
one arm of a twin-beam state with arbitrary spectral entan-
glement can be decomposed into a tensor product of states
prepared in spectral Schmidt modes, each with geometric
photon-number statistics. We therefore refer to the state as a
broadband “pseudothermal” (BPT) state.

We then write down Heisenberg-picture operators for the
Schmidt modes and compute the BPT state’s frequency-
resolved spectral and time-resolved first- and second-order
correlation functions. These functions reveal the light’s spec-
tral and temporal coherence, as well as its intensity-intensity
correlations. We find that the spectral coherence of BPT states
can be tuned—from perfect coherence to full incoherence—
by adjusting the pump spectral width. This is consistent with
recent experiments [30]. (The spectral coherence can also
tuned by changing the spectral phase of the pump, e.g., by
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applying a chirp [34], although we do not consider this here.)
From these correlation functions, one can identify interesting
regimes not yet explored experimentally, such as partial spec-
tral coherence.

In summary, the main contributions of this paper are three-
fold. First, we derive the reduced density operator of one beam
of a twin-beam state with arbitrary spectral entanglement in
terms of its Schmidt modes. This expression has conceptual
value and provides intuition about the nature of the light in
each beam. Second, we derive time- and frequency-resolved
correlation functions for one beam of a twin-beam state in
terms of its Schmidt modes and explore the relationship
between interbeam spectral entanglement and single-beam
temporal coherence. Third, we make clear the connection
between these correlation functions and results from classical
coherence theory. Our results should therefore be useful for
both experimental and theoretical studies of partially spec-
trally coherent light.

II. BROADBAND TWO-MODE SQUEEZED
VACUUM STATE

We consider broadband light, generated by, e.g., SPDC
or SFWM, emitted into two orthogonal modes. In a one-
dimensional propagation geometry where the longitudinal
wave vector is specified by the frequency and assuming that
the pump beam remains undepleted, the twin-beam state is

|ψ〉 = ÛSQ |vac〉 , (1)

ÛSQ = e[
∫∫

dωadωb J (ωa,ωb )â†(ωa )b̂†(ωb )−H.c.], (2)

where J (ωa, ωb ) is known as the joint spectral amplitude
(JSA) of the generated beams [35–37] and ÛSQ is the broad-
band two-mode squeezing operator. The operators â(ω) and
b̂(ω) are single-frequency annihilation operators that satisfy
the commutation relations [â(ω), â†(ω′)] = [b̂(ω), b̂†(ω′)] =
δ(ω − ω′) (all other commutators are zero). The JSA depends
on the properties of the pump field(s) and the nonlinear
material. For purposes of this paper, we leave it quite general.

To simplify calculations, the JSA can be decomposed as
J (ωa, ωb ) = ∑

k rkφk (ωa )ϕk (ωb ) in what is known as the
Schmidt decomposition. The twin-beam state can then be
written as [26]

|ψ〉 = e
∑

k rkÂ
†
kB̂

†
k−H.c. |vac〉 , (3)

where the operators

Âk =
∫

dωaφ
∗
k (ωa )â(ωa ) , (4a)

B̂k =
∫

dωbϕ
∗
k (ωb )b̂(ωb ) , (4b)

are broadband annihilation operators that satisfy the com-
mutation relations [Âk, Â

†
k′ ] = [B̂k, B̂

†
k′] = δk,k′ (all other

commutators are zero), and φk and ϕk are known as Schmidt
modes; these functions satisfy completeness and orthogonal-
ity relations [38].

Analytical forms for the Schmidt decomposition are known
only for two-dimensional Gaussian functions [39]. For more
general functions, one can use approximate numerical meth-
ods, e.g., computing the singular value decomposition of a
truncated, discretized JSA. The impact of such approxima-
tions in SPDC source characterization was recently discussed
in [40].

