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Experimental demonstrations of coherent dynamics for the driven quantum system are usually limited by
their shorter coherent times (due to the inevitable environment noises). Given the Maxwell equation for the
electromagnetic waves (EMWs) prorogating in the optical waveguides takes the similar form of the Schrödinger
equation for the driven quantum system, the quantum dynamics in time domain can be simulated by the light
propagating along the waveguide in spatial domain. To simulate the fast time evolutions of quantum states during
the Landau-Zener (LZ) transitions and Landau-Zenner-Stückelberg (LZS) interferences for the periodically
driven two-level systems, we develop an invariant method to design the compacted curved wavguides and
demonstrate the LZ transitions and LZS interferometery in the spatial domain. Due to significantly long coherent
lengths of the EMWs propagating along the waveguides, the proposed optical-quantum analogies should be
feasible with the current integrated optical devices.
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I. INTRODUCTION

Quantum transition and quantum interference as two typi-
cal coherent effects in quantum mechanics, which have been
successfully utilized to explain many phenomena in chemistry
and physics. Specifically, the Landau-Zener (LZ) transitions
[1–3], served usually as one of the simplest but the most
fundamental evidences to experimentally confirm the quan-
tum cherence in a driven quantum system. It is demonstrated
with, Rydberg atoms [4], field-driven superlattices [5], and
superconducting circuits [6], etc. Physically, one of the most
challenges to experimentally demonstrate the LZ transitions
as well as the further Landau-Zenner-Stückelberg (LZS) in-
terference [7] is that the coherent time of the driven quantum
system is practically limited due to various inevitable environ-
ment noises.

Quantum-optical analogy, i.e., simulating the quantum co-
herence phenomena in the driven quantum systems in the
time domain with the EMWs propagating along certain op-
tical waveguide structures in the spatial domain, has been
given much attention in the recent years [8]. The reason is
that the Maxwell equation on the EMWs propagating along
the curved optical waveguides is formally equivalent to the
Schrödinger equation on the dynamics for a driven quantum
system. As a consequence, the intensity distributions of the
electromagnetic field in the waveguides take the analogous
roles of the population distributions of the quantum states in
the relevant quantum dynamics. Furthermore, the interwaveg-
uide interactions are analogous to the interactions between the
quantum states. Given the spatial optical coherence is more
robust than the time quantum coherence in the usual room-
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temperature environment [9,10], various quantum coherence
evolutions in the time domain can be roust demonstrated with
the spatial distributions of the EMWs in the corresponding
optical waveguides. In fact, these quantum-optical analo-
gies have delivered certain interesting applications, typically,
e.g., demonstrating the Bolch oscillations, coherent popula-
tion transfers, coherent control of quantum tunnelings, etc.
[11–22], with certain integrated optical devices [23–25]. In
our recent work [26], we studied the fundamental quantum
logic gates in the spatial domain with the coupled three-
waveguide devices. Therefore, the application of the quantum-
optical analogy to simulate various fast evolving quantum
coherent phenomena are particularly expected.

Certainly, the first task for the implementations of the
desirable quantum-optical analogies is to design the rele-
vant waveguide structures. However, this is not easy as the
coupled-mode equations for the light prorogations in the
desired curved waveguides are usually solved numerically.
Also, due to the practical limitations of the spatial scales
in the integrated optics, the compacted waveguide structures
are particularly desirable. Given the Lewis-Riesenfeld (LR)
invariant method [27] have been successfully applied to solve
the time-domain quantum dynamical problem for various
driven quantum systems and have been utilized to design the
desired fast evolution paths of quantum states [28]. In this
paper we generalize such a technique to investigate the prob-
lem of the light propagations in the waveguides in the spa-
tial domain. With this technique the coupled-mode equation
for the coupled curved waveguides could be solved analyti-
cally, instead pure numerically. As a consequence, inversely
designing various compact wavguide structures to simulate
various time-domain quantum coherent dynamics with the
feasible integrated optical devices in spatial domain could be
implemented. Specifically, to implement the quantum-optical
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analogies of the periodically driven LZ dynamics and the
LZS interference, we use the invariant method to solve the
relevant coupled-mode equations for the two coupled curved
waveguides and then properly design the interwaveguide cou-
pling parameters to control the intensity distributions of elec-
tromagnetic field in the two waveguides. As a consequence,
the fast temporal evolutions of the quantum states in the LZ
transitions and the LZS interferometery are simulated by the
spatial propagations of the light along the compacted curved
waveguides.

