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Generalized time delay, velocity, and absorption in dispersive and absorbing media
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The time delay and absorption of ultrashort electromagnetic pulses are defined from the local maximum of the
wave’s electric field and envelope. A time-domain framework is derived to obtain, in dispersive and absorbing
linear media, the expressions of the phase and group time delays, and of the absorption undergone by the
wave. These expressions are related to the dielectric properties of the medium but also to the local curvature
of the wave’s electric field. The result provides a unified and rational picture of the propagation, in dispersive
and absorbing media, of ultrashort electromagnetic pulses in transmission and attenuated total reflection (ATR)
geometries.
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I. INTRODUCTION

The concept of phase and group velocities plays a major
role in optics, quantum mechanics, plasma physics, and geo-
physics [1–3]. The concept of group velocity goes back to
Hamilton in 1839 [4]. The definition of the group velocity
of a wave-packet was then given by Lord Rayleigh [5].
The propagation of short pulses in a dispersive medium was
developed by Sommerfeld and Brillouin [6], analyzing the
group velocity for complex wave numbers. In 1970, Garrett
and McCumber [7] theoretically studied the propagation of
a Gaussian pulse through a slab of absorbing medium and
demonstrated that the envelope’s maximum could propagate
with abnormal group velocity. In particular, the peak of the
pulse can follow the group velocity, and be greater than c or
even negative. Due to the attenuation of various parts of the
pulse, the reshaping of the envelope affects the location of the
pulse’s peak. This result, experimentally confirmed by Chu
and Wong [8], triggered many theoretical and experimental
studies [9–20].

The generalization of the group velocity to absorbing me-
dia requires one to deal with the complex dispersion relation
ω(k, r). Many attempts were made to give meaning to a com-
plex wave number, frequency, or even time [9–14]. Among
them, two theories can be highlighted. The first is based on
the saddle point expansion [9–12]. To obtain the asymptotic
expansion of the propagated field, for large values of the
propagating distance, the saddle points of the complex phase
function are investigated. One finds that the central wave
number is not conserved in absorbing media, but undergoes
a drift proportional to the imaginary part of the group velocity
calculated at a shifted frequency. The second was developed
by Peatross et al. [13], and is based on the centroid of power
flow of the electromagnetic wave using the Poynting vector.
In their analysis, the propagation velocity is defined in terms
of net group and reshaping delays, it is always significant even
in case of strong attenuation or dispersion, and it requires
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knowledge of the signal over the frequency domain. However,
the pulse reshaping not only affects the definition of the
time delays, it also modifies the attenuation of the pulse
maximum, requiring an effective absorption coefficient taking
into account dispersion. But this aspect received much less
attention, as in the case of reflection geometries. For instance,
the question of the time delay after attenuated total reflection
(ATR) in absorbing media still remains open.

Here, we present a time domain framework that extends
the definitions of time delays, velocities, and absorptions for
the propagation of electromagnetic pulses through slabs of
absorbing media, but also in reflection geometries such as
ATR. This framework is based on the perturbation analysis
of the transfer functions.

The following notations and conventions will be used
relative to an electric field E(t ): the Fourier trans-
form in the frequency domain is Ẽ(ω) = F[E](ω) =

1√
2π

∫ ∞
−∞ E(t ) e−i ωtdt , the analytical signal is Ê(t ) = E(t ) +

i(HE)(t ), where (HE)(t ) is the Hilbert transform, and the
field envelope is E (t ) = |Ê(t )| [21]. We consider a general
transfer function H (t ) which provides the output field E(t )
from an input field. After a change in the system (thickness,
dielectric constant, incident angle, etc.), the transfer func-
tion is changed into H (t ) + �H (t ) and the new output is
˜̂E+(ω) = ˜̂E(ω)[1 + ρ̃(ω)], where ρ̃(ω) = �H̃ (ω)/H̃ (ω) is

the relative perturbation.

II. GENERALIZED TIME DELAYS AND ATTENUATIONS

We consider the shift in time and amplitude of the max-
imum of the electric field E(t ), given by (i) E(1)(tM ) =
ReF−1[i ω ˜̂E(ω)](tM ) = 0, where tM is the time of the
local maximum. After perturbation, we similarly obtain
(ii) ReF−1[i ω ˜̂E(ω)[1 + ρ̃(ω)]](tM + �tφ ) = 0, where �tφ
is the maximum delay shift. Assuming small perturbations so
that �tφ � 1/ω, taking the difference between (i) and (ii),
and introducing

�E (t ) = F−1[ ˜̂E(ω) ρ̃(ω)](t ), (1)
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one obtains the delay shift of the maximum,

�tφ = −Re �
(1)
E (tM )

E(2)(tM )
, (2)

related to the phase delay time. The variation of the maximum
amplitude �E = E+(tM + �tφ ) − E(tM ) is then obtained us-
ing Eq. (2) and (i). The relative variation of the amplitude
maximum is