One can also invert the relations in Eqs. (4) and find

â(ω) =
∑

k

φk (ω)Âk , (5a)

b̂(ω) =
∑

k

ϕk (ω)B̂k . (5b)

The twin-beam state in Eq. (3) can be rewritten as

|ψ〉 =
⊗

k

|rk〉 , (6)

where

|rk〉 = erkÂ
†
kB̂

†
k−H.c. |vac〉 (7)

is a two-mode squeezed vacuum (TMSV) state prepared in
two Schmidt modes φk and ϕk , with squeezing parameter rk �
0. Note that here J (ωa, ωb ) is not necessarily normalized and
thus

∑
k r2

k does not necessarily equal 1. Each TMSV state
can be represented in the number basis

|rk〉 =
∞∑

nk=0

(tanh rk )nk

cosh(rk )
|nk〉φk

|nk〉ϕk
. (8)

In the Heisenberg picture, the operators Âk and B̂k trans-
form as

Âk → Û †
SQÂkÛSQ

= cosh(rk )Âk + sinh(rk )B̂†
k , (9a)

B̂k → Û †
SQB̂kÛSQ

= cosh(rk )B̂k + sinh(rk )Â†
k . (9b)

Later, we will use the relations in Eqs. (5) and the transfor-
mation in Eqs. (9) to compute correlation functions.

III. BROADBAND PSEUDOTHERMAL STATES

We are interested in the quantum state of the individual
beams; we thus compute the reduced density matrices for
modes a and b by tracing out the other mode. The density
operator for mode a is

ρa = Trb[|ψ〉 〈ψ |] =
⊗

k

ρφk
, (10)

where

ρφk
= Trϕk

[|rk〉 〈rk|] (11)

=
∞∑

nk=0

Pnk
|nk〉φk

〈nk|φk
(12)
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is a state prepared in a single Schmidt mode φk . The states
|nk〉φk

= (nk!)−1/2(Â†
k )n |0〉 are broadband Fock states and are

distributed according to

Pnk
= 1

1 + n̄k

(
n̄k

1 + n̄k

)nk

, (13)

where

n̄k = sinh2(rk ) . (14)

The state ρφk
is like a single-mode thermal state in the sense

that it is diagonal in the photon-number basis and the proba-
bility distribution is geometric. But since the mode is not at a
well-defined frequency, it doesn’t make sense to talk about an
associated temperature T .

Similarly, the beam in mode b has the state ρb = ⊗
k ρϕk

,
where ρϕk

= ∑∞
nk=0 Pnk

|nk〉ϕk
〈nk|ϕk

. While both ρa and ρb

obey the same statistics given by Pnk
, the states will have

different spectral and temporal properties because the spectral
properties of |nk〉φk

differ from those of |nk〉ϕk
.

The states in Eq. (12) can be written more succinctly as
(see Appendix A)

ρφk
= 1

Zk

e−αkÂ
†
kÂk , (15)

Zk = Tr(e−αkÂ
†
kÂk ) = 1

1 − e−αk
, (16)

where Zk is the partition function of mode k and

e−αk = tanh2(rk ) = n̄k

1 + n̄k

. (17)

Using this notation we can also write the full state in mode a

as

ρa = 1

Z
e− ∑

k αkÂ
†
kÂk , (18)

Z = Tr(e− ∑
k αkÂ

†
kÂk ) . (19)

IV. PROPERTIES OF BROADBAND
PSEUDOTHERMAL STATES

To study the coherence properties of the broadband states,
we compute various temporal and spectral correlation func-
tions. The expressions for mode a can be mapped to those for
mode b by making the substitution φk → ϕk .

A. Spectral correlation function

To study the spectral coherence properties of the light, we
introduce a spectral correlation function S(ω,ω′). Using the
procedure outlined in Appendix B, one finds that

Sa (ω,ω′) = 〈â†(ω)â(ω′)〉ψ (20)

=
∑

k

sinh2(rk )φ∗
k (ω)φk (ω′) , (21)

and also that 〈â(ω)â(ω′)〉ψ = 〈â†(ω)â†(ω′)〉ψ = 0.

The same-frequency correlation function is

Sa (ω,ω) =
∑

k

|φk (ω)|2n̄k , (22)

which can be interpreted as the spectral density.