The rest of this paper is organized as follows. In Sec. II,
after briefly reviewing the standard LZ formula, we use the
LR invariant method to exactly solve the LZ problem with the
linear driving and demonstrate the LZS interferometry with a
two-state quantum system under the periodic driving. In Sec.
III, by making use of the analogy between the spatial-domain
coupled-mode equation in curved waveguides and the time-
domain Schrödinger equation for the driven two-state quan-
tum system, we develop a spatial-domain invariant method to
exactly solving the Maxwell equation for the light propagating
along the curved waveguides and then design the compacted
waveguide devices to demonstrate the LZ transitions and the
LZS interferometry in spatial domains. Finally, conclusions
and discussions are given in Sec. IV.

II. INVARIANT METHOD TO EXACTLY SOLVE THE
QUANTUM DYNAMICS OF A DRIVEN TWO-LEVEL

SYSTEM

Originally, Landau and Zener considered the quan-
tum dynamical problem describing by the time-dependent
Schrödinger equation (h̄ ≡ 1),

i
∂|ψ (t )〉

∂t
= H (t )|ψ (t )〉, H (t ) = ε(t )

2
σz + �0

2
σx. (1)

Here, σz and σx are the relevant Pauli operators, �0 is a
constant, and ε(t ) = νt (with ν being a constant) the linearly
time-dependent driving. Obviously, the generic solution of
the LZ problem could be expressed as |ψ (t )〉 = b1(t )|1〉 +
b2(t )|2〉 with |1〉 ≡ (0,−1)T and |2〉 ≡ (1, 0)T being the two
so-called diabatic states with the energies νt . The basic task
in this problem is to investigate how the populations: |b1(t )|2
and |b2(t )|2 of these diabatic states evolve under the applied
linear driving.

As sketched in Fig. 1, the adiabatic eigenvalues,

e±(t ) = ± 1
2

√
(νt )2 + �2

0, (2)

of the time-dependent Hamilatonian H (t ) possesses an
avoided crossing at the point t = 0 for �0 �= 0. Under the
adiabatic limit, ν � �2

0, i.e., the sweep occurs slowly enough,
the system evolves along the adiabatic paths (the solid lines
in Fig. 1), and the populations of the diabatic states will be
exchanged, e.g., the system in state |1〉 prepared at t = −∞
will evolve slowly into state |2〉. Certainly, if the sweep is not
sufficiently slow and thus the adiabatic condition is broken,
then the transitions could be occurred between the adiabatic
state. For example, if at time t = −∞ the system is prepared
in state |1〉, i.e., |ψ (−∞)〉 = |1〉, then the final probability PLZ

that the atom ends up in state |1〉, i.e., |ψ (+∞)〉 = |1〉 is given
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FIG. 1. Energy levels of a linearly driven two-level system versus
the driving time. Here, the dashed line corresponds to the case of
�0 = 0, and an avoided crossing exists at t = 0 for the case with
�0 �= 0. Diabatic states: |1〉, |2〉, adiabatic states: |ψ±(t )〉.

by [1,2]

PLZ = exp

[
−π�2

0

2ν

]
. (3)

This is the famous LZ formula (LZF). In the limit �0 →
0, P → 1, the crossing is said to be traversed diabatically.
Inversely, when �0 � ν, P → 0, the avoided crossing is said
to be traversed adiabatically. Obviously, quantum coherence
should be kept during the transitions. Thus, experimentally
observing such tunneling could be served as the robust evi-
dence of the quantum coherence in such a driven two-state
quantum system. In practicality, LZ transitions are not easy
to be observed experimentally due to the fact that coherence
times of most driven quantum systems are typically short. In
fact, the quantum tunnelings near the avoid-crossing point is
very complicated and cannot be described by the LZ formula.
Below, we solve such a problem by the LR dynamical invari-
ant method to exactly determine the occupation probabilities
of the states at any time for arbitrary driving parameters.

