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Cavity-assisted atomic Raman memories beyond the bad cavity limit: Effect of four-wave mixing
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Quantum memories can be used not only for storage of quantum information but also for a substantial
manipulation of ensembles of quantum states. Therefore, the speed of such manipulation and the ability to
write and retrieve signals of relatively short duration become important. One approach towards enhancing the
performance of a quantum memory is to combine an active medium with an optical cavity. Previous works
investigating cavity-enhanced memories concentrated on noise processes in the bad cavity limit, that is, for
signals that are much longer than the cavity field lifetime. In this work we investigate four-wave mixing noise
that arises from the retrieval of relatively short signals from cavity-assisted memories, thus complementing
recent works by other authors. We propose an approach that allows one to account for noise sources of
different frequencies and different physical origin by using two-band spectral filtering of the noise sources in the
Heisenberg-Langevin picture. We demonstrate that in these spectrally selective memories the sideband atomic
noise sources contribute to the four-wave mixing noise on par with the sideband quantized field entering the
cavity.
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I. INTRODUCTION

Efficient quantum memories for light [1–4] are consid-
ered an important component of many schemes of quantum
information, such as quantum repeaters, quantum networks,
quantum computers, etc. Of particular interest for future ap-
plications are the schemes that allow for storage and manip-
ulation of signals with many spatial and/or temporal degrees
of freedom. In atomic memories, exploiting cold atomic en-
sembles as a storage medium, the resources for essentially
multimode operation are provided by independent spatial
waves (quantum holograms) of the collective spin excitation
[5–9] and by time multiplexing [10].

Cavity-enhanced atomic memories implemented experi-
mentally with the use of cold [10–12] and warm [13] atomic
ensembles demonstrate good efficiency and fidelity of quan-
tum state manipulation. A cavity enhances coupling between
the signal field and storage medium by means of multiple
passes of light through the atomic ensemble, thus increasing
the cooperativity parameter and the cavity field lifetime. On
the other hand, coprocessing in a memory of a time sequence
of quantized signals [9,10] within the time interval of effective
storage implies shortening the signal’s duration. In view of
this, it is natural to address the question to what extent one can
speed up manipulation of a signal in a sequence, achieving
maximal information content for the whole ensemble of the
signals. The theoretical estimates [14,15], performed mostly
in the bad cavity approximation, have revealed that the mem-
ory quantum efficiency close to unity is achievable in this
limit.

We have investigated [16] the quantum efficiency of cavity-
enhanced atomic Raman memories for signals whose duration
is not much larger than the cavity field lifetime, that is, beyond
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the bad cavity approximation. The nonstationary amplitude
and phase shaping of a control field that yields maximal
storage efficiency of a given input signal has been studied
[17].

Four-wave mixing noise present in real schemes of the
atom-field interaction in atomic memories is commonly rec-
ognized as an important factor, able to prevent achieving high
memory quality. The four-wave mixing arises when besides
the memory � scheme there is involved an additional �

scheme, where the same control field produces, via Raman
two-quantum transition, pairs of quanta: the quantized field
excitation and the collective spin wave excitation (the spin
polariton), in analogy to parametric scattering in the presence
of χ (2) nonlinearity. The arising spin excitations are involved
in the readout process on par with the stored signal and
constitute an unwanted noise.

The deleterious effect of four-wave mixing noise on the
atomic memories’ overall efficiency was investigated for both
the single-pass [18–20] and cavity-assisted [13,21] schemes.
Prajapati et al. [20] proposed to suppress the four-wave
mixing noise in a single-pass configuration by introducing a
two-quantum Raman absorption channel for sideband light.
Spectral filtering of the sideband quantized field, performed
by a cavity, also makes it possible to suppress effectively
the four-wave mixing noise. The noise suppression using a
cavity was demonstrated experimentally [13]. The approach
presented in Ref. [21] is based on an explicit description
of a quantized sideband noise field as an independent wave,
performing round-trips inside the cavity. In this picture, the
sideband noise can be tuned to the cavity antiresonance,
thus achieving better noise suppression. Detailed theoretical
analysis [21] of four-wave mixing noise is focused mainly on
atomic memory operation in the bad cavity limit.

We present in our work theoretical research of four-wave
mixing noise in cavity-assisted atomic Raman memories,
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FIG. 1. Raman atomic memory schematic. A control field (dou-
ble arrows) induces two-quantum Raman transitions in both �

schemes. A cavity field (solid arrow) and a sideband noise field
(dashed arrow) are generated via two-quantum transitions in the
memory and luminescence channels, respectively. A signal is stored
in the Raman coherence between the lower levels of the scheme (gray
arrow).

valid also for signals whose duration is not much longer than
the cavity field lifetime, that is, beyond the bad cavity limit.
Our generalization may be potentially useful for analysis of
essentially multimode regimes of atomic memory operation,
where an attainable compromise between the operation speed
and the quality of a memory device should be revealed.