�E

E
= Re �E (tM )

E(tM )
. (3)

The peak evolution of the field’s envelope E (t ), re-
lated to the group velocity, is provided by E (1) = 0 ⇔
Re [Ê(t ) Ê(1)∗(t )] = 0. This condition is applied to Ê(t) at the
envelope’s peak time t0 and to Ê+(t) at time t0 + �tg , where
�tg is the group delay time of the envelope’s peak. Assuming
small perturbations, one obtains

�tg = −Re
[(

Ê�
(1)∗
E

)
(t0) + (

�EÊ(1)∗)(t0)
]

Re[(ÊÊ(2)∗)(t0) + (Ê(1)Ê(1)∗)(t0)]
. (4)

Last, the relative variation of the field intensity I = E2(t ) is

�I

I
= 2 Re[Ê�∗

E](t0)

[ÊÊ∗](t0)
. (5)

The framework for the calculation of the time delays and
attenuations in dispersive and absorbing media is provided by
Eqs. (1) to (5). The complex function �E (t ) plays a central
role in the transfer of the perturbation to the electric field.
These definitions rely on the local properties of E(t ) and
E (t ) around their maximum in the time domain through the
derivatives. We then expect the influence of the shape of the
pulse on the propagation constants, as shown by Peatross
et al. [13].

III. GENERALIZED VELOCITIES AND ABSORPTIONS

The transfer function for the propagation through a ho-
mogeneous slab of thickness z and complex refractive index
n̄(ω) = n(ω) − iκ (ω) is given by H̃ (ω) = e−i φ(ω), where
φ(ω) = ω n̄(ω) z/c [1]. For a small change �z, the relative
perturbation is ρ̃(ω) = −i ω n̄(ω)�z/c. Since ρ̃(ω) is propor-
tional to �z, the same is true for Eqs. (2) to (5). Defining
�E0(t ) = F−1[ ˜̂E(ω)n̄(ω)](t ), so that �E = −�z�

(1)
E0(t )/c,

we then obtain consistent definitions of the phase and group
velocities vφ and vg , associated with the field and envelope
velocities, respectively:

vφ = �z

�tφ
= c

E(2)(tM )

Re �
(2)
E0(tM )

(6)

vg = �z

�tg
= c

Re[(ÊÊ(2)∗)(t0) + (Ê(1)Ê(1)∗)(t0)]

Re
[(

Ê�
(2)∗
E0

)
(t0) + (

�
(1)
E0Ê

(1)∗)(t0)
] . (7)

The field and envelope absorptions αφ and αg are defined
by E(z) = e−αφz and E (z) = e−αgz, and are derived from
Eqs. (3) and (5) as

αφ = 1

c

Re �
(1)
E0(tM )

E(tM )
and αg = 2

c

Re
[
Ê�

(1)∗
E0

]
(t0)

[ÊÊ∗](t0)
. (8)

Considering now the instructive case of a pulse duration
converging toward 0, so that E(t ) is a Dirac function δ(t ),
the spectrum uniformly spreads over all frequencies, and the
physically realistic refractive index has to converge toward
unity at high frequencies. One then obtains �E0(t ) = δ̂(t )
and finds that Eqs. (6) and (7) converge toward c. Therefore,
vφ and vg both reduce to c as a response to a discontinuity,
consistently with the Brillouin and Sommerfeld principle of
non-superliminality of transients [6].

We now apply this framework to practical examples, and
show that we can obtain simple and efficient expressions for
the velocities and absorptions in dispersive and absorbing me-
dia. For that purpose, we expand ρ̃(ω) in series of powers of
ω. The relative perturbation is ρ̃(ω) = ∑∞

p=0(Ap − i Bp )ωp

and then Eq. (1) is

�E (t ) =
∞∑

p=0

(−i)p(Ap − i Bp )
[
E(p) + i(HE)(p)](t ). (9)

We expand n̄(ω) in formal Puisieux series around frequency
ω0, so n(ω) = n−1/ω + ∑∞

p=0
np

p ! (ω − ω0)p and κ (ω) =
κ−1/ω + ∑∞

p=0
κp

p ! (ω − ω0)p, with np = n(p)(ω0) and κp =
κ (p)(ω0) for p � 0. The term κ−1 takes into account the
special case of constant absorption α0 for which κ−1 = α0c/2.