A. Solving the LZ problem with the LR invariant theory

Based on the LR invariant theory [27], the generic solution
to the time-dependent Schrödinger equation (1) can be con-
structed as

|ψ (t )〉 =
∑

n

une
jαn |φn(t )〉. (4)

Here, |φn(t )〉 being the instantaneous eigenstates of the dy-
namical invariant I (t ), which is determined by the equation,

i
∂I (t )

∂t
= [H (t ), I (t )], (5)

with un being the time-independent superposition coefficients
and αn(t ) = ∫ t

0 〈φn(t
′
)|i∂/∂t ′ − H (t ′)|φn(t ′)〉dt ′ the so-called

Lewis-Riesenfeld phase [28]. For a generic two-state-driven
quantum system, its Hamiltonian H (t ) can be generically
written as

H (t ) = 1

2

[
ε(t ) �(t )

�(t ) −ε(t )

]
, (6)
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in the basis {|1〉 ≡ (0,−1)T , |2〉 ≡ (1, 0)T }. Above, ε(t ) and
�(t ) are the time-dependent detuning and Rabi frequency,
respectively. The instantaneous eigenstates of the Hamilto-
nian (6), corresponding to the time-dependent eigenvalues:
e±(t ) = ±

√
ε2(t ) + �2(t )/2, read

|ψ+〉 =
[

cos σ (t )
2

sin σ (t )
2

]
, |ψ−〉 =

[
sin σ (t )

2

− cos σ (t )
2

]
, (7)

with tan σ (t ) = �(t )/ε(t ). A dynamical invariant, corre-
sponding to the generic Hamiltonian (6), can be constructed
as [28]

I (t ) = μ

2

[
cos γ sin γ eiθ

sin γ e−iθ − cos γ

]
, (8)

where μ is an arbitrary constant with the unit of frequency
for keeping I (t ) possesses the dimension of the energy. The
parameters γ and θ are determined by

dγ

dt
= �(t ) sin θ, (9)

and

dθ

dt
= �(t ) cot γ cos θ − ε(t ). (10)

Obviously, the instantaneous eigenstates of the invariant oper-
ator I (t ) in Eq. (8) read

|φ+(t )〉 =
[

cos γ

2 eiθ

sin γ

2

]
, |φ−(t )〉 =

[
sin γ

2

− cos γ

2 e−iθ

]
, (11)

corresponding to the eigenvalues λ± = ±μ/2. Consequently,
Eq. (4) becomes

|ψ (t )〉 =
∑

n=+,−
un exp[iαn(t )]|φn(t )〉, (12)

with u± = e−iα±(t0 )〈φ±(t0)|ψ (t0)〉, and

α±(t ) = ±
∫ t

t0

(
θ̇ + γ̇ cot θ

sin γ

)
dt ′. (13)

where t0 is the start time of the evolution.
Next, the trajectory of the state evolutions can be

parametrized according to the eigenstates |φk (t )〉. Specifically,
with the initial condition [28] γ (t0) = 0, we can get the t-
independent superposition coefficients,

u+ = 0, u− = eiθ (t0 )e−iα−(t0 ). (14)

Substituting Eqs. (11), (13) and (14) into Eq. (12), the popula-
tions |b1(t )|2 and |b2(t )|2 of the diabatic states |1〉 and |2〉 are
given by

P1(t ) = |b1(t )|2 = |〈1|ψ (t )〉|2 = cos2

(
γ

2

)
, (15)

and

P2(t ) = |b2(t )|2 = |〈2|ψ (t )〉|2 = sin2

(
γ

2

)
, (16)
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FIG. 2. The time-dependent LZ transition probability in a driven
two-level system with the Hamiltonian H (t ) for the initial state
|ψ (−∞)〉 = |1〉. The red solid line represents the time-dependent
probability for the system staying at state |1〉, and the blue dashed
line shows the asymptotic occupation probability |1〉 calculated by
the LZF. Here, the relevant parameters are set as: (a) �0 = 0.1 and
ν = 0.6, (b) �0 = 2 and ν = 4, respectively.

respectively. Thus, once the driving parameters �(t ) and ε(t )
are given the time evolutions of the occupation probabilities
of states |1〉 and |2〉 can be determined exactly. As a conse-
quence, how the LZ transitions across the avoid point can be
exactly investigated.