Unlike [21], we do not restrict ourselves by considering
four-wave mixing noise in the presence of the only noise
source that is due to the sideband quantized light field en-
tering the cavity. Our theory is based on two-band spectral
filtering of generic noise sources in the Heisenberg-Langevin
picture, where the cavity field and the atomic noise sources
are treated within the same approach. We demonstrate that in
spectrally selective cavity-assisted atomic memories the side-
band atomic noise sources essentially contribute to the four-
wave mixing noise of the retrieved signal on par with the
sideband field entering the cavity.

The finally estimated quantity is the noise variance of
quadrature amplitudes of the output signal, observed by means
of optimal homodyne detection. We specify and evaluate both
analytically and numerically the noise contributions, associ-
ated with the four-wave mixing and with the different-from-
unity quantum efficiency, for a wide range of the retrieved
signal duration, including signals whose duration does not
much exceed the cavity field lifetime.

II. MEMORY CELL IN THE PRESENCE
OF FOUR-WAVE MIXING

The memory scheme that will be considered appears in
Fig. 1. The Hamiltonian of the electric dipole interaction of
N motionless atoms with the cavity field in the rotating-wave
approximation is given by

H = H0 + V,

H0 = h̄ωca
†a + h̄

N∑
j=1

(
ωsgσ

(j )
ss + ωegσ

(j )
ee + ωfgσ

(j )
ff

)
,

V = −h̄

N∑
j=1

[
�(m)(t )σ (j )

es e−iωpt + �(l)(t )σ (j )
fg e−iωpt

+ ag(m)σ (j )
eg + ag(l)σ

(j )
f s

] + H.c.

Here a is a quantized cavity field which we consider in single-
mode approximation, and σ

(j )
nm = (|n〉〈m|)(j ) is the atomic

transition operator for the j th atom, where ωnm is the tran-
sition frequency. The interaction Hamiltonian written in the
Schrödinger picture explicitly depends on a classical control
field with Rabi frequency (the slow amplitude) �(m)(t ) and
�(l)(t ) in the left and right � schemes, respectively. The
right one is responsible for the control field Stokes Raman
scattering, which results in the generation of bosonic quanta
pairs (the light and the collective spin). Having in mind an
analogy to parametric generation of pairs in χ (2) nonlinear
media, we will call the interaction channel, introduced by
the right � scheme, the Raman luminescence channel (or, for
brevity, the luminescence channel).

The cavity frequency ωc and the classical control field
frequency ωp = ωc − ωsg are matched in such a way as to
support two-quantum resonance in the memory channel, and
g(m) and g(l) are coupling parameters for the quantized mode
field in the corresponding channel.

The single-cavity-mode approximation implies that the
frequency mismatch 2|ωsg| between the memory and lumi-
nescence channels is small compared to frequency distance
between the cavity modes. Spatial factors are omitted in the
Hamiltonian since for the copropagating control and quan-
tized fields the difference between the longitudinal wave
numbers kpz − kcz does not manifest itself in the atomic
cloud length. This can be a good approximation for storage
within the same hyperfine level. In the case of storage on two
different hyperfine levels, the spin polariton might be of an
essentially space-dependent form. We do not consider here the
spatial addressability resource which allows for an essentially
multimode memory operation [9].

The slow amplitudes of the field and the collective atomic
observables are introduced as

E (t ) = a(t ) exp(iωct ), (1)

σge(t ) =
N∑

j=1

σ (j )
ge (t )eiωct ,

σgs (t ) =
N∑

j=1

σ (j )
gs (t )eiωsgt , (2)

σsf (t ) =
N∑

j=1

σ
(j )
sf (t )eiωct ,

σgf (t ) =
N∑

j=1

σ
(j )
gf (t )ei(ωc+ωsg )t . (3)

The Heisenberg equations of motion are derived and lin-
earized under the assumption that the ground state g does
not change population within the retrieval cycle, σ

(j )
gg (t ) → 1,

while the population of all other states as well as the cross
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coherences σ
(j )
es and σ

(j )
f e can be neglected, with the exception

of the polarization σ
(j )
sf , which couples the cavity field to the

luminescence channel.
By introducing the cavity field decay at a rate κ and the

atomic coherence relaxation, induced by the upper state decay,
at a rate γ⊥, we arrive at

Ė (t ) = −κE (t ) + ig(m)σge(t )

+ ig(l)σsf (t ) +
√

2κEin(t ), (4)

σ̇ge(t ) = −(γ⊥ + i�(m) )σge(t ) + i�(m)(t )σgs (t )

+ ig(m)NE (t ) +
√

2γ⊥NFge(t ), (5)

σ̇gs (t ) = i�(m)∗(t )σge(t ) − i�(l)(t )ei2ωsgtσf s (t )

+ ig(l)E†(t )σgf (t ), (6)