B. First-order temporal correlation function

The first-order temporal correlation function for mode a

is [41]

G(1)
a (t1, t2) = 〈â†(t1)â(t2)〉ψ . (23)

In the limit of the state |ψ〉 having sufficiently
narrow frequency support, this quantity is proportional to
〈Ê(−)(t1)Ê(+)(t2)〉ψ , where Ê(±)

a (t1) are the usual positive or
negative frequency components of the electric field operator
in mode a. The operators â(t ) are nothing but the Fourier
transform of the operators â(ω)

â(t ) = 1√
2π

∫
dωâ(ω)eiωt . (24)

We thus have

G(1)
a (t1, t2) = 〈â†(t1)â(t2)〉ψ (25)

=
∫

dωdω′

2π
S(ω,ω′)e−iωt1+iω′t2 (26)

=
∑

k

φ̃∗
k (t1)φ̃k (t2)n̄k , (27)

where n̄k is defined in Eq. (14), and where

φ̃k (t ) = 1√
2π

∫
dωφk (ω)eiωt . (28)

This expression is derived in Appendix C. To see the temporal
distribution, we compute

G(1)
a (t, t ) =

∑
k

|φ̃k (t )|2n̄k , (29)

which can be interpreted as the probability per unit time that
a photon is absorbed by an ideal detector at time t [41].

We can also compute a normalized first-order correlation
function

g(1)(t1, t2) = G(1)(t1, t2)√
G(1)(t1, t1)G(1)(t2, t2)

. (30)

In the special case where the decomposition has only one
Schmidt mode, the normalized first-order correlation function
is |g(1)(t1, t2)| = 1. In other words, this is a state with finite
bandwidth and thermal photon-number statistics, and yet it
has perfect first-order coherence [41].

It is known from classical coherence theory that correlation
functions for partially coherent light can be decomposed
as sums of coherent mode functions [42]. The connection
between such spatial coherent modes and spatial Schmidt
modes in SPDC was suggested and explored experimentally
in [43]. Here, we show this explicitly in terms of spectral
coherent modes. Equation (27) shows that for a single beam of
a twin-beam state with arbitrary spectral entanglement, these
mode functions are indeed the (spectral) Schmidt modes.
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C. Second-order temporal correlation function

To see intensity-intensity correlations, we look at the
second-order correlation function [41]:

G(2)(t1, t2) = 〈â†(t1)â†(t2)â(t1)â(t2)〉ψ (31)

= G(1)
a (t1, t1)G(1)

a (t2, t2) + G(1)
a (t1, t2)G(1)

a (t2, t1) ,

(32)

where we again replaced the electric field operators with
photon-number creation and destruction operators, and where
G(1)

a (t1, t2) is defined in Eq. (26). This expression is derived
in Appendix C. Equation (32) can be interpreted as the prob-
ability per unit (time)2 that one photon is recorded at time t1
and another at time t2 [41].

V. CONTINUOUS-WAVE LIMIT

In the case of a cw laser driving an SPDC process at fre-
quency ω̄p (or a SFWM process at ω̄p/2), energy is conserved
according to ωa + ωb = ω̄p. The two-mode squeezed state
has the form

|ψ〉 = ÛSQ |vac〉 , (33)

ÛSQ = e[
∫

dω r (ω)â†(ω)b̂†(ω̄p−ω)−H.c.] . (34)

We can also construct Heisenberg-picture transformation
(similar to the pulsed-pump case):

â(ω) → Û †
SQâ(ω)ÛSQ

= cosh(r (ω))â(ω) + sinh(r (ω))b†(ωp−ω) (35)

b̂(ω) → Û †
SQb̂(ω)ÛSQ

= cosh(r (ω))b̂(ω) + sinh(r (ω))a†(ωp−ω) , (36)

and also write states for mode a (or b)

ρa = 1

Z
e− ∫

dωα(ω)â†(ω)â(ω) , (37)

Z = Tr(e− ∫
dωα(ω)â†(ω)â(ω) ) , (38)

where α(ω) = ln[1/ tanh2(r (ω))]. By generalizing the result
in Appendix B, from a discrete to a continuum index, the
spectral correlation function becomes

SCW(ω,ω′) = n̄CW(ω)δ(ω − ω′) , (39)

n̄CW(ω) = sinh2(r (ω)) . (40)

Equation (39) tells us that there are no spectral correlations
between two different frequency modes.

The first-order correlation function for cw broadband
thermal light is the two-dimensional Fourier transform of
SCW(ω,ω′). After integrating out the Dirac delta function, this
becomes

G
(1)
CW(t1, t2) = 1

2π

∫
dωeiω(t1−t2 )n̄CW(ω) , (41)

as expected from the Wiener-Khinchin theorem. From this we
can compute

G
(1)
CW(t, t ) = 1

2π

∫
dωn̄CW(ω) . (42)

That Eq. (42) is constant also shows that the light is fully
spectrally incoherent, since time-varying intensities arise
from well-defined phases between frequencies. Similarly, the
second-order correlation function for cw-pumped BPT states
is

G
(2)
CW(t1, t2) = G

(1)
CW(t1, t1)G(1)

CW(t2, t2)+G
(1)
CW(t1, t2)G(1)

CW(t2, t1) ,

(43)

where G
(1)
CW(t1, t2) is defined in Eq. (41).