The original LZ model corresponds to the situation,
wherein ε(t ) = νt and �(t ) = �0, i.e., the Rabi pulse is
constant, but the Stark pulse changes linearly with the time.
This problem has been discussed widely [3]. In Fig. 2 we show
the time-dependent occupation probabilities: P1(t ) of states
|1〉 (the solid lines) with the initial condition |ψ (−∞)〉 = |1〉
for different driving parameters (a) �0 = 0.1 and ν = 0.6 and
(b) �0 = 2 and ν = 4. It is seen that, after the sufficiently
long evolution time, the diabatic transition probability agrees
well with the results predicted by the LZF, shown as the blue
dashed lines in Fig. 2.

B. Time-domain LZS interferometry based
on the dynamical invariant solutions

We now treat the dynamics of a two-level quantum sys-
tem under the driving of a large-amplitude periodic external
field. For simplicity, we assume that the Rabi pulse is time
independent, i.e., �(t ) = �1, but the Stark pulse is a periodic
function, i.e.,

ε(t ) = ε0 + E cos(�t ). (17)

This problem had been investigated mainly by two approaches
[7,29]: The discretized adiabatic transfer matrix (TM) ap-
proaches and the rotating-wave approximation (RWA). They
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FIG. 3. The occupation probability P2 of state |2〉 as a func-
tion of time t , assuming that the system was initially in state
|1〉. Here, the relevant parameters are set as [25] �1 = 1, but (a)
ε0/�1 = 3, �/�1 = 3, E/�1 = 15, and (b) ε0/�1 = 1, �/�1 =
0.5, E/�1 = 12. These results agree well with those by numerically
solving the relevant Schrödinger equation.

are, respectively, valid in different parameter regions. Now,
the problem is solved uniformly by the LR invariant theory
demonstrated above. Our results, i.e., the time-dependent
occupation probability P2 of state |2〉 are shown in Fig. 3 in
which sudden jumps correspond to the LZ transitions near the
avoid crossing points. It is emphasized that the present results
agree well with those by numerically solving the relevant
Schrödinger equation in Ref. [29]. In Fig. 3(a) the parameters
satisfy the condition �/�1 > 1, and thus it agrees with that by
the usual RWA [29]. Note that under the parameter conditions
[29] E/�1 > 1 and E� > �2

1, shown in Fig. 3(b), both the
TM method and the RWA fail.

In principle, the dynamical invariant method demonstrated
above works well for the arbitrary parameter condition of the
driving. For example, for the typically selected parameters
ε0/�1 = 1, �/�1 = 0.05, E/�1 = 30, how the occupation
probabilities of states |1〉 and |2〉 evolve are shown in Fig. 4 for
initial-state |ψ (0)〉 = |1〉. Certainly, the sum of all the possible
occupation probabilities is always conservation, i.e., P1(t ) +
P2(t ) ≡ 1, for the present driven two-level system without any
dissipation. Note that either the occupation probability P1(t )
or P2(t ) shows the quasiperiodic phenomena [7], which are
known as Stückelberg oscillations.

It is shown in Fig. 5 that the instantaneous eigenvalues
of the present time-dependent Hamiltonian exist two avoid-
crossing points M and N in a period. During the time evolu-
tion across point M , the initial population of state |1〉 is split
into states |1〉 and |2〉. This implies that the relevant LZ transi-
tions at the point act as a beam splitter of the occupations [30].
The probabilities P2 (the probability of staying at the opposite
diabatic state of the input state) and P1 (the probability of
staying at the same diabatic state of the input state) could be
served as the relevant reflection and the transmission coeffi-
cients, respectively. These two components are schematically
illustrated in Fig. 5 with the trajectories marked by double and
single arrows, respectively. After splitting, a relative phase is
acquired due to the energy difference between the two states.
If the drive ε(t ) sweeps the system through the second avoided
crossing point N , the quantum state collides and quantum
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FIG. 4. The occupation probabilities P1 and P2 of states |2〉 and
|1〉, respectively, as the functions of time t for the initial condition
|ψ (0)〉 = |1〉. Here, the relevant parameters are typically set as �1 =
1, ε0/�1 = 1, �/�1 = 0.05, E/�1 = 30. The occupation proba-
bility P1(t ) [or P2(t )] shows the quasiperiodic phenomena due to the
quantum interference. Certainly, P1(t ) + P2(t ) ≡ 1 for the present
system without dissipation.

mechanically interferences take place. The cumulative result
is a typical quantum state interferometer, and the relevant
interference fringes depend on the LZ transition amplitudes
and the evoultion phases of the driven quantum states.