σ̇gf (t ) = −[γ⊥ + i(�(l) − 2ωsg )]σgf (t ) + i�(l)(t )Nei2ωsgt

+ ig(l)E (t )σgs (t ) +
√

2γ⊥NFgf (t ), (7)

σ̇sf (t ) = −[γ⊥ + i(�(l) − 2ωsg )]σsf (t )

+ i�(l)(t )ei2ωsgtσsg (t ) +
√

2γ⊥NFsf (t ). (8)

The input cavity field Ein(t ) and the Langevin noise operators
Fnm(t ) (corresponding to vacuum noise fields) satisfy stan-
dard commutation relations,

[Ein(t ), E†
in(t ′)] = [Fge(t ), F †

ge(t ′)]

= [Fgf (t ), F †
gf (t ′)] = δ(t − t ′), (9)

which preserve the commutation relation [E (t ), E†(t )] = 1 for
the cavity field and the properties of atomic observables of the
form σkl (t )σmn(t ) = δlmσkn(t ) (Einstein’s theorem). The same
assumption of unchanged population of the ground state g was
used when deriving (9). The noise source Fsf has zero power
in this limit and will be omitted.

Now we introduce, in analogy to [16,17], physically rea-
sonable corrections to the field and atomic frequencies. The
cavity mode frequency shift due to the linear refractive index
is

δc = −g(m)2N

�(m)
. (10)

The dynamic correction δs (t ) to the frequency ωsg of the
s-g transition due to ac Stark shifts, induced by the strong
control field (which might not be mutually compensating in

the general case), results in an additional phase ϕs (t ) of the
collective spin coherence, σgs (t ) ∼ exp[−iϕs (t )], where

δs (t ) = −
( |�(m)(t )|2

�(m)
− |�(l)(t )|2

�(l)

)
,

ϕs (t ) =
∫ t

0
dt ′δs (t ′). (11)

These phase corrections are incorporated into a new self-
consistent set of slow field and atomic variables,

E (t ) = e−iδct Ẽ (t ), Ein(t ) = e−iδct Ẽin(t ), (12)

σge(t ) = e−iδct σ̃ge(t ), σgs (t ) = e−iϕs (t )σ̃gs (t ), (13)

σgf (t ) = e−i[δct+ϕs (t )]σ̃gf (t ), σsf (t ) = e−iδct σ̃sf (t ), (14)

�(m)(t ) = e−i(δct−ϕs (t ))�̃(m)(t ),

�(l)(t ) = e−i[δct−ϕs (t )]�̃(l)(t ). (15)

New noise operators are defined similarly to the correspond-
ing atomic variables.

Next, we substitute these definitions in the basic equations
above and perform the first adiabatic elimination. That is, we
assume the Raman regime condition when both frequency
mismatches |�(m)| and |�(l)| are much larger than other fre-
quency parameters of the scheme. The quantities (d/dt )σ̃ge,
(d/dt )σ̃gf , and (d/dt )σ̃sf are set to zero; the corresponding
observables are expressed in terms of other variables and
substituted into the remaining equations. In the following,
we drop the tildes for brevity and use the notation S(t )
for bosonic collective spin amplitude, S(t ) = σgs (t )/

√
N , for

compatibility with other papers.
To avoid exceeding the accuracy, we omit the spin tran-

sition frequency ωsg and frequency corrections δc and δs (t )
when they come in the sum with large Raman mismatches and
neglect the terms of order higher than 1 in γ⊥/|�(m)| 
 1 in
the resulting equations.

Another important assumption is the large enough fre-
quency mismatch 2ωsg between the field frequencies that
are supported by the Raman two-quantum transitions in the
memory and luminescence channels, 2|ωsg| � γ⊥, κ (see
Fig. 1). This implies a weak coupling of the memory to the
luminescence channel and makes it possible to consider the
terms responsible for the interplay between the two channels
in the lowest (zeroth) approximation in γ⊥/|�(l)| 
 1. We
arrive at

Ė (t ) =−
[
κ + g(m)2Nγ⊥

�(m)2

]
E (t ) + ig(m)

√
N

�(m)

(
1 + iγ⊥

�(m)

)
�(m)(t )S(t ) + ig(l)

√
N

�(l)
�(l)(t )ei2(ωsgt +ϕs (t ))S†(t ) +

√
2κEin(t ) +FE (t ),

(16)

Ṡ(t ) = −γ⊥

( |�(m)(t )|2
�(m)2

+ |�(l)(t )|2
�(l)2

)
S(t ) + ig(m)

√
N

�(m)

(
1 + iγ⊥

�(m)

)
�(m)∗(t )E (t ) + ig(l)

√
N

�(l)
�(l)(t )ei2[ωsgt+ϕs (t )]E†(t ) + FS (t ).

