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We describe one-dimensional stationary scattering of a two-component wave field by a non-Hermitian matrix
potential which features odd-PT symmetry, i.e., symmetry with (PT )2 = −1. The scattering is characterized
by a 4×4 transfer matrix. The main attention is focused on spectral singularities which are classified into two
types. Weak spectral singularities are characterized by the zero determinant of a diagonal 2×2 block of the
transfer matrix. This situation corresponds to the lasing or coherent perfect absorption of pairs of oppositely
polarized modes. Strong spectral singularities are characterized by a zero diagonal block of the transfer matrix.
We show that in odd-PT -symmetric systems any spectral singularity is self-dual, i.e., lasing and coherent perfect
absorption occur simultaneously. A detailed analysis is performed for a case example of a PT -symmetric coupler
consisting of two waveguides, one with localized gain and another with localized absorption, which are coupled
by a localized antisymmetric medium. For this coupler, we discuss weak self-dual spectral singularities and
their splitting into complex-conjugate eigenvalues which represent bound states characterized by propagation
constants with real parts lying in the continuum. A rather counterintuitive restoration of the unbroken odd-PT -
symmetric phase subject to the increase of the gain-and-loss strength is also revealed. A comparison between
odd- and even-PT -symmetric couplers, the latter characterized by (PT )2 = 1, is also presented.
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I. INTRODUCTION

Spectral characteristics of waves interacting with a medium
having gain or losses can feature singularities. When this
happens, it is possible to observe complete absorption of
incident waves or emission of radiation propagating away
from the potential (in the absence of incident waves). Such
a type of absorption was predicted in [1] (see also [2]) for
electromagnetic waves incident on an absorbing layer. Later
total absorption and lasing were obtained for layered media
[3]. The current growing interest in the subject has been
triggered by recent works [4], where the term coherent perfect
absorption (CPA) was introduced. Nowadays the phenomenon
is studied in many physical settings [5].

Spectral singularities (SSs) represent wave numbers at
which the reflection and transmission coefficients become
infinite [6,7]. More generally, SSs in continuous spectra of
non-Hermitian operators can be defined as real poles of the
resolvent, and in the mathematical literature they have been
known and studied for several decades [8]. If a SS is a real
positive pole of the resolvent, it allows for a coherent lasing
solution [9,10]. A SS at a negative wave number corresponds
to CPA [4]. A CPA solution can also be viewed as an antilaser,
i.e., a time-reversed lasing solution [4,5], and therefore the
respective SS is often referred to as a time-reversed SS. When
a system obeys parity-time (PT ) symmetry [11], a SS and
time-reversed SS appear at the same wavelength [9,12]. This
means that in a PT -symmetric system any spectral singularity
is self-dual and the system can operate as a laser and as a
coherent perfect absorber simultaneously at the given wave-
length. Apart from PT -symmetric potentials, there exist other

situations where self-dual spectral singularities also occur
[10,13].

A non-Hermitian Hamiltonian with a SS is nondiagonaliz-
able [14]. This resembles a similar property of Hamiltonians
featuring exceptional points [15] which correspond to the
situation where two eigenvalues from the discrete spectrum
and the corresponding eigenvectors coalesce subject to the
change of some control parameter of the system. The anal-
ogy between SSs and exceptional points can be extended
further, since both of these phenomena may correspond to
the transition from purely real to complex spectra of the
Hamiltonian (also known as the transition from the unbroken
to the broken PT -symmetric phase). Indeed, it is well known
[16] that, subject to the change of some control parameter, a
PT -symmetric system can be driven to an exceptional point,
where two isolated eigenvalues coalesce and form a double
eigenvalue associated with a Jordan block (which means that
there is only one linearly independent eigenfunction associ-
ated with the double eigenvalue). Past the exceptional point,
the double eigenvalue splits into a pair of simple complex-
conjugate eigenvalues. In a similar way, a non-Hermitian
system can undergo the transition from a purely real to a
complex spectrum if changing some of its parameters triggers
a self-dual spectral singularity in the continuous spectrum
[13]. Past the self-dual spectral singularity, a pair of complex-
conjugate eigenvalues emerges from an interior point of the
continuous spectrum. This represents an alternative scenario
of the PT phase breaking [13,17].

An antilinear time-reversal operator T can be implemented
in physically different ways [18]. The first one corresponds to
the conventional bosonic time reversal characterized by the
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property T 2 = 1. This is the most used T operator in numer-
ous applications of PT symmetry in quantum mechanics [11]
and in other fields [19]. The description of the state of the
art given above refers precisely to this case, which will be
also termed as even-PT symmetry in what follows. In the
meantime, an alternative fermionic time reversal, character-
ized by the property T 2 = −1, has also been introduced in
the theory of non-Hermitian systems [20,21], but so far it has
received much less attention. Recently, we have shown [22]
that odd-PT symmetry (we use this term to distinguish the
PT symmetry with T 2 = −1 from the conventional even-
PT symmetry with T 2 = 1) naturally appears in modeling
wave propagation in combined PT -symmetric and anti-PT -
symmetric [23] media. The odd-PT -symmetric model intro-
duced in [22] was an example of a discrete optical system,
allowing one to explore the effects related to the intrinsic
degeneracy of the discrete spectrum, including PT -symmetry
breaking through exceptional points.

The goal of the present work is twofold. First, we intro-
duce an odd-PT -symmetric waveguiding system which takes
into account diffraction (or dispersion) of waves. Second,
we describe the scattering by a localized odd-PT -symmetric
potential, focusing on the emergence of spectral singularities.

The paper is organized as follows. The model is introduced
in Sec. II. In Sec. III we address some general characteristics
of scattering of two-component fields and discuss two types
of SSs. Analysis of the properties of the transfer matrix and
SSs in a system obeying odd-PT symmetry is presented
in Sec. IV. In Sec. V we perform detailed analysis of the
stationary scattering by a localized potentials in an odd-
PT -symmetric coupler and compare the results with those
obtained for scattering by conventional (even-)PT -symmetric
potentials. The results are summarized and discussed in
Sec. VI.