If one sets α(ω) = h̄ω/kBT , then ρa can be thought of as a
multimode thermal state in the traditional sense. Equation (43)
then becomes identical to the expression for G(2)(t1, t2) for
chaotic light, derived by, e.g., Loudon [44]. The shape of α(ω)
depends on r (ω), which in turn depends on the nonlinearity
profile of the material. It would therefore be difficult to make
light that exactly matches the Planck spectrum. But one could
match the Planck spectrum over a finite bandwidth or make
more general states where each frequency corresponds to a
thermal state at a different temperature T .

VI. EXAMPLES

To illustrate the pump laser’s impact on the coherence of
BPT states, we examine the concrete case of SPDC. We look
at three examples: short pulse, long pulse, and cw.

For simplicity, we consider pump fields with Gaussian
spectral distributions (e.g., shaped using optical pulse shaping
[45]) and crystals with Gaussian nonlinearity profiles (e.g.,
engineered using nonlinearity shaping methods [46–50]). We
consider the system to be in the low-gain regime and satisfy
symmetric group-velocity matching [51,52].

We take

J (�a,�b ) = Ae
− (�a+�b )2

2σ2
p e

− (�a−�b )2

2σ2
c (44)

for the pulsed case, where �j = ωj − ω̄j (with ω̄j the mean
frequency of the downconverted beam), σp is the spectral
width of the pump amplitude function, and σc is the width of
the phase-matching function (given as the Fourier transform
of the longitudinal shape of the material nonlinearity). We also
take

r (�) = Ae
− (2�)2

2σ2
c (45)

for the cw case, where � = ω − ω̄a . Figure 1 compares three
examples. For easy comparison, we chose σp and σc to make
BPT states with similar spectral distributions (the choice of A

does not affect the normalized functions). These are shown in
Table I.

Figure 1(a) shows the JSA of the twin-beam state. The
JSA for the shorter-pulse case is separable (note that this only
happens for a pair of Gaussians of the same width [53]). The
longer-pulsed laser leads to a slightly correlated JSA, and the
cw laser leads to a strongly correlated JSA.

Figure 1(b) shows the spectral distributions in mode a,
chosen to be the same for all cases. Figure 1(c) shows the
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FIG. 1. Comparison between sources pumped by a shorter-pulsed, longer-pulsed, and cw laser: (a) the joint spectral amplitude J (ω1, ω2);
(b) equal-frequency spectral correlation function (normalized), (c) equal-time first-order temporal correlation function (normalized); (d) time-
separated normalized first-order temporal correlation function; and (e) time-separated normalized second-order temporal correlation function
g(2)(t1, t2) = 1 + g(1)(t1, t2)g(1)(t2, t1). Notice that only the cw-pumped case satisfies the Wiener-Khinchin theorem. Also, notice that the
time-integrated g(2) decreases with increasing number of Schmidt modes, as was shown in [26].

TABLE I. Parameters used to generate Fig. 1.

Pump σp σc

Shorter 2 × 1012 s−1 2 × 1012 s−1

Longer 1.5 × 1012 s−1 2.4 × 1012 s−1

cw n/a 3 × 1012 s−1

temporal distributions in mode a. These vary between the
three examples. Because the short pump yields a separable
JSA, the BPT state is prepared in a single, broad, yet coherent
spectral mode. This means that the frequencies have fixed
relative phases, which leads to a spectrally coherent pulse
of pseudothermal light. As the pump pulse length increases
slightly, the pseudothermal pulse gets slightly longer. In turn,
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the relative phases of the frequencies become slightly less
fixed. In the limit of a cw pump, the BPT state is also
continuous, but broadband, and the frequencies have no fixed
relative phase relationship.

Figure 1(d) shows the normalized time-resolved first-order
temporal correlation function in mode a. The light in all
three examples has drastically different coherence times,
despite having very similar spectra. For a separable JSA,
|g(1)(t1, t2)| = 1, but as the spectral correlations increase, the
coherence time decreases. We note that since a pulse is not
stationary, it does not have to satisfy the Wiener-Khinchin
theorem.