(17)
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One can observe here the terms oscillating at the frequency
2[ωsg + δs (t )], which is the frequency detuning of the Raman
Stokes transition in the right � scheme from resonance with
the cavity. These terms are due to the luminescence channel
and are able to introduce some squeezing and entanglement to
the memory operation, as we demonstrate below. The ground
state g excitation by the control field in the right � scheme
results in additional relaxation of the spin amplitude at the
rate γ⊥|�(l)|2/�(l)2 in Eq. (17), where the factor ∼γ⊥/�(l)2

represents off-resonant spectral density of the g-f line.
The Langevin sources FE and FS on the right-hand side of

(16) and (17) are linear combinations of the previously defined
atomic sources. Applying the same approximations, we obtain

FE (t ) = g(m)√2γ⊥N

�(m)
Fge(t ), (18)

FS (t ) = �(m)∗(t )

√
2γ⊥

�(m)
Fge(t ) + g(l)E†(t )

√
2γ⊥

�(l)
Fgf (t ).

(19)

Considering a weak (compared to the control field) quantized
signal, g(l)2〈E†E〉 
 |�(m)|2, we neglect the term ∼Fgf in
Eq. (19). To be more specific, we restrict ourselves to the case
when both � schemes are based on the same set of hyperfine
levels and assume g(m) = g(l) = g, �(m)(t ) = �(l)(t ) = �(t ).
Since the single-photon detuning is much larger than the
energy difference ωsg between the two storage states, we also
assume �(m) = �(l) = �.

III. SPECTRAL FILTERING

In this section, we introduce two-band representation for
both the noise sources and the observables. This allows us to
take into account the sideband atomic noise sources on par
with the sideband quantized noise field entering the cavity.

The second adiabatic elimination is performed under the
assumption that the frequency mismatch 2ωsg is much larger
than all other frequencylike coefficients in Eqs. (16) and (17),
that is, much larger than the decay rates of the field and
spin amplitudes and the field-spin coupling due to the Raman
transitions g-e-s and g-f -s. Given that |ωsg| � |δs (t )|, we
introduce new slow amplitudes E (n) and S (n), n = m, l, which
represent the observables’ evolution in two nonoverlapping
frequency bands associated with the memory and lumines-
cence channels,

E (t ) = E (m)(t ) + E (l)(t )ei2ωsgt ,

S(t ) = S (m)(t ) + S (l)(t )ei2ωsgt . (20)

A similar representation is assumed for the noise operators
Fn(t ), n = E, S, and the input field Ein(t ),

Ein(t ) = E (m)
in (t ) + E (l)

in (t )ei2ωsgt ,

Fn(t ) = F (m)
n (t ) + F (l)

n (t )ei2ωsgt . (21)

In order to define the latterly introduced quantities F (m)
n (t )

and F (l)
n (t ), one has to perform spectral filtering of the initial

noise sources (18) and (19) by multiplying their Fourier trans-
forms by two nonoverlapping filtering functions: �(m)(ω),
centered at ω = 0, and �(l)(ω), centered at ω = −2ωsg . The
filtering functions have a width of ∼|ωsg| and do not attenuate

Fourier amplitudes within their width. Hence, the correlation
time of the filtered noise sources is of the order of |ωsg|−1. If
the initial sources satisfy the relation

[Fn(t ), F †
m(t ′)] = Anm(t ) δ(t − t ′), n,m = E, S, (22)

where Anm is noise covariance power, we arrive after some
calculations at[

F (i)
n (t ), F (j )†

m (t ′)
] = δijAnm(t ) δ̃(t − t ′),

i, j = m, l, n,m = E, S. (23)

The deltalike function δ̃(t − t ′) has a temporal width of
∼|ωsg|−1. The filtered noise amplitudes in these two channels
are mutually independent and are “slow” in terms of the first
adiabatic elimination but can be viewed at as “fast” compared
to the observables E (i)(t ) and S (i)(t ), i = m, l. The same holds
true for the input field.

The definitions (20) and (21) are substituted into the evolu-
tion equations (16) and (17). Omitting fast oscillating terms,
we arrive at the equations for slow amplitudes E (i)(t ) and
S (i)(t ), i = m, l. The observables related to the luminescence
channel are expressed in terms of those for the memory
channel by means of adiabatic elimination; that is, Ė (l) and
Ṡ (l) are set to zero compared to 2ωsgE (l) and 2ωsgS

(l). This
yields

Ė (m)(t ) = −
[(

κ + g2Nγ⊥
�2

)
+ iδR (t )

]
E (m)(t )

+ ig
√

N

�

(
1 + iγ⊥

�

)
�(t )S (m)(t ) + �E (t ), (24)

Ṡ (m)(t ) = −
[

2
γ⊥|�(t )|2

�2
+ iδR (t )

]
S (m)(t )

+ ig
√

N

�

(
1 + iγ⊥

�

)
�∗(t )E (m)(t ) + �S (t ). (25)

Here

δR (t ) = −g2N |�(t )|2
2ωsg�2

is the frequency correction induced by the Raman two-
quantum transition in the right � scheme. This frequency
correction is of the order of |δc δs/ωsg| 
 |δc|, |δs | and will
be omitted due to our approximations. The label (m) on the
observables of interest E (m) and S (m) will be dropped for
brevity.