For a chirped Gaussian pulse ECG(t ) =
e− 1

2 a2t2
cos (ω0t + 1

2bt2), the Hilbert transform is

(HECG)(t ) = e− 1
2 a2t2

sin (ω0t + 1
2bt2) [21]. Introducing

the developments of n(ω) and κ (ω) into Eq. (9) at peak
positions t0 = tM = 0, one obtains the following expressions
for the velocities and absorptions at order 2:

�tφ =
[

ω0

a2 + ω2
0

n−1 + n0 + 2a2ω0

a2 + ω2
0

n1

+ 3a4 + a2ω2
0 − 3b2

2
(
a2 + ω2

0

) n2 − b

a2 + ω2
0

κ0

− 2b ω0

a2 + ω2
0

κ1 − b

2

6a2 + ω2
0

a2 + ω2
0

κ2

]
�z

c
, (10)

�tg =
[
n0 + ω0 n1 + 3(a4 − b2)

2a2
n2 − b

a2
κ0

−b ω0

a2
κ1 − 3b κ2

]
�z

c
, (11)

αφ = 1

c

[
κ−1 + ω0κ0 + a2κ1 − 1

2
a2ω0κ2 + b n1 + 1

2
b ω0n2

]

and αg = 2αφ. (12)

The propagation constants exhibit a clear dependence on
the shape parameters of the pulse, a and b, as well as on the
power series expansions of n(ω) and κ (ω). Both time delays
and absorptions depend on dispersive np and attenuative κp

parameters to take into account the complicated reshaping
during propagation. For a quasi-monochromatic (a → 0) and
unchirped (b = 0) pulse, we retrieve back the classical expres-
sions vφ = c/n0, vg = c/(n0 + n1ω0), αφ = α0/2, and αg =
α0 as expected. A comparison with numerical simulation of
the propagation of the chirped Gaussian pulses through a
dispersive and absorbing medium, using the transfer function
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(a) (b)

(c) (d)

(e) (f)

FIG. 1. Numerical calculation of the propagation constants for a chirped Gaussian pulse propagating in a dispersive and absorbing medium
with n0 = 3.5, n1 = 7, n2 = 8, κ0 = 2, κ1 = 2, and κ2 = 0. (a) Electric field of the pulse. (b) Normalized spectrum of the pulse (dotted line),
refractive index n (black line), and extinction coefficient κ (red line) of the slab medium. (c)–(f) Propagation constants vφ (c), αφ (d), vg (e), and
αg (f) for b = −0.15 (black) and b = +0.15 (red), from numerical simulation (dots) and Eqs. (10) (solid line). The dashed lines are classical
theory.

in the Fourier space H̃ (ω) = e−iφ(ω), is presented Fig. 1,
introducing the pulse envelope width W = √

8 ln 2/a and the
central period T = 2π/ω0. The agreement is very good with
Eqs. (10)–(12) even for very short pulses, and we observe
in Figs. 1(c)–1(f) a clear difference for opposite chirp b.
Most interestingly, we also observe superluminal and negative
group velocities as outlined by Garrett and McCumber for
Gaussian pulses [7]. The divergence in the group velocity in
Fig. 1(e) originates from the zeroing of �tg due to the coun-
terbalance between the positive terms from dispersion and the
negative terms from absorption, when b > 0. Furthermore, the
parameters converge toward constant values for broad pulses,
even though these values are different from classical ones due
to the presence of chirp. A residual deviation may also appear
for very short pulses, because a higher order development
would be necessary.

We now consider the processing of signals known only
locally, either because the analytic signal cannot be calculated
from elementary functions or because the signal is obtained
from experimental data. The calculation is based on the
sinc(x) = sin(πx)/πx sampling approximation, and on the
property that the Hilbert transform of sinc(x) is (H sinc)(x) =
[1 − cos(πx)]/πx [22]. The approximations of E(p)(t ) and
(HE)(p)(t ) are found in Eqs. (A1) in the Appendix. Inserting

these equations into Eqs. (2)–(5) extends the calculation of the
delays, velocities, and absorptions related to real experimental
pulses. For most cases, a small-order development is sufficient
to achieve a very rapid convergence of the approximation.
Therefore, very few sampling points are required around the
point of interest to analyze the pulse propagation. This is
consistent with the picture that local knowledge of the electric
field is enough to fully characterize the propagation.

IV. WIGNER TIME DELAY IN ATR GEOMETRIES

Finally, we consider the attenuated total reflection (ATR)
geometry. Here, the incident electric field impinges on an
interface between two dispersive and absorbing media, with
an incident angle θ , and generates an evanescent wave which
extends into the second medium. The first and second me-
dia have a complex refractive index n̄q (ω) = nq (ω) − iκq (ω)
with q = 1 to 2, respectively. From the Snell-Descartes law
[1], the complex refraction angle ψ is given by cos ψ =√

1 − [(n̄1/n̄2) sin θ ]2, and the reflection transfer functions
H̃ s(ω) and H̃ p(ω) for s and p polarizations are found in
Appendix Eq. (A2). In the following, H̃ (ω) will refer either
to s or p polarizations.
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For small variations �nq and �κq of nq and κq , respec-
tively, the relative perturbation for ATR is

ρ̃(ω) = ρ̃1(ω) + ρ̃2(ω) =
2∑

q=1

Cq (ω)[�nq (ω) − i�κq (ω)],

(13)
where Cq (ω) = ( 1

H̃

∂H̃
∂nq

)(ω) stands for the complex constants

Cs
q and C

p
q detailed in Appendix Eq. (A3). Equation (13)

is inserted into Eqs. (1)–(5) to obtain the time delays and
absorptions for ATR geometry. We will consider two cases
of particular interest.