Figure 1(e) shows the normalized time-resolved second-
order temporal correlation function in mode a. For a sepa-
rable JSA, |g(2)(t1, t2)| = 2, but as the spectral correlations
increase, the second-order coherence time decreases.

In summary, these examples show that by varying the spec-
trum of the pump field as well as the shape of the nonlinearity
function of the material, it is possible to generate various
states of light with the same spectrum but drastically differ-
ent spectral and first- and second-order temporal coherence
properties.

VII. DISCUSSION

Broadband states generated via nonlinear optical pro-
cesses, such as SPDC or SFWM, have interesting coher-
ence properties. We calculated their spectral and temporal
correlation functions in terms of the Schmidt modes of the
joint spectral amplitude and showed that these states can be
thought of as pseudothermal states. We also showed that these
states have tuneable spectral coherence—which can be tuned
from perfectly spectrally coherent to completely incoherent.
Regardless of the level of spectral coherence, these states can
be decomposed into tensor products of states with geometric
photon-number statistics.

High-gain SPDC can be extremely bright for a parametric
process—up to hundreds of mW mean power [27,54,55]. This
is close to the ∼1 W achievable via nonparametric processes
[18] and is bright enough to study interesting nonclassical
phenomena such as the interplay between spectral and photon-
number coherence. Furthermore, a source based on SPDC is
extremely customizable. Beyond tuning the spectral coher-
ence, the spectral shape can be customized using optical pulse
shaping [45] or nonlinearity shaping methods [46–50].

Broadband spectrally incoherent light generated by non-
linear optics may also have application in studying the dy-
namics of photoinduced processes, such as the time scales
and mechanisms underlying the initial step of photosyn-
thesis in light-harvesting complexes. Some researchers have
questioned whether dynamics initiated by sunlight excitation
might be different from those detected in femtosecond laser
experiments performed on light-harvesting complexes [56–
60]. A broadband source with tuneable spectral coherence
might help answer this question.

On the theory side, this work is relevant to the study of de-
compositions of thermal light into broadband coherent modes.
Thermal light cannot be represented as a statistical mixture of
single pulses [61], but one can construct mixtures of single
pulses that yield the same first-order temporal correlation

function as thermal light [62]. In a one-dimensional waveg-
uide, thermal light was shown to decompose into a statistical
mixture of sets of coherent pulses [63]. Here, we show that
partially spectrally coherent light can be decomposed into a
tensor product of states prepared in spectral Schmidt modes,
each with geometric photon-number statistics. Our work also
connects with decompositions, into Schmidt-like modes, of
correlation functions for partially spatially coherent thermal
light [43].

Our formalism also provides a convenient tool for comput-
ing any observables of broadband pseudothermal states with
partial spectral coherence—even for states created with com-
pletely different experimental methods, such as [22–25,64].
This is due to a well-known result in quantum information
theory, the Stinespring dilation theorem [65], that states that
any mixed state can be represented as a pure state in a higher-
dimensional Hilbert space. Any broadband pseudothermal
state can therefore be written as the reduced state of a hy-
pothetical broadband twin-beam state.

The relationship between spectral, temporal, and photon-
number coherence is of fundamental and practical interest. We
hope that our analysis of broadband pseudothermal states gen-
erated via nonlinear optics provides a useful way of exploring
it theoretically and experimentally.
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APPENDIX A: WRITING THE SINGLE-SCHMIDT-MODE
THERMAL STATE IN GIBBS FORM

Consider the number operator of the kth Schmidt mode,

n̂k = Â
†
kÂk. (A1)

We can write its eigendecomposition and the resolution of the
identity as follows:

n̂k |nk〉 = nk |nk〉 , Ik =
∞∑

nk=0

|nk〉 〈nk| . (A2)

Using these expressions we calculate

exp(−αkn̂k ) = exp(−αkÂ
†
kÂk ) =

∞∑
nk=0

e−αknk |nk〉 〈nk| ,

(A3)

Tr[exp(−αkn̂k )] =
∞∑

nk=0

e−αknk = 1

1 − e−αk
, (A4)
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where in the last expression we use the geometric series sum.
Consider now their ratio,

exp(−αkÂ
†
kÂk )

Tr[exp(−αkÂ
†
kÂk )]

=
∞∑

nk=0

(1 − e−αk )(e−αk )nk |nk〉 〈nk| .