Combined Langevin noise operators in Eqs. (24) and (25)
arise in the form

�E (t ) = − g
√

N

2ωsg�
�(t )F (l)†

S (t ) + F
(m)
E (t ) +

√
2κE (m)

in (t ),

(26)

�S (t ) = − g
√

N

2ωsg�
�(t )

[
F

(l)†
E (t ) +

√
2κE (l)†

in (t )
] + F

(m)
S (t ).

(27)

Coupling the luminescence channel to the memory scheme
leads to the following:
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(i) The spin amplitude damping rate increases due to exci-
tation of the initial state g by the control field in the spectral
wing of the g-f transition [see (17) and (25)]. This has
some impact on the memory efficiency through the excitations
balance (see below).

(ii) New noise terms ∼F
(l)†
n (t ), n = E , S, and the term

∼E (l)†
in (t ) occur in Eqs. (24) and (25) which are responsible

for the creation of the field and spin quanta pairs, in analogy to
many parametric phenomena. In these noise terms, the atomic
noise is represented on par with the noise filed entering the
cavity.

In the next sections, we demonstrate that these terms
introduce, via four-wave mixing, some additional noise to the
memory readout signal, as well as some entanglement of the
signal with the spin subsystem.

IV. MEMORY READOUT: QUANTUM EFFICIENCY
AND NOISE

The output quantized field amplitude is given by the stan-
dard input-output relation,

Eout (t ) =
√

2κ E (t ) − Ein(t ), (28)

which is valid for a high-finesse cavity with a close-to-unity
reflection of the cavity mirrors. This very cavity can be viewed
as “good” or “bad” depending on how long or short the
signal is compared to the cavity lifetime. By the homodyne
detection of the output signal on a time interval [ 0, T ], the
observed quantity is given by the projection of the signal on
the normalized homodyne mode E (h)(t ) = √

2κeiθhE0(t ),

n−
〈n〉 = Re(e−iθhEd ), Ed =

√
2κ

∫ T

0
dtEout (t )E∗

0 (t ),

(29)

where n− and 〈n〉 are the difference and the average sum of
counts in the arms of the detector and

2κ

∫ T

0
dt |E0(t )|2 = 1.

The commutation relation (9) implies that the introduced
amplitude Ed of the output signal temporal mode is bosonic,
[Ed, E†

d ] = 1. The directly measured quantity is an arbitrary
quadrature component Re(e−iθhEd ) ≡ Qh of Ed , which de-
pends on the homodyne phase θh. In order to find the signal,
we represent the solution of the linear basic equations (24) and
(25) in terms of dimensionless Green’s functions Gnm(t, t ′),
n,m = E, S,

E (t ) = GEE (t, 0)E (0) + GES (t, 0)S(0)

+
∫ t

0
dt ′

∑
n=E,S

GEn(t, t ′)�n(t ′), (30)

S(t ) = GSE (t, 0)E (0) + GSS (t, 0)S(0)

+
∫ t

0
dt ′

∑
n=E,S

GSn(t, t ′)�n(t ′). (31)

Consider the memory retrieval. The starting spin amplitude
S(0) is most efficiently transferred to Ed given Eout (t ) ∼

√
η
√

2κE0(t )S(0) when the projection (29) is maximized. In
view of (28) and (30), this is achieved when

GES (t, 0) = √
ηeiθRE0(t ), (32)

where η � 1 is the quantum efficiency of the readout and θR

is an arbitrary phase shift.
Assuming GES is of the form given by (32) (see the next

sections), the observable is found to be

Ed = √
ηeiθRS(0)

+ 2κ

∫ T

0
dtE∗

0 (t )

(
GEE (t, 0)E (0) − 1√

2κ
E (m)

in (t )

)

+ 2κ

∫ T

0
dtE∗

0 (t )
∫ t

0
dt ′

∑
n=E,S

GEn(t, t ′)�n(t ′). (33)

Let us represent a general solution for the signal and spin
amplitudes as

Ed = GdEE (0) + √
ηeiθRS(0) + Gd+�

(+)
d + Gd−�

(−)
d ,

(34)

S = GSEE (0) + GSSS(0) + GS+�
(+)
S + GS−�

(−)
S ,

(35)

where we simplified the notation S(T ) → S, GSE (T , 0) →
GSE , GSS (T , 0) → GSS .