The first is ATR with small variations of n̄2 assuming n̄1

constant, as in time-domain ATR imaging [23]. At first order
in ω, and for a Gaussian pulse E(t ) = e− 1

2 a2t2
cos ω0t , the

phase delay time is given by

�tATR = − ω0

a2 + ω2
0

Im

[
ρ̃2(ω0) + a2 + ω2

0

ω0
ρ̃

(1)
2 (ω0)

]
, (14)

and the group delay time, also called the Wigner time delay,
is

�tATR
g = − Im ρ̃

(1)
2 (ω0), (15)

which provides a consistent description of the time delays in
total reflection with dispersive and absorbing media. Since
Eq. (15) only depends on the derivative of ρ̃2(ω), we retrieve
the result that �tATR

g = 0 for nondispersive, nonabsorbing
media [24]. In contrast, �tATR

g �= 0 in dispersive media, and
it also exhibits a divergence at critical angle. Absorptions can
similarly be obtained from Eqs. (3) and (5).

The second case is for n̄2(ω) constant, and for the electric
field impinging from an absorbing medium n̄1(ω). Under a
small change �θ of angle of incidence, ρ̃1(ω0, θ ) is

ρ̃
(1)
1 (ω0, θ ) = ∂

∂n1

(
1

H̃

∂H̃

∂θ

)
(ω0, θ )[n1 − i κ1]�θ (16)

and then �tATR
g = − Im ρ̃

(1)
1 (ω0, θ ). Since 1

H̃

∂H̃
∂θ

diverges at
critical angle, the same goes for ρ̃ (1) and for �tATR

g , as soon
as absorption, even a very low one, exists in the first medium.
Therefore, and contrary to the result without absorption [24],
one expects a diverging Wigner time delay at critical angle for
any realistic experiment since absorption is never zero. This
divergence at critical angle could be experimentally tested by
measuring the delay difference from an absorbing prism with
air or metal as the external medium.

V. CONCLUSION

In summary, we developed a framework that consistently
describes the time delay and absorption of short electromag-

netic pulses in dispersive and absorbing media. It provides
accurate definitions of phase and group velocities as well
as corresponding absorptions for pulses propagating through
dispersive and absorbing media, even for very short pulses
or when the group velocity is negative or superluminal. Both
time delays and absorptions depend on the balance between
dispersive and attenuation. The framework also provides a
rigorous processing of time delays in ATR geometry when
absorption is taken into account. These results can be used
in a variety of domains, such as frequency comb metrol-
ogy, carrier-envelope phase control, nonlinear optics, ultrafast
pulse propagation, or time-domain ATR imaging.

APPENDIX

Approximations of E(p)(t ) and (HE)(p)(t ) using the Sinc
expansion [22] at order N are

E(p)(t ) ≈
+N∑

m=−N

E(mτ ) sm(t ),

(HE)(p)(t ) ≈
+N∑

m=−N

E(mτ ) cm(t ), (A1)

with sm(t ) = sinc[(t − pτ )/τ ] and cm(t ) = (H sinc)[(t −
pτ )/τ ], where (H sinc)(t ) = [1 − cos(πt )]/πt , assuming
that the spectrum of E is null outside the interval
[−π/τ, π/τ ].

In ATR geometry, the reflection transfer functions H s(ω)
and H p(ω) for s and p polarizations, from a first medium with
complex refractive index n̄1 to a second one with n̄2, are given
by [1]

H̃ s (ω) = n̄1 cos θ − n̄2 cos ψ

n̄1 cos θ + n̄2 cos ψ
,

H̃p(ω) = n̄2 cos θ − n̄1 cos ψ

n̄2 cos θ + n̄1 cos ψ
, (A2)

with cos ψ =
√

1 − [(n̄1/n̄2) sin θ ]2, and the expressions of
Cq (ω) = 1

H̃

∂H̃
∂nq

for s and p polarizations are

Cs
1

n̄2
(ω) = Cs

2

n̄1
(ω) = 2 cos θ sec ψ

n̄2
2 − n̄2

1

,

C
p

1

n̄2
(ω) = −C

p

2

n̄1
(ω) = 2 cos θ sec ψ

[
1 − 2

(
n̄1
n̄2

sin θ
)2]

n̄2
1 cos2 ψ − n̄2

2 cos2 θ
.

(A3)
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