Specifically, we show numerically the LZS interference
pattern, e.g., the occupation probability P2, depends on the
bias offset ε0/� and the driving amplitude E/� in Fig. 6
at different evolution times. Certainly, the interference pat-
tern depends on the total relative phase accumulated by the
evolution. For simplicity, we assume that the system starts
from state |1〉 and treat � as a fixed parameter. Under the
fast-passage limit [31] E� � �2

1, e.g., �/(2π ) = 1.2 and
�1 = 0.004 GHz, we can see in Fig. 6 that the occupation
probability P2 reveals certain displacement and overlap, i.e.,
interference fringes, after a certain driving time [e.g., shown

FIG. 5. Time evolution of the energy spectrum during one pe-
riod. The evolutions of the quantum state traverse two avoided-
crossing regions within a period of the driving. Here e±(t ) =
±

√
ε2(t ) + �2

1/2, ε(t ) = ε0 + E cos(�t ) with �1 = 1, ε0/�1 =
1, E/�1 = 4, and �/�1 = 2π .
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FIG. 6. Time-domain LZS interferometry for E� � �2
1: the

time-averaged occupation probability P2 of diabatic state |2〉 versus
the bias offset ε0 and the driving amplitude E for the parameters
�/(2π ) = 1.2, �1 = 0.004 GHz. (a) The interference pattern at the
evolution time 10 ns, which corresponds to shorter interference time.
(b) The interference pattern with a better interference contrast with
the higher interference ratio after the longer evolution time, e.g., after
20 ns.

in Fig. 6(a) at 10 ns]. Figure 6(b) shows that with the increase
in the evolution time, e.g., after 20 ns, the cascaded LZ
transitions lead to a stronger interference and thus show the
clearer interference pattern. This agrees well with the relevant
experimental results in Ref. [31]. Certainly, if the value of the
parameter E is sufficiently smaller than the bias offset ε0, no
LZ transition occurs, and, consequently, the LZS interference
pattern does not appear.

III. SIMULATIONS OF THE LZ-LIKE TRANSITIONS
AND LZS-TYPE INTERFEROMETRY WITH CURVED

WAVGUIDES IN SPATIAL DOMAINS

The most obstacle to experimentally demonstrate the time-
domain LZ transitions and LZS interferences is the finite
coherent time of the driven quantum system. Expectedly,
the significantly long coherent path for the light coherently
propagating along the optical waveguide could be utilized to
implement the quantum interferences in the spatial domain.
Below, we show how the optical analogies of the LZ transi-
tions and the LZS interferometry could be implemented with
the curved waveguides wherein the interwaveguide coupling
can be designed precisely.

0 20 40 60 80 100

z (mm)

-2000
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2000

4000

6000

x 0
(z

)

FIG. 7. Schematic of a cosine curved directional coupler,
the related parameters are as follows: �β = 1 mm−1, q0/�β =
1, ω/�β = 1, A/�β = 100.

A. Exactly solving the coupled-mode equation of the curved
waveguides by the invariant method

We consider the propagations of the monochromatic
light waves of the wavelength λ (in vacuum) along a
curved coupled-waveguide structure, shown in Fig. 7. In the
scalar and paraxial approximations, the electric-field ampli-
tude in the waveguides can be written as �(x, y, z, t ) =
ψ (x, y, z) exp[i(knsz − ωt ) + c.c.] with ns being the refrac-
tive index of the substrate and ω = kc0. ψ (x, y, z) is the slow-
varying field envelope satisfying the paraxial wave equation,

ih̄
∂ψ

∂z
= − h̄2

2ns

∇2
xψ + V [x − x0(z)]ψ. (18)

Here, x0(z) is the axis bending profile, z is the parax-
ial propagation distance, h̄ = λ/2π = 1/k is the re-
duced wavelength, and V (x) = [n2

s − n2(x, y)]/(2ns ) �
ns − n(x, y) with n(x, y) being the refractive index profile
of the guiding structure. For simplicity, we assume that the
directional coupler is made of two identical waveguides (of
length L) separated by the distance a in the transverse x

direction. In a new reference frame,

x ′ = x − x0(z), (19)

we have

φ(x ′, z) = ψ (x ′, z) exp[−i(ns/h̄)ẋ0(z)x ′ − iϕ(z)], (20)

with ẋ0(z) = dx0(z)/dz and ϕ(z) = (ns/2h̄)
∫ z

0 dξ ẋ2
0 (ξ ).