II. MODEL

We consider the one-dimensional stationary scattering
problem for a two-component field ψ = (ψ1, ψ2)T (here and
in the following the index T means transpose),

Hψ = k2ψ, (1)

where k is the spectral parameter and the Hamiltonian is
given by

H = − d2

dx2
σ0 + Û , Û =

(
U0(x) V2(x)
V2(x) U1(x)

)
. (2)

Here σ0 is the 2×2 identity matrix and all entries of the
complex-valued matrix potential Û vanish at infinity:

lim
x→±∞ U0,1(x) = 0, lim

x→±∞ V2(x) = 0. (3)

In order to impose specific conditions on the matrix poten-
tial Û (x), we first recall the definitions of the space inversion
P and odd-time-reversal T operators [18]

P : x → −x, T = iσ2K, (4)

where σ1,2,3 are the Pauli matrices and K is the conventional
elementwise complex conjugation Kψ = ψ∗ (here and in
the following an asterisk is used for complex conjugation

FIG. 1. Schematic of two waveguides which are locally cou-
pled through an antisymmetric medium characterized by V2(x ) =
−V ∗

2 (−x ). In the domain of coupling, the waveguides are doped
by active impurities resulting in gain +iV1(x ) and loss −iV1(x ). A
paraxial beam propagates along z axis directed toward the reader.

too). Obviously, P2 = 1, T 2 = −1, [P, T ] = 0, and hence
(PT )2 = −1 [in contrast to more-often-used even-parity-time
reversals for which (PT )2 = 1]. Note that the time-reversal
operator is defined up to the phase factor, i.e., one can consider
T = eiϕσ2K with arbitrary real phase ϕ.

We require the Hamiltonian to be odd-PT symmetric, i.e.,
to satisfy

[H,PT ] = 0, (5)

which is equivalent to the conditions

U0(x) = U ∗
1 (−x), V2(x) = −V ∗

2 (−x). (6)

The latter condition requires the coupling V2(x) to be anti-
PT -symmetric, with the even-time-reversal operator being
simply the complex conjugation K [23], which corroborates
the coupled-waveguide model introduced in [22]. At the same
time, as shown below in Sec. V, even a simpler case of
real-valued V2(x) has physical meaning and leads to nontrivial
results.

The model (1) and (2) with the Hamiltonian satisfying
the requirements (5) and (6) may describe several physical
settings. Recalling that optical couplers allow for simulating
symmetries of almost any type (see, e.g., [24]), and hence
of the odd-PT symmetry [22] too, below we interpret (13)
as an odd-PT -symmetric dispersive coupler. To this end, we
consider two transparent planar waveguides located in the
plane (x, z) and separated along the y axis as illustrated in
Fig. 1. The dielectric permittivity of such a guiding medium
is given by

ε0{1 + cx (x)cy (y) + ε̃(y + y0)[f (x) + iγ (x)]

+ ε̃(y − y0)[f (x) − iγ (x)]}, (7)

where ε̃(y) is localized around y = 0 such that the overlap
of ε̃(y + y0) and ε̃(y − y0) is negligible (2y0 is the distance
between the waveguide centers), the functions ±iγ (x) de-
scribe the distribution of gain and loss in the waveguides, f (x)
describes x-dependent distribution of the permittivity, f (x)
and γ (x) are considered localized in the domain |x| < �/2,
and the coupling between the waveguides, also localized in
the interval |x| < �/2, is described by the complex function
cx (x)cy (y). Assuming the modulation of the dielectric per-
mittivity to be sufficiently small, a monochromatic incident
TE beam (i.e., the beam at z = 0) can be considered to be TE
polarized at z > 0. Then the leading terms of the electric field
are sought in the form

E = ei(κ2/k0 )z−iωt [�1(x, z)A1(y) + �2(x, z)A2(y)], (8)
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where k0 = ω/c, ω is the frequency, and A1,2(y) are the
transverse modes of the respective waveguides. In our case
Aj (y) = A(y − (−1)j y0), where A(y) is the eigenmode solv-
ing the spectral problem

d2A

dy2
+ ε̃0(y)A = κ2A, (9)

with κ2 being a real spectral parameter. The modes are chosen
to be normalized: (A,A) = 1 [we use the standard inner
product (A,B ) = ∫

A∗(y)B(y)dy]. The functions �1,2 are
the field envelopes, which are slowly varying in the waveguide
planes (i.e., in the planes y = ±y0).

Substituting (8) into the Helmholtz equation, in the parax-
ial approximation one obtains

i
∂�1

∂z
+ ∂2�1

∂x2
− [V0(x) + iV1(x)]�1 − V2(x)�2 = 0,

i
∂�2

∂z
+ ∂2�2

∂x2
− [V0(x) − iV1(x)]�2 − V2(x)�1 = 0. (10)

Here we use dimensionless variables redefining
√

2k0x → x

and k0z → z, as well as the following definitions for the
coefficients:

V0(x) = −f (x)

2
(A, ε̃A), V1(x) = −γ (x)

2
(A, ε̃A). (11)

The coupling is assumed to fulfill the requirement

V2(x) = −cx (x)

2
(A1, cyA2) = c∗

x (−x)

2
(cyA2, A1). (12)

Finally, looking for stationary solutions �(z, x) = eiβzψ (x),
we arrive at the scattering problem

−ψ1,xx + [V0(x) + iV1(x)]ψ1 + V2(x)ψ2 = k2ψ1,

−ψ2,xx + [V0(x) − iV1(x)]ψ2 + V2(x)ψ1 = k2ψ2, (13)

where k2 = −β. Thus we obtained the particular case of
model (1) and (2), where U0(x) = U ∗

1 (x) = V0(x) + iV1(x).
The following observation is in order here. It follows from

the explicit derivation of the model that eventual imaginary
parts of the eigenvalues k2, and thus the imaginary parts of the
propagation constant β, correspond to solutions growing or
decaying along the propagation distance z remaining localized
in the waveguide planes (cf. [2]).

III. GENERAL FORMALISM

A. Jost solutions, transfer matrix, and scattering coefficients

First, we introduce some general definitions and scattering
characteristics for the spinor system (1) and (2), which will
be used below. No specific symmetry of the matrix potential
Û (x) is assumed so far, i.e., the condition (5) is not imposed
in this section. It is yet assumed that all entries of Û (x) are
localized [i.e., Eqs. (3) hold] and tend to zero fast enough
such that the continuous spectrum of scattering states occupies
the real semiaxis k2 � 0. As usual, the Jost solutions of the
scattering problem (1) and (2) are defined by their asymptotics

at x → −∞ (defined by j = 1) and at x → ∞ (defined by
j = 2):

φ1j (x, k) →
(

1
0

)
eikx = |↑〉eikx, (14a)

φ2j (x, k) →
(

0
1

)
eikx = |↓〉eikx, (14b)

φ3j (x, k) →
(

1
0

)
e−ikx = |↑〉e−ikx, (14c)

φ4j (x, k) →
(

0
1

)
e−ikx = |↓〉e−ikx . (14d)

The vectorial character of the two-component solutions
makes it convenient to use the terminology of the up-polarized
|↑〉 and down-polarized |↓〉 states. While we are primarily
interested in the behavior of the system at real wave numbers
k, the Jost solutions can be defined in the complex k plane by
the analytic continuation from the real axis.