(A5)

We can compare this with Eqs. (11) and (13) and identify

e−αk = n̄k

n̄k + 1
, (A6)

easily verifying that 1 − e−αk = 1/(n̄k + 1), completing the
derivation of Eq. (15).

APPENDIX B: DERIVATION OF G(1)(ω,ω′ ) AND G(2)(ω,ω′ )

In this section, we derive the frequency second- and fourth-order moments of the a fields. For the second-order moment, we
use the relations in Eqs. (5) to write

〈â†(ω)â(ω′)〉ψ =
∑
kl

φ∗
k (ω)φl (ω) 〈A†

kAl〉ψ . (B1)

We then use the linear Bogoliubov transformations in Eqs. (9) to write

〈A†
kAl〉ψ = 〈vac|Û †

SQÂkÛSQÛ †
SQÂlÛSQ|vac〉 (B2)

= 〈vac|(cosh(rk )Âk + sinh(rk )B̂†
k )(cosh(rl )Âl + sinh(rl )B̂

†
l )|vac〉 (B3)

= sinh(rk ) sinh(rl ) 〈vac|B̂kB̂
†
l |vac〉 (B4)

= sinh2(rk )δk,l . (B5)

Plugging this result into Eq. (B1), we obtain

〈â†(ω)â(ω′)〉ψ =
∑

k

sinh2(rk )φ∗
k (ω)φk (ω) . (B6)

Now let us consider the fourth-order moment

〈â†(ω)â†(ω′)â(ω)â(ω′)〉ψ =
∑

k,l,m,n

φk (ω)φl (ω
′)φ∗

m(ω)φ∗
n (ω′) 〈Â†

kÂ
†
l ÂmÂn〉ψ . (B7)

As before, we look at the expectation value

〈Â†
kÂ

†
l ÂmÂn〉ψ = 〈vac|Û †

SQÂ
†
kÛSQÛ †

SQÂ
†
l ÛSQÛ †

SQÂmÛSQÛ †
SQÂnÛSQ|vac〉 (B8)

and use the linear Bogoliubov transformation, and then expand to obtain

〈Â†
kÂ

†
l ÂmÂn〉ψ = sinh(rk ) sinh(rl ) sinh(rm) sinh(rn) 〈vac|B̂kB̂lB̂

†
mB̂†

n|vac〉 (B9)

= sinh2(rk ) sinh2(rl )δk,mδl,n + sinh2(rk ) sinh2(rl )δk,nδl,m . (B10)

Plugging these results into Eq. (B7), we find

〈â†(ω)â†(ω′)â(ω)â(ω′)〉ψ = 〈â†(ω)â(ω)〉ψ 〈â†(ω′)â(ω′)〉ψ + 〈â†(ω)â(ω′)〉ψ 〈â†(ω′)â(ω)〉ψ , (B11)

where the terms in the right-hand side are given by Eq. (B6).

APPENDIX C: DERIVATION OF G(1)(t, t ′ ) AND G(2)(t, t ′ )

The first-order temporal correlation function for mode a is given by [41]

G(1)
a (t1, t2) = 〈Ê(−)

a (t1)Ê(+)
a (t2)〉ψ , (C1)

where Ê(±)
a (t1) are the usual positive and/or negative frequency components of the electric field operator in mode a. To simplify

calculations, we follow Christ et al. [26] and replace the electric field operators by photon-number creation and destruction
operators [Ê(+)

a ∝ â(t )]. This is valid when the spectra of the beams are not too broad. We thus have

G(1)
a (t1, t2) = 〈â†(t1)â(t2)〉ψ . (C2)

We now use the relation

â(t ) = 1√
2π

∫
dωâ(ω)eiωt = 1√

2π

∫
dω

(∑
k

φ∗
k (ω)Âk

)
eiωt ≡

∑
k

Âkφ̃
∗
k (t ) , (C3)
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where φ̃k (t ) = 1√
2π

∫
dωφk (ω)e−iωt . This gives

G(1)
a (t1, t2) =

〈(∑
k

Â
†
kφ̃k (t1)

)(∑
l

Âl φ̃
∗
l (t2)

)〉
ψ

(C4)