The terms ∼�
(+)
d and �

(+)
S include the positive-frequency

(that is, the annihilation) noise operators, which, as seen
from (26) and (27), are associated with the memory channel.
The terms ∼�

(−)
d and �

(−)
S are composed of the negative-

frequency noise operators, which are introduced by the lumi-
nescence channel. We assume that, by definition,

[�(+)
d ,�

(+)†
d ] = [�(−)†

d ,�
(−)
d ]

= [�(+)
S ,�

(+)†
S ] = [�(−)†

S ,�
(−)
S ] = 1. (36)

In order to preserve proper commutation relations for the
bosonic amplitudes Ed and S, the Green’s functions in
Eqs. (34) and (35) must obey the following relations:

[Ed , E†
d ] = |GdE |2 + η + |Gd+|2 − |Gd−|2 = 1, (37)

[S, S†] = |GSE |2 + |GSS |2 + |GS+|2 − |GS−|2 = 1, (38)

[Ed , S
†] = GdEG

∗
SE + √

ηeiθRG∗
SS + Gd+G∗

S+[�(+)
d ,�

(+)†
S ]

−Gd−G∗
S−[�(−)†

S ,�
(−)
d ] = 0. (39)

By the memory readout, only the initial spin is assumed to be
in a nonvacuum state. For the fluctuation of the observable Ed

this yields

�Ed = Ed − 〈Ed〉 = √
ηeiθR [S(0) − 〈S(0)〉] + GdEE (0)

+Gd+�
(+)
d + Gd−�

(−)
d .

The uncertainty of an arbitrary quadrature amplitude of Ed is
evaluated as 〈(�Qd )2〉1/2, where �Qd = Re[e−iθh�Ed ]. By
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making use of (36) and (37), we arrive at

〈(�Qd )2〉 = 1
4 {1 + η〈: [ei(θR−θh )�S(0) + H.c.]2 :〉
+ 2|Gd−|2}, (40)

where : · : denotes normal ordering.
The fluctuation variance (40) is composed of the contribu-

tions of (i) an excess over the vacuum level fluctuation of the
relevant quadrature of the initial spin, which is transferred to
the output with quantum efficiency η, and (ii) the four-wave
mixing noise due to the presence of the luminescence channel.
By the retrieval of the initial spin in the vacuum state in the
absence of luminescence, the output is also in the vacuum
state, as it should be.

The added noise, which characterizes the memory device,
is found after the removal of the retrieved spin quadrature
variance,

〈(�Qd )2〉(add) = 〈(�Qd )2〉 − η〈{Re[ei(θR−θh )�S(0)]}2〉
= 1

4 {1 − η + 2|Gd−|2}. (41)

This is our general result. Further, we will evaluate the impact
of both the incomplete readout and the four-wave mixing
noise for the values of physical parameters typical for some
experiments using cells with alkaline atoms.

V. OPTIMAL CONTROL OF THE MEMORY CELL

Our goal is to evaluate the added noise (41) for a reasonable
range of physical parameters of the memory, that is, to find the
readout quantum efficiency η, and to estimate the four-wave
mixing noise contribution ∼|Gd−|2.

The approaches allowing for optimal memory control dur-
ing the readout, such that the retrieved signal has a predefined
temporal shape and satisfies (32), were discussed previously
in the literature [14,15,22]. Here we shall use the version
of the impedance-matching method presented in Ref. [17],
where Raman memory operation beyond the bad cavity limit
(that is, for the output signals whose duration is not arbitrarily
long compared to the cavity lifetime) was considered in
detail. In particular, relaxation phenomena and optimal phase
matching of the signal and the control field are addressed.

Since the quantum efficiency η arises as a parameter of
the Green’s function (32), it can be found by addressing a
semiclassical version of the basic equations (24) and (25) and
of the input-output relation (28), where the noise sources are
dropped. The retrieved signal temporal mode E0(t ) is assumed
to have a normalized quasi-Gaussian shape of duration T ,

E0(t ) = NE {exp[−16(t/T − 1/2)2] − e−4},

2κ

∫ T

0
dtE2

0 (t ) = 1, (42)

where NE is the normalization coefficient. The signal is
truncated at the relative level 1/e4 ∼ 0.018 and has a width
at the relative level ∼1/e, equal to half of its duration. The
“inverse” problem of estimating the control field time profile
�(t ) that matches the predefined time profile of the retrieved
signal beyond the bad cavity limit was considered in detail in
Ref. [17], where the luminescence channel was not accounted
for. This channel introduces to the semiclassical equations

FIG. 2. The spin amplitude for the normalized retrieved signal
E0(t ) of duration 2κT = 4, 8, 12, 16, 20 (in units of the cavity
excitation lifetime). At some time moments ts , the collective spin
excitation is completely mapped onto the cavity field, and the inverse
process of the cavity field reabsorption begins in order to shape
properly the rear slope of the signal. The shorter the signal is, the
larger the fraction of initial atomic excitation is reabsorbed by the
memory cell, thus reducing the memory quantum efficiency.

only an additional decay rate of the spin amplitude [see
(17) and (25)]. This does not change the basic lines of the
consideration given in Ref. [17], and we refer the reader to
the cited paper. In brief, the main steps and issues arising are
reduced to the following.