The 4×4 transfer matrix M (k) and its inverse M−1(k) are
introduced through the relations

φj1(x, k) =
4∑

m=1

Mmj (k)φm2(x, k), (15)

φj2(x, k) =
4∑

m=1

(M−1)mj (k)φm1(x, k). (16)

Using standard arguments of the ordinary differential equation
theory, one can prove that

det M (k) = 1. (17)

From the definition of the Jost functions, it is clear that
both the transition and reflection of an incident polarized wave
can occur with, α → β, and without, α → α, inversion of
polarization (here α and β stand for the states ↑ and ↓).
Correspondingly, we introduce reflection rαβ and transmission
tαβ coefficients, which are defined through the asymptotics
of the solutions φL,R

α (x), where the upper indices L and R

stand for left and right incidence, respectively. To define such
solutions it is convenient to consider only positive k > 0 and
identify the left eikx |α〉 and right e−ikx |α〉 incident waves.
Correspondingly, we have

φL
↑ →

{
eikx |↑〉 + rL

↑↑e−ikx |↑〉 + rL
↑↓e−ikx |↓〉, x → −∞

tL↑↑eikx |↑〉 + tL↑↓eikx |↓〉, x → +∞,

φL
↓ →

{
eikx |↓〉 + rL

↓↓e−ikx |↓〉 + rL
↓↑e−ikx |↑〉, x → −∞

tL↓↓eikx |↓〉 + tL↓↑eikx |↑〉, x → +∞,

φR
↑ →

{
e−ikx |↑〉 + rR

↑↑eikx |↑〉 + rR
↑↓eikx |↓〉, x → +∞

tR↑↑e−ikx |↑〉 + tR↑↓e−ikx |↓〉, x → −∞,

φR
↓ →

{
e−ikx |↓〉 + rR

↓↓eikx |↓〉 + rR
↓↑eikx |↑〉, x → +∞

tR↓↓e−ikx |↓〉 + tR↓↑e−ikx |↑〉, x → −∞.

Finally, comparing these asymptotics with the definitions
(14)–(16), we can express the reflection and transmission
coefficients through the elements of the transfer matrix. These
expressions are presented in Appendix A.
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B. Spectral singularities, CPA, and lasing

Now we turn to SSs and their physical implications. Since
any scattering state ψ (x) from the continuous spectrum can
be represented by a linear combination of the Jost solutions,
in the limit x → −∞ it has the asymptotics

ψ (x) → a1e
ikx |↑〉 + a2e

ikx |↓〉 + a3e
−ikx |↑〉 + a4e

−ikx |↓〉,
(18)

where aj are coefficients, and for k > 0 the terms proportional
to eikx and e−ikx correspond to the waves propagating towards
and away from the potential, respectively. Similarly, in the
limit x → ∞ the same scattering state behaves as

ψ (x) → b1e
ikx |↑〉 + b2e

ikx |↓〉 + b3e
−ikx |↑〉 + b4e

−ikx |↓〉,
(19)

and for k > 0 the terms proportional to eikx and e−ikx corre-
spond to the waves propagating away from and towards the
potential, respectively. Next, we observe that column vectors

a = (a1, a2, a3, a4)T, b = (b1, b2, b3, b4)T (20)

are related by the transfer matrix

b = Ma. (21)

Since the transfer matrix couples two right- and left-
propagating waves with two polarizations, it is convenient to
analyze its block representation

M (k) =
(
M11(k) M12(k)
M21(k) M22(k)

)
, (22)

where Mij are 2×2 matrices. Indeed, the diagonal blocks
Mjj describe total transmission, while the antidiagonal
blocks Mij (i 	= j ) describe total reflection.

Formally, SSs are determined by properties of the diagonal
block M22(k) at k ∈ R. Since, however, M22(−k) = M11(k)
for any real k, below we consider SSs only at k > 0. This is
convenient for the analysis of the reflection and transmission
coefficients introduced above. Thus, in this approach, the
time-reversed SS is determined by the properties of the block
M11(k) at k > 0.

It is evident from the formulas for the scattering data shown
in Appendix A that their singularities are expected when

�(k
) = 0, (23)

where �(k) := det M22(k) and k
 is real. The lasing cor-
responds to the existence of only outgoing solutions for a
given k = k
 > 0, i.e., to solutions ψlas(x) whose asymptotic
behavior in (18) and (19) is described by the column vectors

alas = (0, 0, a3, a4)T, blas = (b1, b2, 0, 0)T. (24)

For such solutions Eq. (21) reduces to

M22(k
)

(
a3

a4

)
= 02,1, (25a)

(
b1

b2

)
= M12(k
)

(
a3

a4

)
, (25b)

where 0m,n stands for an m×n zero matrix.

Thus there exist two possibilities for realization of the
lasing. The first one corresponds to the case when the determi-
nant of matrix M22(k
) is zero [i.e., �(k
) = 0] but some of
the matrix elements of M22(k
) are nonzero. In this case the
amplitudes of left-incident waves a3 and a4 are determined by
Eq. (25a). Such a spectral singularity will be called weak. The
second possibility corresponds to the case when all entries
of the 2×2 block M22 are zero, i.e., M22(k
) = 02,2. This
singularity will be referred to as strong; it corresponds to the
arbitrary choice of the amplitudes a3,4, including the cases
when one of them is zero.

Similarly, the CPA corresponds to solutions

aCPA = (a1, a2, 0, 0)T, bCPA = (0, 0, b3, b4)T, (26)

i.e., to the conditions

M11(k
)

(
a1

a2

)
= 02,1,

(
b3

b4

)
= M21(k
)

(
a1

a2

)
. (27)

Such k
 > 0 is a time-reversed SS, which is either weak,
when det M11(k
) = 0 but M11(k
) 	= 02,2, or strong, when
M11(k
) = 02,2.

In the case of a strong SS one has

det M (k
) = − det M12(k
) det M21(k
). (28)

This relation, together with Eq. (17), means that antidiagonal
blocks Mij (k
) are invertible. Using a similar argument, in the
case of a weak SS, one can establish that antidiagonal blocks
Mij (k
) are nonzero matrices. However, their determinants
in principle may acquire the zero value. For a given weak
singularity let det M12(k
) = 0. Then, at least one of the
eigenvalues of M12(k
) is zero. Also, let λ be the second
eigenvalue (it can be zero too). Then, by the Schur decomposi-
tion, the nonzero matrix M12(k
) by a unitary transformation
Q can be reduced to the upper triangular matrix of the
form

M12(k
) = Q

(
0 μ

0 λ

)
Q−1, (29)

where μ is a complex number. Hence, [M12(k
)]2 =
λM12(k
). Thus applying M12(k
) to both sides of Eq. (25b),
we obtain that (b1, b2)T is an eigenvector of M12(k
) corre-
sponding to the eigenvalue λ. Similarly, if for some CPA solu-
tion one has det M21(k
) = 0, then (b3, b4)T is an eigenvector
of M21(k
).