Substituting Eqs. (19) and (20) into Eq. (18), we have

ih̄
∂φ

∂z
=

[
− h̄2

2ns

∇2
x + V (x ′) + S(z)x ′

]
φ, (21)

where S(z) = nsd
2x0/dz2. Obviously, if the spatial variable z

is replaced by the temporal variable t and ns is replaced by
the mass m, Eq. (21) describes nothing but the Schrödinger
equation for a particle (with mass m) being trapped in a
one-dimensional bistable double-well potential V (x ′) and
subjected by an external driving field S(z).

Without the driving field, the eigenmode functions ξ1(x ′)
and ξ2(x ′) of the coupled waveguides are determined by the
equation [8],

− h̄

2ns

∂2ξ1,2(x ′)
∂x ′2 + V (x ′)ξ1,2(x ′) = h̄β1,2ξ1,2(x ′), (22)

013820-5



HONGYING LIU, MAOCHUN DAI, AND L. F. WEI PHYSICAL REVIEW A 99, 013820 (2019)

where the functions ξ1(x ′) = |ξ1〉 = 1√
2
(1, 1)T and ξ2(x ′) =

|ξ2〉 = 1√
2
(−1, 1)T are orthogonal and normalized, i.e.,

〈ξ1|ξ1〉 = 〈ξ2|ξ2〉 = 1 and 〈ξ1|ξ2〉 = 0. β1 and β2 are nearly
degenerate propagation constants. Without loss of general-
ity, the two waveguides are assumed to be identical, and
thus, V (x) turns out to be a symmetric function of x,
i.e., V (x ′) = V (−x ′). Also, ξ1,2(x ′) are real and possess
the opposite parties. Phenomenologically, the combinations
f1,2(x ′) = [ξ1(x ′) ± ξ2(x ′)]/

√
2 correspond to the light beam

distributions in the two waveguide. The shift parameter �β =
(β1 − β2)/2 is responsible to the optical coupling between the
waveguides. Neglecting the excitation of the radiation modes,
φ(x ′, z) can be rewritten as

φ(x ′, z) = [C1(z)f1(x ′) + C2(z)f2(x ′)]e−iβaz, (23)

where Cl (z), l = 1, 2 is the amplitude of the light waves
trapped in the lth waveguide and βa = (β1 + β2)/2. Due to
the symmetry 〈ξ1|x ′|ξ1〉 = 〈ξ2|x ′|ξ2〉 = 0, Eqs. (21) and (23)
reduce [12]

i
∂C1

∂z
= �β C2 + 〈ξ1|x ′|ξ2〉

h̄
S(z)C1, (24)

and

i
∂C2

∂z
= �β C1 − 〈ξ1|x ′|ξ2〉

h̄
S(z)C2, (25)

respectively. Under the approximation 〈ξ1|x ′|ξ2〉 � a/2, we
have

i
d

dz

[
C1

C2

]
= H (z)

[
C1

C2

]
, H (z) =

[
F (z) �β

�β −F (z)

]
,

(26)

with F (z) = aS(z)/(2h̄). This is the spatial-domain version
of the dynamics for a driven two-level quantum system dis-
cussed above.

Analogously, the spatial-domain dynamical equation (26)
can also be exactly solved by using the generalized LR
invariant method in which the spatial-domain invariant I (z)
is determined by

I (z) = E0

2

[
cos γ sin γ eiθ

sin γ e−iθ − cos γ

]
, (27)

with

dγ

dz
= 2 �β sin θ, (28)

and

dθ

dz
= 2 �β cot γ cos θ − 2F (z), (29)

satisfying the condition,

i
dI (z)

dz
= [H (z), I (z)]. (30)

As a consequence, by using the LR method demonstrated
above for the time-domain problem, the intensities of the light
distributed in the waveguides after the prorogating distance z

can be calculated as

|C1(z)|2 = cos2

(
γ

2

)
, |C2(z)|2 = sin2

(
γ

2

)
. (31)