The time dependence of the spin excitation number that
matches the time profile of the cavity field defined in Eq. (42)
is found by integrating the excitation balance,

d

dt
(|E0|2 + |S|2) ≈ −2

(
κ + g2Nγ⊥

�2

)
|E0|2 − 4

γ⊥|�S|2
�2

,

(43)

where �S is derived from (24),

�S ≈ �

g
√

N

(
1 − i

γ⊥
�

)[
d

dt
+

(
κ + g2Nγ⊥

�2

)]
E0. (44)

Substituting the last expression into (25), one can finally
calculate the spin phase,

φs (t ) = −γ⊥
�

∫ t

0
dt ′

1

|S(t ′)|2

×
[

d

dt ′
+ 2

(
κ + g2Nγ⊥

�2

)]
E2

0 (t ′), (45)

where S(t ) = |S(t )|eiφs (t ).
Given the complex spin amplitude evolution is revealed,

both the absolute value and the phase of the control field are
in turn found by making use of (44).

An essential feature of the memory operation beyond the
bad cavity limit, revealed in Ref. [17], is that the rear slope of
a signal of a signal of finite duration can be formed only by
means of a partial reabsorption of the field excitations by the
atomic subsystem, as illustrated in Fig. 2. The reason for this
is that free decay of the cavity field after some time moment
ts would lead to an exponential form of the rear slope of
the signal, instead of that of E0(t ). This imposes limitations
on quantum efficiency and has some impact on the phase
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properties of the system observables. An approach allowing us
to regularize the arising nonstationary phase corrections was
developed in Ref. [17]. In order to simplify the evaluation of
four-wave mixing noise, we neglect here these phase correc-
tions for the signal and the control field in some vicinity of ts
and take (42) for the signal shape.

The Green’s functions of the semiclassical version of (24)
and (25) are found by numerical integration, where we make
use of the complex control field amplitude calculated in the
approach described above. Let us introduce the projections of
the Green’s functions on the signal temporal mode,

PdE (T , t ) = 2κ

∫ T

t

dt ′E∗
0 (t ′)GEE (t ′, t ),

PdS (T , t ) = 2κ

∫ T

t

dt ′E∗
0 (t ′)GES (t ′, t ). (46)

This yields for the four-wave mixing contribution to the added
noise variance (41)

|Gd−|2 = g2N

(2ωsg�)2

∫ T

0
dt |�(t )|2

{
|PdE (T , t )|2 2γ⊥|�(t )|2

�2

+
[
PdE (T , t )P ∗

dS (T , t )
2γ⊥g

√
N�(t )

�2
+ c.c.

]

+ |PdS (T , t )|2
(

2γ⊥g2N

�2
+ 2κ

)}
. (47)

It is common to characterize the atom-field coupling with the
cooperativity parameter C = g2N/γ⊥κ [14]. In our numerical
simulation, we assume the following values of the physical
parameters corresponding to the off-resonant Raman regime:
C = 200, γ⊥/2π = 3 MHz, κ/2π = 2 MHz, �/2π =
200 MHz, and ωsg/2π = 10 MHz. The dimensionless time
τ is measured in units of the cavity excitation lifetime 1/2κ ,
where τ = 2κt , T = 2κT .

We represent the retrieved signal noise (41) by plotting
the variance 4〈(�Qd )2〉(add) (see curve 1 in Fig. 3). In order
to reveal the role of nonadiabatic effects that arise from the
memory operation beyond the bad cavity limit, we present our
results for a wide range of the signal duration, starting from
the relatively short pulses in the timescale of 1/2κ , which is
beyond the bad cavity limit.

The vacuum noise contribution (1 − η) appears in curve
2, where the memory readout quantum efficiency was derived
from the solution of the excitation balance equation (43) as
η = 1/|S(0)|2. Note that in order to retrieve a single excita-
tion from the memory by η < 1, the initial number of spin
excitations must exceed 1.

As we demonstrated previously [16,17], the quantum ef-
ficiency decrease is basically due to the number of spin
excitations |S(T )|2 retained in the memory by an incomplete
readout and to the field and spin relaxation terms in Eqs. (24)
and (25), proportional to γ⊥. By the adopted values of the sys-
tem parameters, just a steep increase in the number of unread
excitations for short signals is the main limiting factor for the
memory quantum efficiency in the essentially nonadiabatic
regime.