Summarizing, for any CPA (j = 1) or lasing (j = 2) solu-
tion of the potential characterized by a transfer matrix with a
noninvertible antidiagonal block Mij (i 	= j ), the field from
one side of the potential is an eigenvector of the diagonal
block Mjj , while the field from the opposite side of the
potential is an eigenvector of the antidiagonal block.

IV. SELF-DUAL SPECTRAL SINGULARITIES

The definitions and properties described in the preceding
section did not assume the system to admit any particular
symmetry. In this section we use the odd-PT symmetry (5)
to obtain additional information on the scattering properties.
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Since the Jost solutions are defined uniquely by their
asymptotics, odd-PT symmetry results in the relations

PT φ11(x, k) = iφ22(x, k∗),

PT φ31(x, k) = iφ42(x, k∗),

PT φ21(x, k) = −iφ12(x, k∗),

PT φ41(x, k) = −iφ32(x, k∗).

Using these formulas, one can establish the property

M−1(k∗) = SM∗(k)S, (30)

where S = σ0 ⊗ σ2, which in the explicit form means that

M−1(k∗) =

⎛
⎜⎜⎜⎝

M∗
22 −M∗

21 M∗
24 −M∗

23

−M∗
12 M∗

11 −M∗
14 M∗

13

M∗
42 −M∗

41 M∗
44 −M∗

43

−M∗
32 M∗

31 −M∗
34 M∗

33

⎞
⎟⎟⎟⎠, (31)

where all matrix elements on the right-hand side are evaluated
at k (not at k∗).

Now we prove that any SS, either weak or strong, is self-
dual, i.e., that any SS at the wave number k
 is always accom-
panied by the time-reversed SS at the same wave number k
.
As discussed above, for the strong SS with M22(k
) = 02,2,
the matrices M12 and M21 are invertible. Thus, at k = k
 we
have [25]

M−1 =
(

02,2 M−1
21

M−1
12 −M−1

12 M11M−1
21

)
. (32)

Comparing this expression with (30) [or (31)], we observe that
the block 11 of M−1 has the form (below, the blocks of M−1

are denoted by M̃ij , with i, j = 1, 2)

M̃11 =
(

M∗
22 −M∗

21

−M∗
12 M∗

11

)
. (33)

Thus M22(k
) = 02,2 implies M11(k
) = 02,2. The converse
can be proven in a similar way: If M11(k
) = 02,2, then
M22(k
) = 02,2.

Now we turn to weak singularities, i.e., assume that
�(k
) = det M22(k
) = 0. Suppose that a weak SS is not self-
dual, i.e., det M11(k
) 	= 0. Since the entire transfer matrix
M (k
) is invertible, we conclude that there exists an invertible
matrix C1(k
), defined as

C1(k
) = M22(k
) − M21(k
)[M11(k
)]−1M12(k
), (34)

and the block 22 of the inverse matrix M−1(k
) is equal to
[C1(k
)]−1 [see [25] or formula (B2) in Appendix B]. On the
other hand, as follows from (31), the determinant of this block
is equal to det M∗

22(k
) and the latter is equal to zero. Hence
the determinant of [C1(k
)]−1 is zero, which contradicts the
invertibility of C1(k
). The contradiction can be removed only
if we admit that det M11(k
) = 0. Therefore, det M22(k
) =
0 implies det M11(k
) = 0. The converse statement, i.e., that
det M11(k
) = 0 implies det M22(k
) = 0, can be proven in
a similar way, but employing the matrix

C2(k
) = M11(k
) − M12(k
)[M22(k
)]−1M21(k
) (35)

with the formula for the inverse of the block matrix (B3).

Thus, we have proven that both strong and weak spectral
singularities are self-dual. This result extends the known prop-
erty of spectral singularities of (even)-PT -symmetric systems
[9] to the case of odd-PT symmetry.

Alternatively, the self-dual nature of any spectral singular-
ity can be established using the property of PT symmetry.
Indeed, from the asymptotic behavior of lasing and CPA
solutions it follows that applying the PT operator to a lasing
solution with k = k
, one obtains a CPA one with the same
wave vector k
 (and vice versa). Thus lasing and CPA always
take place simultaneously, i.e., at the same wave vector k
.

Let us now assume the spectral parameter k to be complex
valued and consider the matrix functions Mij (k) defined in
the complex plane. Let us also assume that the matrix potential
Û (x) depends on one or several real parameters, say, vj

(j = 0, 1, . . .), and that k
 > 0 is a (self-dual) weak spectral
singularity for given values of the parameters, say, for v
j .
Then, subject to the variation of some of the parameters vj ,
the self-dual spectral singularity k
 either moves along the
real axis remaining self-dual or disappears. The latter case
corresponds to the situation when the zeros of det M11(k)
and det M22(k) split [26] and move to the complex plane.
As a result, a pair of complex-conjugate eigenvalues emerges
in the spectrum of the Hamiltonian. Such a splitting of the
self-dual spectral singularity into a complex-conjugate pair is
one of the possible scenarios of the PT -symmetry breaking,
different from the coalescence of the discrete eigenvalues at
an exceptional point [13].

Like in even-PT -symmetric systems, the described split-
ting of a self-dual SS is constrained by the symmetry. Indeed,
suppose that for some complex k0 we have det M22(k0) = 0,
but det M11(k∗

0 ) 	= 0. Then, as follows from Appendix B,
C1(k∗

0 ) is invertible and the lower diagonal block of M−1(k∗
0 )

is equal to [C1(k∗
0 )]−1. However, from the explicit expression

(31) it follows that the determinant of the latter block is
equal to [det M22(k0)]∗, which is zero. This contradicts the
invertibility of C1(k∗

0 ). The contradiction can be lifted only if
we admit that det M11(k∗

0 ) = 0.
Similarly, one can prove that if det M11(k0) = 0, then

det M22(k∗
0 ) = 0. In other words, in a PT -symmetric system,

roots of det M11(k) and det M22(k) are either self-dual or
complex conjugate.

V. EXAMPLE

A. Specific model

Now we turn to the specific model (13), considering

V0,1(x) = V0,1(−x), V2(x) = −V2(−x), (36)

where V0(x), V1(x), and V2(x) are real-valued functions (see
also Fig. 1 for a schematic). According to (3), we require
limx→±∞ V0,1,2(x) = 0.