As we mentioned, the coupled-mode equation for the light
propagating along the coupled-waveguide system is formally
equivalent to the Schrödinger equation for the driven quan-
tum system. Therefore, the dynamics for a driven quantum
system the in time domain can be simulated with the ex-
act solutions to the coupled-mode equation in the spatial
domain. For the simulations, the occupancy probabilities of
the quantum states are replaced by the intensities of the
light in the relevant waveguides. Differing from the previ-
ous works to simulate the fast temporal evolution of the
quantum-mechanical wave functions of the driven atoms and
molecules with the spatial light propagations along various
waveguide structures [12,13,15,17,19], here the used cou-
pled waveguides are designed by using the analogous in-
variant solutions of the coupled-mode equations. Therefore,
the desirable waveguide devices to simulate the relevant
quantum dynamics in the spatial domain could be designed
compactly.

B. LZ-like transitions in a curved
compacted-waveguide structure

Typically, let us consider cubically curved coupled waveg-
uides demonstrated experimentally in Ref. [13], where

x0(z) = 8W

L3
(z − L/2)3, 0 < z < L. (32)

Here, 2W (with W � L) is the maximum lateral shift of the
waveguide axis. In this case, the diagonal elements of the
Hamiltonian H (z) in Eq. (26) was given as

F (z) = νz, (33)

with ν � 48πaWns/(λL3) being the analogy of a fixed sweep
rate. This waveguide device has been fabricated with the
femtosecond-laser writing technique and used to simulate the
original time-domain LZ tunneling process during a finite-
coupling duration [13]. We now simulate such a result based
on the above invariant solution and show numerically intensity
distributions of the light in two waveguides |C1(z)|2 and
|C2(z)|2 calculated by Eqs. (28)–(31) for the experimental
parameters [13] ν ≈ 0.012 mm−2, �β = 0.063 mm−1. It is
seen that our results, shown schematically in Fig. 8, agree well
with the experimental observations [13].

Note that the above higher efficiency simulations take the
benefits from the invariant solutions (rather than the numer-
ical ones) of the coupled-mode equation and thus could be
convenient to design the prorogation paths of the light in the
waveguides for the desired device applications. This can be
achieved by properly setting the boundary conditions, i.e., the
parameters θ and γ at the input port (z = 0) and the output
one (z = L) and, consequently, the desirable waveguide pa-
rameters. For example, if we want to implement the transfer
of the light intensities between the two waveguides, e.g.,
the completely transfer from waveguide 1 to waveguide 2.
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FIG. 8. Intensities of the light in the two waveguides change
with the propagating distance z; the dashed and solid curves are
obtained from Eq. (31) with the relevant parameters being set as
�β = 0.063, F (z) = 0.012z mm−1. The simulated LZ-like transi-
tions agree with the relevant experimental observations [13].

Corresponding to the boundary conditions,

|C1(0)|2 = 1, |C2(0)|2 = 0;

|C1(L)|2 = 0, |C2(L)|2 = 1, (34)

the parameters γ (z) in Eqs. (28) and (29) could be designed
as

γ (z) = γ0(z) = D

L
z, (35)

with D being a z-independent adjustable parameter. Mean-
while, by setting simply the θ parameter as a z-independent
variable [9,10], such as θ = θ0 �= π/2, we get

F (z) = F0(z) = �β cot[γ0(z)] cos[θ0(z)], (36)

and

�β = D

2L sin θ
, (37)

respectively, from Eqs. (28) and (29). Consequently, the con-
dition (34) can be satisfied by simply setting

γ (L) = D = π. (38)

Figure 9(a) shows how the designed parameters F (z) and
�β versus z implement the desirable complete transfer of the

FIG. 9. (a) z-dependent coupling coefficients F (z) (dotted curve)
and �β (solid curve) designed for implementing the light intensity
transfer under the boundary conditions, which is numerically realized
(b). Here, the relevant parameters are set as L = 2 mm, D = π , and
θ = π/1.98.
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FIG. 10. The distribution of the normalized light intensity
|C2(z)|2 in waveguide 2, and waveguide 1 of the coupler is excited
at the input port z = 0, i.e., |C1(0)|2 = 1. The parameters of the cou-
pled curved waveguides are chosen as �β = 2.6 mm−1, q0/�β =
ω/�β = 7/2.6 = 2.6923, A/ω = 15.

light intensity shown in Fig. 9(b), typically with θ = π/1.98
and L = 2 mm. Obviously, the waveguide coupler for such a
simulation could be designed very compactly.