The noise term 2|Gd−|2 introduced by the four-wave
mixing is shown in curve 3. This noise contribution does

FIG. 3. The added noise variance 4〈(�Qd )2〉(add) (curve 1) and
the contributions 1 − η (curve 2) and 2|Gd−|2 (curve 3), associated
with the different-from-unity retrieval quantum efficiency η and with
the four-wave mixing noise, respectively. As we have demonstrated,
the four-wave mixing term stems from both the quantized field
and the atomic noise sources. The added noise variance exhibits
a significant increase for short signals, especially the contribution
1 − η, which is sensitive to a partial signal field reabsorption beyond
the bad cavity limit, as illustrated in Fig. 2. In the bad cavity limit
(actually for 2κT > 15, . . . , 20), the quantum efficiency is limited
by the excitation of lower atomic sublevels by the control field and
by the cavity field absorption.

not demonstrate a comparably significant increase for short
signals. An important feature of this source of the memories’
imperfection is that for a large enough frequency mismatch
ωsg this term scales as 1/ω2

sg , which follows from (47).

VI. CONCLUSION

We have extended the theory of cavity-assisted atomic
Raman memories in the presence of four-wave mixing noise.
We have considered the limitations imposed by the four-
wave mixing noise and by the noise sources that are due to
atomic relaxation for the signals whose duration is not much
larger than the cavity field lifetime, that is, beyond the bad
cavity limit. Coprocessing in a memory of a time sequence of
quantized signals within the time interval of effective storage
implies shortening of the signal duration, and our results
could help to answer the question of how to achieve maximal
information content by reducing the duration of individual
signals.

We have proposed an approach that allows one to account
for sideband quantum noise sources of different physical
origins in cavity-assisted atomic Raman memories using two-
band spectral filtering of the noise sources in the Heisenberg-
Langevin picture. This allowed us to demonstrate that, in
such spectrally selective memories, the sideband atomic noise
sources essentially contribute to the four-wave mixing noise
of the retrieved signal on par with the sideband quantized field
entering the cavity.
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APPENDIX A: SPIN NOISE AND ENTANGLEMENT

In order to make our consideration more comprehensive, we briefly review here the statistics of the residual spin excitation
S(T ) = S, as well as its entanglement with the retrieved signal. Equation (35) yields for the spin fluctuation

�S = GSS[S(0) − 〈S(0)〉] + GSEE (0) + GS+�
(+)
S + GS−�

(−)
S . (A1)

The variance of an arbitrary spin fluctuation quadrature �QS = Re(e−iθS �S) specified by the phase θS is

〈(�QS )2〉 = 1
4 {1 + 〈: [e−iθS GSS�S(0) + H.c.]2 :〉 + 2|GS−|2}, (A2)

where we made use of (38). The noise introduced by the spin quanta created in pairs with the Raman luminescence photons is
represented by the contribution ∼|GS−|2.

In terms of the signal-spin covariance matrix, the correlation between the two subsystems at t = T is described by
1
2 〈(�Qd�QS + �QS�Qd )〉 = 1

4 {〈: [e−i(θh−θR )√η�S(0) + H.c.][e−iθS GSS�S(0) + H.c.] :〉
+ (e−i(θh−θs )Gd−G∗

S−〈�(−)†
S �

(−)
d 〉 + c.c.)}, (A3)

where the commutation relation (39) was used. The retrieved
signal and the residual spin are correlated (i) due to a partial
transfer of the initial spin quadratures to both the signal and
the spin by an incomplete retrieval and (ii) because of para-
metric two-quantum interaction in the luminescence channel,
similar to the case of χ (2) nonlinearity. Equation (A3) implies
that for the vacuum initial state of the spin, the light-matter
correlation is of parametric origin, as it should be.

APPENDIX B: SELF-CONSISTENCY
OF THE APPROACH

It is instructive to reveal to what extent our basic equations
(16) and (17) preserve bosonic commutation relations of
the observables. The macroscopic increments of the relevant
commutators are evaluated by making use of the observables’
increments of the form

�O(t ) = AO (t )�t +
∫ t+�t

t

dt ′FO (t ′),

where O stands for E or S, the slow uniform terms on the
right side of (16) and (17) are denoted as AO (t ), and FO (t ) are
the noise sources (18) and (19). Here the time increment �t

is much shorter than a macroscopic evolution time but large
compared to the noise correlation time. It is straightforward
to demonstrate that given [E (t ), E (t )†] = [S(t ), S(t )†] = 1,
[S(t ), E (t )†] = 0, the macroscopic increments of the commu-
tators [E, E†] and [S, E†] are equal to zero, as they should, but
for the increment of [S, S†] we arrive at

〈�[S, S†](t )〉
�t

= −2γ⊥|�(t )|2
�2

.

The right side of this equation gives the ground state g

excitation rate by the off-resonant control field in the lumi-
nescence channel. Since the initial population of the ground
state is assumed to be unchanged during the evolution,
the necessary condition for our theory to be applicable is
(2γ⊥|�|2/�2)T 
 1 when a relative decrease in the ground-
state population is negligible.
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