For the particular form of Hamiltonian (2) corresponding
to the model (36) one can identify additional linear σ3P and
antilinear σ1K symmetries

[H, σ3P] = [H, σ1K] = 02,2. (37)

These symmetries lead to additional relations among the
blocks of the transfer matrix M (k), which means that only the
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upper blocks M11 and M12 are sufficient to know the entire
transfer matrix (or its inverse). Indeed, σ1K symmetry means
that for real k the transfer matrix can be represented as

M =
( M11 M12

σ1M∗
12σ1 σ1M∗

11σ1

)
. (38)

Using the symmetry σ3P and the expression for the inverse
transfer matrix (31), one obtains

M−1 =
(

σ2M∗
11σ2 σ2M∗

12σ2

σ3M12σ3 σ3M11σ3

)
. (39)

Furthermore, analyzing the 11 and 12 blocks of the identity
MM−1 = I (where I is 4×4 identity matrix), written in terms
of (38) and (39), one obtains the matrix relations connecting
blocks M11 and M12 expressed in terms of the matrices N1 =
M11σ2 and N2 = M12σ3:

N1N ∗
2 = N2N1, (40a)

N 2
2 − N1N ∗

1 = σ0. (40b)

Let α1,2(k) be the two eigenvalues of the matrix N2(k). From
Eq. (40b) we have that

|det M11|2 = det
(
σ0 − N 2

2

) = (
1 − α2

1

)(
1 − α2

2

)
. (41)

Thus, any self-dual spectral singularity [i.e., the moment when
det M11(k
) = det M22(k
) = 0] takes place when at least
one of the eigenvalues of M12σ3 is equal to either +1 or −1.

If k is not a spectral singularity, and thus N1(k) is invert-
ible, from Eq. (40a) we obtain that N2 and N ∗

2 are similar, i.e.,
they share the same eigenvalues which are either a complex-
conjugate pair or both real. In the latter case they must satisfy
α1,2 > 1 or α1,2 < 1. Thus, if k is not a spectral singularity,
then det M12(k) = − det N2(k) is real.

Let now k = k
. Consider a CPA solution. From the rela-
tion a = M−1b [see (21)] and from the explicit expressions
(38) and (39) one can deduce that

N 2 b̃ = b̃, (42)

where N = σ3M∗
12(k
) and b̃ = σ2(b3, b4)T. Thus the CPA

solution incident from +∞ (up to the normalization ampli-
tude) can be computed directly using the antidiagonal blocks
of the transfer matrix at the SS. The result (42) also means
that at least one of the eigenvalues of N is either +1 or −1
and hence M12(k
) has at least one nonzero eigenvalue. If
additionally det M12(k
) = 0, i.e., one of the eigenvalues of
the block M12(k
) is zero, then det N = 0 and we conclude
that |Tr N | = |Tr M12(k
)| = 1. Thus the second eigenvalue
of M12(k
) must be either 1 or −1. This also leaves us with
only one of two possibilities discussed above in Sec. III B: If
det M12(k
) = 0, then (b3, b4)T is an eigenvector of M21(k
)
corresponding to either 1 or −1 eigenvalue (which corrobo-
rates with the respective conclusion made above).

B. Spectral singularities of coupled waveguides

Below, for the sake of illustration, we consider the model
of the optical coupler (13), with simplified piecewise constant

potentials

V0,1(x) =
{
v0,1, |x| < �/2

0, |x| > �/2,
(43)

V2(x) =
⎧⎨
⎩

−v2, x ∈ (−�/2, 0)

v2, x ∈ (0, �/2)
0, |x| > �/2,

(44)

where the amplitudes v0,1,2 are real. It has been shown
above that any spectral singularity is self-dual in an odd-
PT -symmetric system. The existence of strong SSs requires
simultaneous solution of four complex equations ensuring
zero values of the entries of Mjj , which seems to be hardly
possible in our system where only four real-valued parameters
are available: v0,1,2 and �. Therefore, we look for weak
SSs. To this end, it is sufficient to satisfy only one equation
det M11(k
) = 0, and the equation det M22(k
) = 0 will be
satisfied automatically. Since det M11(k) is a complex-valued
function of a real parameter k (recall we are interested only in
real roots k
), in order to find a weak SS one needs at least one
real-valued control parameter. As such a parameter we will
use the strength of the non-Hermiticity, i.e., v1 characterizing
gain and loss (holding v0,2 fixed). Once a SS is found, by
changing a second parameter, say, v2, one can construct a
curve which shows the position of spectral singularity in a
parametric space (v1, v2), with v0 remaining fixed constant
(all points of such a curve, however, correspond to differ-
ent k
).

Without loss of generality, in what follows we will restrict
our attention to v1 � 0 and v2 � 0. At the same time, the
properties of the system depend significantly on the sign of
the parameter v0. The cases of positive and negative values of
v0 are considered separately.

1. Potential barrier v0 > 0

The resulting dependences for a representative value v0 =
8 are shown in Figs. 2(a) and 2(b). In order to get insight into
the main features of the scattering problem, it is instructive to
trace its behavior moving along the vertical axis in Fig. 2(a),
which corresponds to the increase of the non-Hermiticity
parameter v1 departing from the Hermitian limit v1 = 0. In
the latter limit the fields ψ1 ± ψ2 are decoupled and each is
subject to an effective real potential V0(x) ± V2(x). The spec-
trum of the Hermitian system is obviously real. If the coupling
strength v2 is small enough [point a in Fig. 2(a)], then at v1 =
0 the spectrum is purely continuous and fills the semiaxis
k2 > 0. For sufficiently large coupling v2 [point e in Fig. 2(a)],
the spectrum of the Hermitian system additionally contains a
degenerate isolated eigenvalue with k2 < 0 [Fig. 3(d); recall
that in a system with odd-PT symmetry any real eigenvalue
corresponds to at least two linearly independent eigenvectors,
which is a direct consequence of the property (PT )2 = −1].

Qualitatively different spectra in the Hermitian limit for
small and large values of the coupling coefficient v2 result
in essentially different behaviors of the system subject to
the increase of the non-Hermiticity strength v1. If at v1 =
0 the spectrum is purely real and continuous [point a in
Fig. 2(a)], then it remains so for sufficiently small but nonzero
v1 [point b in Fig. 2(a)]. A further increase of v1 results in the
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FIG. 2. Scattering by the odd-PT -symmetric potential barrier
with v0 = 8 and � = 1. (a) Values of v1 and v2 that correspond
to weak SSs are plotted as curves in the (v1, v2) plane. The lower
(red and blue) solid lines separate the domains of unbroken (shaded
area) and broken (white area) PT -symmetric phases. The black dots
labeled a–k correspond to Figs. 3(a)–3(k), respectively. (b) Weak
self-dual SSs k
 as functions of the coupling strength v2. (c) Ratio
|a4/a3| between the amplitudes of the two polarizations for the laser
solution. (d) Magnitudes of reflection and transition coefficients r

L,R
αβ

and t
L,R
αβ defined in Appendix A as functions of the wave number k

driven through the self-dual SS for v1 ≈ 10.685 and v2 = 15.