C. LZS-type interferometry with a compacted
curved-waveguide device

Above, we have demonstrated the simulations of the LZ
transitions in two curved waveguides with the z-dependent
linear couplings. In this subsection, we show how the LZS
interferometer in a two-level quantum system driven by a
large-amplitude periodic external field can be similarly analo-
gized with a cosine curved waveguides coupler. To this end,
we consider a cosine curved waveguide shown in Fig. 7 with
the axis bending x0(z) being designed as

x0(z) = h̄

2ans

[
q0z

2 − 2A

ω2
cos(ωz)

]
. (39)

As a result, the diagonal element function in matrix (26) reads

F (z) = 1
2 [q0 + A cos(ωz)], ω = 2π/�, (40)

with � and A being the period and amplitude, respectively,
of the periodic waveguide in the spatial domain. q0 is a
constant. This is the analogy of the Stark pulse (17) applied
to periodically drive the two-level quantum system.

Suppose that waveguide 1 of the coupler is excited at
the input port z = 0, then the light intensities distributing in
two waveguides can be calculated by Eq. (31) via solving
the parameter equations (28) and (29). Normally, with the
parameters [20] �β = 2.6 mm−1, ω/�β = 7/2.6 = 2.6923
(which is used analogously to demonstrate the time evolution
of a periodically driven two-level quantum system in paper
[32]), the light intensity in waveguide 2 along propagation
distance z is shown in Fig. 10 where q0 = ω [29]. It is
shown that the light intensities in the waveguides reveal
the obvious oscillating behaviors. A series of quasiperiodic
behaviors are originated from the relevant LZS interferences
due to the periodic beam splittings of the light intensities
passing through the corresponding avoid-crossing points and
then being superposed on one of the waveguides.

With periodic dependence of the light intensity on prop-
agation distance shown in Fig. 10, we discuss how the
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FIG. 11. The spatial-domain version of the LZS interferometry;
the normalized light intensity |C2(z)|2 at certain points versus A/ω

and q0/ω. The light is assumed to be input along waveguide 1 at
z = 0 and then propagates to (a) z = 5.7 mm and (b) z = 11.5 mm.
The relevant parameters of the curved waveguides are set as �β =
2.6 mm−1 and ω/�β = 2.6923.

z-dependent light intensity in waveguide 2 (with |C2(0)|2 =
0) depending on the other waveguide parameters, i.e., as a
function of the waveguide bending amplitude A/ω and posi-
tion offset q0/ω, see Fig. 11 for details. Figure 11 shows more

clearly the LZS interference pattern in the spatial domain
which depends on A/ω and q0/ω at the propagation distances
z = 5.7 and z = 11.5 mm, respectively. This is the spatial-
domain version of the time-domain interference pattern in
Ref. [32]. Of course, interference fringes appear at half-
integer and integer values of the relative phase.

IV. DISCUSSION AND CONCLUSION

Given the similarity between the light propagation in wave
optics and the quantum dynamics for the driven quantum
system, some coherent quantum effects encountered usually
in the atoms and molecules can be effectively simulated
with the corresponding light propagations in the macroscopic
waveguide structure composed of the evanescent couplings.
In this paper, in the framework of the invariant method, we
uniformly investigated the LZ transition and the LZS interfer-
ometry in a driven two-level quantum system and the light
propagations along two coupled curved waveguides. It had
been demonstrated that the time domain LZ transitions and
LZS interferometry in the driven two-level quantum system
could be effectively simulated with the intensities of the light
propagating along the curved waveguides. Due to the signif-
icantly long coherent length of the light propagations along
the optical waveguide, the proposed approach is specifically
suitable to simulate quantum coherent dynamics, which is
not easy to realize in the usual quantum system (due to the
inviolable decoherence).

One of the best advantages in the proposed invariant
method to simulate quantum coherent dynamics with waveg-
uides in spatial domain is that the relevant optical waveguides
can be designed as the desirable compacted structures beyond
the usual adiabatic limit. Therefore, it is good for the inte-
grated optics implementations.
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