=
∑
k,l

φ̃k (t1)φ̃∗
l (t2)〈Â†

kÂl〉ψ . (C5)

Using the result in Eq. (B5), we have

G(1)
a (t1, t2) =

∑
k,l

φ̃k (t1)φ̃∗
l (t2) sinh2(rk )δk,l (C6)

=
∑

k

φ̃k (t1)φ̃∗
k (t2) sinh2(rk ) (C7)

=
∑

k

φ̃k (t1)φ̃∗
k (t2)n̄k , (C8)

where n̄k is defined in Eq. (14).
The second-order temporal correlation function for mode a is given by [41]

G(2)
a (t1, t2) = 〈â†(t1)â†(t2)â(t1)â(t2)〉ψ . (C9)

Using a similar procedure as above, we can write this as

G(2)
a (t1, t2) =

∑
k,l,m,n

φ̃k (t1)φ̃l (t2)φ̃∗
m(t1)φ̃∗

n (t2)〈Â†
kÂ

†
l ÂmÂn〉ψ . (C10)

Using Eq. (B10), we have

G(2)
a (t1, t2) =

∑
k,l,m,n

φ̃k (t1)φ̃l (t2)φ̃∗
m(t1)φ̃∗

n (t2)[sinh2(rk ) sinh2(rl )δk,mδl,n + sinh2(rk ) sinh2(rl )δk,nδl,m] (C11)

=
∑

k

φ̃k (t1)φ̃∗
k (t1)n̄k

∑
l

φ̃l (t2)φ̃∗
l (t2)n̄l +

∑
k

φ̃k (t1)φ̃∗
k (t2)n̄k

∑
l

φ̃l (t2)φ̃∗
l (t1)n̄l , (C12)

where n̄k is defined in Eq. (14). Comparing with the result in Eq. (C8), we find that

G(2)
a (t1, t2) = G(1)

a (t1, t1)G(1)
a (t2, t2) + G(1)

a (t1, t2)G(1)
a (t2, t1) . (C13)
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(2018).

[25] T. F. Schulz, P. P. Aung, L. Weisel, K. Cosert, M. W. Gealy, and
D. J. Ulness, J. Opt. Soc. Am. B 22, 1052 (2005).

[26] A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C.
Silberhorn, New J. Phys. 13, 033027 (2011).

[27] K. Y. Spasibko, D. A. Kopylov, V. L. Krutyanskiy, T. V.
Murzina, G. Leuchs, and M. V. Chekhova, Phys. Rev. Lett. 119,
223603 (2017).

[28] Z. Vernon, M. Menotti, C. Tison, J. Steidle, M. Fanto, P.
Thomas, S. Preble, A. Smith, P. Alsing, M. Liscidini et al., Opt.
Lett. 42, 3638 (2017).

[29] B. Blauensteiner, I. Herbauts, S. Bettelli, A. Poppe, and H.
Hübel, Phys. Rev. A 79, 063846 (2009).

[30] A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, Phys.
Rev. Lett. 106, 013603 (2011).

[31] K. Y. Spasibko, T. S. Iskhakov, and M. V. Chekhova, Opt.
Express 20, 7507 (2012).

[32] K. Wakui, Y. Eto, H. Benichi, S. Izumi, T. Yanagida, K. Ema,
T. Numata, D. Fukuda, M. Takeoka, and M. Sasaki, Sci. Rep. 4,
4535 (2014).

[33] J. Huang and P. Kumar, Phys. Rev. A 40, 1670 (1989).
[34] V. Ansari, J. M. Donohue, M. Allgaier, L. Sansoni, B. Brecht,

J. Roslund, N. Treps, G. Harder, and C. Silberhorn, Phys. Rev.
Lett. 120, 213601 (2018).

[35] W. P. Grice and I. A. Walmsley, Phys. Rev. A 56, 1627
(1997).

[36] N. Quesada and J. E. Sipe, Phys. Rev. A 90, 063840 (2014).
[37] N. Quesada and J. E. Sipe, Phys. Rev. Lett. 114, 093903 (2015).
[38] N. Quesada, G. Triginer, M. D. Vidrighin, and J. E. Sipe

(unpublished).
[39] F. G. Mehler, Journal für die reine und angewandte Mathematik

66, 161 (1866).
[40] F. Graffitti, J. Kelly-Massicotte, A. Fedrizzi, and A. M.
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