PT -symmetry breaking through the splitting of the self-dual
SS. In Fig. 2(a) it occurs when the vertical dashed line
intersects the solid curve between points b and c. As a result,
a single complex-conjugate pair emerges from the continuous
spectrum [see Fig. 3(b)]. This scenario of PT -symmetry
breaking through the splitting of a self-dual SS was described
in [13] for a scalar scattering problem. It represents the most
typical mechanism of PT -symmetry breaking in systems
without the discrete spectrum. A further increase of v1 drives
the system through a new spectral singularity which occurs
when the vertical dashed line intersects the solid curve be-
tween points c and d in Fig. 2(a). In turn, for sufficiently large
values of v1, the spectrum contains two complex-conjugate
pairs as shown in Fig. 3(c). It is natural to expect that a further
increase of v1 may result in new spectral singularities and
new complex-conjugate pairs emerging from the continuous
spectrum.

The behavior of the system becomes more complicated for
larger values of the coupling strength v2 [see points e, f, g,
h, and k in Fig. 2(a) and the corresponding Figs. 3(d)–3(h),
respectively]. As v1 departs from zero, the real double isolated
eigenvalue immediately splits into a complex-conjugate pair
[point f in Fig. 2(a)]. This is the thresholdless PT -symmetry
breaking. However, as v1 increases further, the complex-
conjugate pair returns to the real axis; this corresponds to the

FIG. 3. Real and imaginary parts of eigenvalues for different
combinations of parameters labeled with black dots in Fig. 2(a). The
thick line shows the continuous spectrum and circles correspond to
isolated eigenvalues.

SS at the intersection between the vertical dashed line and
the solid v2(v1) curve between points f and g in Fig. 2(a).
Thus the increase of the non-Hermiticity parameter through
the self-dual spectral singularity drives the system from a PT
broken phase [point f in Fig. 2(a) and Fig. 3(f)] to a PT
unbroken phase [point g in Fig. 2(a) and Fig. 3(g)]. Hence
we encounter a rather interesting situation when the increase
of the non-Hermiticity strength leads to the restoration of
unbroken PT symmetry through the coalescence of two
isolated complex-conjugate eigenvalues at a self-dual spec-
tral singularity. This effect is opposite to the PT -symmetry
breaking through the splitting of a self-dual SS. A further
increase of v1 triggers a new self-dual SS [at the intersection
between the dashed line and the solid curve between points
g and h, as shown in Fig. 3(h)], which results in the PT -
symmetry breaking with a new complex-conjugate pair of
eigenvalues emerging from the continuous spectrum. Next the
increase of v1 from point h to point k results in a new spectral
singularity, where the second complex-conjugate pair emerges
[see Fig. 3(k)].

To give a physical interpretation for the splitting of a self-
dual SS, let us recall the relations (25) and (27). If Im k0 < 0,
where k0 is a zero of det M11(k0) = 0 and det M22(k∗

0 ) = 0,
the system allows for a solution ψ− that transforms into the
CPA solution at Imk0 → −0 and outside the potential, i.e., at
|x| > �/2, can be written as

ψ− = eik0x[M12(k0)|↑〉 − M11(k0)|↓〉], x < −�

2
,

ψ− = e−ik0x[M12(k0)|↑〉 + M11(k0)|↓〉], x >
�

2
. (45)
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as well as for a solution ψ+ which transforms into the lasing
solution in the limit Imk0 → −0:

ψ+ = e−ik∗
0x[M34(k0)|↑〉 − M33(k0)|↓〉], x < −�

2
,

ψ+ = eik∗
0x[M34(k0)|↑〉 + M33(k0)|↓〉], x >

�

2
. (46)

These are spatially localized solutions with the complex
energies E = k2

0 [Eq. (45)] and E = [k∗
0 ]2 [Eq. (46)]. In

optical applications, where −E = β (see the discussion in
Sec. II) is the propagation constant, these solutions represent
propagating beams whose intensity decays in the case (45)
and grows in the case (46), along propagation (i.e., along
the z axis). Therefore, they are loosely referred to as bound
states in a continuum (BIC) [13,27] (which should not be
confused with BIC in the conventional mathematical sense,
which are spatially localized eigenstates with real energy
embedded in the continuous spectrum [28]). Such localized
growing solutions can also be viewed as the development
of the convective instability, which is well known in kinetic
theory [29].

Coherent perfect absorption and lasing solutions are su-
perpositions of two polarizations. The amplitudes of different
polarizations are related to each other by the formula

−a1

a2
= b3

b4
= M12(k
)

M11(k
)
(47)

for the CPA solution and by the formula

−a3

a4
= b1

b2
= M∗

11(k
)

M∗
12(k
)

(48)

for the lasing solution. Numerically we obtained that the
amplitude ratio between up and down polarization is al-
ways below unity |a4/a3| = |b2/b1| < 1 [shown in Fig. 2(c)].
Physically, this is an expected result; it means that the laser
solution is dominantly concentrated in the mode |↑〉, i.e., in
the waveguide with gain. Conversely, for the CPA solution
the spin-down component dominates, which means that the
respective solutions are concentrated in the lossy waveguide.
Interestingly, the relations between the amplitudes of polar-
izations have different slopes for SS belonging to different
branches of the SS. Comparing Fig. 2(c) with Figs. 2(a) and
2(b), we observe that the SS emerging from the coalescing
isolated complex eigenvalues (the red lines) has a larger
relation |a4/a3| as compared with the SS emerging from the
continuous spectrum (blue and green lines).

Finally, computing the left and right reflection and trans-
mission coefficients (see Appendix A), we observe that all of
them diverge simultaneously as the system is driven through
the self-dual SS, as illustrated in Fig. 2(d), where we plot the
amplitudes of all 16 coefficients r

L,R
αβ and t

L,R
αβ as functions

of k with all other parameters kept fixed and corresponding
to a spectral singularity at k
 ≈ 2.451. Notice that some of
the scattering coefficients have equal amplitudes; hence the
number of curves visible in Fig. 2(d) is less than 16.

2. Potential well v0 < 0

The behavior of the system is significantly different for the
scattering by a potential well, which corresponds to negative

FIG. 4. Scattering on the odd-PT -symmetric potential well with
v0 = −3 and � = 1. (a) Values of v1 and v2 that correspond to weak
SSs are plotted as curves in the (v1, v2) plane. (b) Dependence of k


on the coupling strength v2. (c) Ratio |a4/a3| between amplitudes of
the two polarizations of the lasing solution. Black dots labeled a–c
correspond to Figs. 5(a)–5(c), respectively. Here PT symmetry is
broken for any v1 > 0 with one or more complex-conjugate pairs in
the spectrum.

values of v0. Choosing as a representative example v0 = −3,
we illustrate the spectral singularities and the corresponding
eigenvalue diagrams in Figs. 4 and 5. Starting from the Hermi-
tian limit v1 = 0, we observe that for any value of the coupling
strength v2 the Hermitian system contains an isolated double
eigenvalue [see point a in Fig. 4(a) and the corresponding
spectrum shown in Fig. 5(a)]. The nonzero non-Hermiticity
parameter v1, even infinitesimal, immediately results in the
splitting of the double eigenvalue in a complex-conjugate
pair [see point b in Fig. 4(a) and the spectrum in Fig. 5(b)].
Thus the PT -symmetry breaking in this case is thresholdless.
A further increase of v1 drives the system through a self-
dual SS, which results in the emergence of a new complex-
conjugate pair [point c in Fig. 4(a) and Fig. 5(c)]. Thus,
in the scattering by the potential well, the splitting of the
self-dual SS into a complex-conjugate pair occurs, but it does
not represent the boundary between the unbroken and broken
PT symmetry, the latter being broken already for any nonzero
non-Hermiticity strength v1.

Additionally, we note that the dependence v1(v2) corre-
sponding to the spectral singularities increases monotonically
[Fig. 5(a)], the wave number k
 depends weakly on the
coupling strength v2 [Fig. 5(b)], and the ratio between the
amplitudes of two polarizations of the lasing solution [and of
the CPA solution, as it follows from (47) and (48)] increases
with v2 too [Fig. 5(c)].

C. Comparison with the even-PT -symmetric coupling

To highlight the peculiarities of the scattering by odd-PT -
symmetric potentials, we complement the results collected
above with the analysis of a similar system, but coupled by

FIG. 5. Real and imaginary parts of eigenvalues for different
combinations of parameters labeled with black dots in Fig. 4(a). The
thick line shows the continuous spectrum and circles correspond to
isolated eigenvalues.
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FIG. 6. Scattering by the even-PT -symmetric potential barrier
with v0 = 8 and � = 1. (a) Values of v1 and v2 that correspond to
weak SSs are plotted as curves in the (v1, v2) plane and separate
the unbroken PT -symmetric phase (shaded domain) and the broken
one (white domain). The black dots labeled a–d correspond to
Figs. 7(a)–7(d), respectively. (b) Weak SS vs coupling strength.
(c) Ratio |a4/a3| between amplitudes of the two polarizations of the
laser solution.

a homogeneous (symmetric) medium. More specifically, we
consider the model (13)–(36), but with the even function
V2(x) in the form [cf. (44)]

V2(x) =
{
v2, x ∈ (−�/2, �/2)
0, |x| > �/2.

(49)

Notice that this modification of the model affects only the
total symmetry, but does not affect distribution of gain and
losses. The resulting system is invariant under the conven-
tional (even-)parity-time reversal with the parity operator be-
ing P = σ1 and the bosonic time reversal T = K. At the same
time, the new system does not respect the odd-PT symmetry
introduced above.

1. Potential barrier v0 > 0

The results are summarized in Figs. 6 and 7. Starting from
the Hermitian limit, we observe that the spectrum is purely
real and continuous for small values of the coupling v2. How-
ever, for larger values of v2, the spectrum does contain one
or more isolated eigenvalues. In contrast to the odd-PT case,
the isolated eigenvalues are generically simple. For the sake
of illustration, we choose coupling strength v2 = 10, which
corresponds to a single isolated eigenvalue in the Hermitian
limit [point a in Fig. 6(a) and Fig. 7(a)]. As v1 departs from
zero, the isolated eigenvalue remains real and moves towards

FIG. 7. Real and imaginary parts of eigenvalues for different
combinations of parameters labeled with black dots in Fig. 6(a). The
thick line shows the continuous spectrum and circles correspond to
isolated eigenvalues.

the edge of the continuous spectrum [point b in Fig. 6(a)
and Fig. 7(b)] and eventually merges with the continuous
spectrum. At this instant the spectrum becomes purely real
and continuous [point c in Fig. 6(a) and Fig. 7(c)]. A further
increase v1 from point c to point d leads to a self-dual spectral
singularity which results in the PT -symmetry breaking with
a pair of complex-conjugate eigenvalues emerging from the
continuous spectrum [point d in Fig. 6(a) and Fig. 7(d)].

The described behavior of the discrete eigenvalues and
SSs for the even-PT -symmetric coupler features several dis-
tinctive differences from those for the odd-PT -symmetric
coupler, described above. First, in the case of even-PT sym-
metry we observe that dependence v1(v2) (which separates
unbroken and broken phases) is monotonic [see Fig. 6(a)].
This is expectable, because the system is locally (i.e., at each
given x) PT symmetric and thus the PT phase transition
for larger values of coupling v2 is expected at larger gain
and losses v1. In the case of odd-PT symmetry [Fig. 2(a)]
two new, somehow opposite, effects appear. At any value
of gain and loss, i.e., of v1, the increase of the coupling v2

results in PT -symmetry breaking. Moreover, in some inter-
vals of the coupling constant values, there exist two different
values of the gain-and-loss coefficient v1 for which spectral
singularities can be found. Thus, for the coupling v2 in this
interval, the increase of the non-Hermiticity parameter v1 can
stabilize the odd-PT -symmetric system, in sharp contrast to
the destabilizing effect of growing v1 (at fixed v2) in the case
of even-PT symmetry. In the case of the odd-PT symmetry
for a given v1 lying in certain specific intervals it is possible
to obtain two spectral singularities, unlike what happens in the
case of even-PT symmetry. Also we observe that for the even
coupling k
 does not depend on v2 and the ratio between |a4|
and |a3| computed for the laser solution grows monotonically
and slowly approaches unity.

When there is more than one eigenvalue in the Hermi-
tian limit (v1 = 0), an increase of v1 leads to its successive
immersion in the continuous spectrum such that after the
last discrete eigenvalue is merged with the continuum, the
spectrum remains purely continuous and real until the SS is
formed. That is why the splitting of the self-dual SS always
represents the boundary between unbroken and broken PT
symmetry [i.e., between shaded and white areas in Fig. 6(a)].

FIG. 8. Scattering by the even-PT -symmetric potential well
with v0 = −3 and � = 1. (a) Values of v1 and v2 that correspond
to weak SSs are plotted as curves in the (v1, v2) plane. Shaded
and white domains correspond to the unbroken and broken PT -
symmetric phase, respectively. The black dots labeled a–c corre-
spond to Figs. 9(a)–9(c), respectively. (b) Weak SS vs the coupling
strength v2. (c) Ratio |a4/a3| between amplitudes of the two polar-
izations of the laser solution.
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FIG. 9. Real and imaginary parts of eigenvalues for different
combinations of parameters labeled with black dots in Fig. 8(a). The
thick line shows the continuous spectrum and circles correspond to
isolated eigenvalues.

2. Potential well v0 < 0

In the Hermitian limit v1 = 0, the spectrum of the potential
Û (x) with nonzero coupling v2 > 0 contains the discrete part
consisting of two or more eigenvalues (depending on the
depth of the well |v0| and on the coupling strength v2) which
are generically simple. The increase of v1 leads to the PT -
symmetry breaking through the exceptional point scenario: At
the threshold value of v1, all real eigenvalues collide pairwise
and simultaneously and then split into one (or several, if
the well is deep enough) complex-conjugate pair. The repre-
sentative diagrams with v0 = −3 (which corresponds to two
real isolated eigenvalues in the Hermitian limit) are presented
in Figs. 8 and 9. The phase transition corresponds to the
boundary between shaded and white domains in Fig. 8(a). It
is also illustrated by the transition between points a and b
in Fig. 8(a), as well as by transition between Figs. 9(a) and
9(b). The value of non-Hermiticity v1 where the exceptional
point transition takes place is always below the value of v1

corresponding to the self-dual SS, the latter shown by the blue
solid line in Fig. 8(a).

VI. DISCUSSION AND CONCLUSION

In this work we have developed formalism for the scat-
tering of the two-component field by localized (matrix) po-
tentials obeying odd-PT symmetry. Being two-component
fields, the reflected and transmitted fields have spinor char-
acter and can be characterized by two opposite polarizations.
The resulting problem is described by a 4×4 transfer matrix,
which is naturally represented in the form of a 2×2 block
matrix, where the blocks describe reflection, transmission,
and transformation of waves with either of two polarizations.
The odd-PT -symmetry relates two diagonal, as well as two
antidiagonal, blocks.

We identified two types of spectral singularities in such
a system. If the determinants of diagonal blocks vanish,
one deals with a weak singularity, for which lasing or CPA
solutions are characterized by interrelated amplitudes of the
polarizations incident or absorbed from one side of the poten-
tial. If the diagonal blocks are zero matrices, one deals with
a strong singularity, for which no constraints on the relations
between the amplitudes are imposed. In any of these cases,
spectral singularities are self-dual.

As an example we considered a simple odd-PT -symmetric
dispersive coupler with antisymmetric coupling. The avail-
able parameters were not enough to obtain strong spectral
singularity, but allowed for a detailed study of weak self-dual

spectral singularities, as well as for the demonstration of the
odd-PT -symmetry breaking through the splitting of self-dual
spectral singularities. We also found that in some cases the in-
crease of the non-Hermiticity strength can lead to the restora-
tion of the unbroken PT symmetry, which corresponds to the
situation when two complex-conjugate eigenvalues coalesce
at the real axis and form a self-dual spectral singularity. Apart
from the phase transition through the spectral singularity,
our simple odd-PT -symmetric system features two other
mechanisms of the transition from a purely real to a com-
plex spectrum. One of these mechanisms is the well-studied
coalescence of two isolated eigenvalues at the exceptional
point, where the Hamiltonian becomes nondiagonalizable,
with the ensuing splitting of the multiple eigenvalue into a
complex-conjugate pair. Another encountered scenario corre-
sponds to the splitting of a degenerate semisimple eigenvalue
(with algebraic and geometric multiplicities equal to 2) into a
complex-conjugate pair (this situation is distinctively different
from the exceptional point scenario because the Hamiltonian
with the semisimple eigenvalue remains diagonalizable).

We have also compared properties of the odd-PT -
symmetric coupler with its even-PT -symmetric counterpart,
which revealed significant qualitative differences in the scat-
tering properties of the two systems. We can also point out
some rather general features that hold for either even- and
odd-PT -symmetric systems. In particular, we observe that in
the parametric vicinity of each self-dual spectral singularity,
the spectrum either is purely continuous or contains one or
several complex-conjugate pairs (a similar observation for
the one-component scattering problem with the conventional
even-PT symmetry was recently pointed out in [30]). An-
other intriguing observation is that for all considered cases
complex-conjugate pairs of eigenvalues never coexist with
real isolated eigenvalues. Additionally, while for the scattering
by the potential barrier the splitting of self-dual singularity
can represent the boundary between unbroken and broken PT
symmetry, i.e., the phase transition occurs through the split-
ting of the spectral singularity, for the scattering by the po-
tential well the PT -symmetry breaking never occurs through
the splitting of the self-dual spectral singularity. Instead, it
is caused by a different mechanism (i.e., by the splitting of
multiple isolated eigenvalues into complex-conjugate pairs).
As a result, for a system with the potential well, the splitting
of a spectral singularity results in the emergence of a new
complex-conjugate pair of complex eigenvalues in the already
broken PT -symmetric phase.
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APPENDIX A: SCATTERING DATA THROUGH
THE TRANSFER-MATRIX ELEMENTS

Introducing

� = M33M44 − M34M43,
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we have the left incidence

rL
↑↑ = M34M41 − M31M44

�
, rL

↑↓ = M31M43 − M33M41

�
,

rL
↓↑ = M42M34 − M32M44

�
, rL

↓↓ = M32M43 − M42M33

�
,

tL↑↑ = M11 + M13r
L
↑↑ + M14r

L
↑↓, tL↑↓ = M21 + M23r

L
↑↑ + M24r

L
↑↓,

tL↓↑ = M12 + M13r
L
↓↑ + M14r

L
↓↓, tL↓↓ = M22 + M23r

L
↓↑ + M24r

L
↓↓

and right incidence

rR
↑↑ = M13M44 − M14M43

�
, rR

↑↓ = M23M44 − M24M43

�
,

rR
↓↑ = M33M14 − M13M34

�
, rR

↓↓ = M24M33 − M23M34

�
,

tR↑↑ = M44

�
, tR↑↓ = −M43

�
, tR↓↑ = −M34

�
, tR↓↓ = M33

�
.

APPENDIX B: INVERSE OF THE BLOCK MATRIX

For the sake of convenience, here we present the explicit formulas for the inverse of a block matrix [25,31]. Consider

M =
(
M11 M12

M21 M22

)
, (B1)

where Mij are 2×2 matrices. Assume that M11 is nonsingular. Then M is invertible if and only if matrix C1, defined as
C1 = M22 − M21M−1

11 M12, is invertible and

M−1 =
(
M−1

11 + M−1
11 M12C−1

1 M21M−1
11 −M−1

11 M12C−1
1

−C−1
1 M21M−1

11 C−1
1

)
. (B2)

Assume that M22 is nonsingular. Then M is invertible if and only if matrix C2, defined as C2 = M11 − M12M−1
22 M21, is

invertible and

M−1 =
(

C−1
2 −C−1

2 M12M−1
22

−M−1
22 M21C−1

2 M−1
22 + M−1

22 M21C−1
2 M12M−1

22

)
. (B3)
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