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Ultrastrongly dissipative quantum Rabi model
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We discuss both the spectrum and the dynamics of cavity QED in the presence of dissipation beyond
the standard perturbative treatment of losses. Using the dynamical polaron ansatz and matrix-product state
simulations, we discuss the case where both light-matter g coupling and system-bath interaction are in the
ultra-strong-coupling regime. We provide a critical g for the onset of Rabi oscillations. Besides, we demonstrate
that the qubit is dressed by the cavity and dissipation. Such a dressing governs the dynamics and, thus, it can
be measured. Finally, we sketch an implementation for our theoretical ideas within circuit QED technology.
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I. INTRODUCTION

More than 80 years ago, Rabi studied the interaction of
a two-level system (TLS) with a classical electromagnetic
field [1]. Jaynes and Cummings (JC) quantized this theory
[2], focusing on the case of a single mode. This model is the
quantum Rabi model (h̄ = 1),

HqR = �

2
σz + �a†a + gσx (a† + a). (1)

In this Hamiltonian, � and � are the bare TLS and cavity
frequencies, whereas g denotes the light-matter interaction
strength, see Fig. 1(b). Considering the dissipation of the
two-level system γ and of the cavity κ , we obtain several
light-matter regimes [cf. Fig. 1(a)]. When coupling outweighs
dissipation g � {γ, κ}, the qubit and the cavity field exchange
excitations in a coherent way. Here [darker zone in Fig. 1(a)]
we distinguish two regimes. If g/� � 0.1, we are in the SC
regime, and light-matter interaction can be simplified into
g(σ+a + H.c.) using the RWA. However, if g/� � 0.1, the
RWA fails, and the full interaction, i.e., the counterrotating
terms—g(σ+a† + H.c.)—are needed. This is the USC [3,4].
By analogy, when dissipation dominates, we distinguish be-
tween the WC and the WUSC, when dissipation dominates,
we distinguish between the WC and the WUSC, depending
on whether we can apply or not the RWA in the light-matter
coupling [light area in Fig. 1(a)].

The goal of this paper is to derive a mathematical treat-
ment of the cavity-QED model that provides quantitatively or
qualitatively accurate solutions in all coupling and dissipation
regimes—WC, SC, WUSC, and USC—. There are many ways
to solve the cavity-QED model that apply to subsets of these
regimes. In the absence of dissipation, Eq. (1) admits an
analytical solution [5] and can be solved in the computer
for any g value. If losses are taken into account, they are
typically discussed using Markovian master equations [6,7].
They are perturbative in the system-bath interaction [8,9].

Going beyond this perturbative treatment is tricky [10].
Renormalization, path-integral expansions, or numerical tech-
niques are required [11,12]. In contrast to this zoo of solutions,
we will offer a different method of broad utility with the only
restriction that qubit dissipation remains below the quantum
phase transition into the strongly correlated regime. The re-
sulting method will be useful in studying all the quantum
technologies that are developed around the JC mode—single-
photon emitters, quantum computers, spin squeezing [13]—,
as well as experiments that exploit the huge dipole moments
of superconducting qubits in the ultra-strong-coupling regime
[14–16].

Our method builds on the polaron Hamiltonian [17,18]
to develop an effective model that can be analytically or
numerically solved. Similar to the Ohmic spin-boson theory
[19–21], we predict non-Markovian renormalization of the
qubit splitting � due to the coupling with the bath either
directly γ or via the cavity. We can also solve the qubit-
cavity dynamics from overdamped decay in the limit of WC
or WUSC dissipation to coherent scenarios that extend well
inside the USC both in losses and in light-matter coupling,
see Fig. 1.

The outline of this paper is as follows. In Sec. II, we
summarize the model, the polaron transformation, and the
different ways of solving the spectrum, and the dynamics. In
Sec. III, we announce our results. We discuss the ground-state
properties of the model, the onset of Rabi oscillations, and
the noise spectrum. Finally, we give some conclusions and a
possible implementation in Sec. V. Several technical details
are discussed in the appendices.

II. THEORETICAL METHODS

A. Combined dissipation channels

We consider a qubit and a cavity interacting with each
other and coupled to independent baths. The model in the
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FIG. 1. Cavity QED phase diagram and setup sketch. (a) Dark
region marks where Rabi oscillations occur. We distinguish between
strong-coupling (SC) and ultra-strong-coupling (USC) regimes de-
pending if the rotating-wave approximation (RWA) between the
cavity field and the atom can be performed or not. In the light
region, losses are big enough, and the TLS decays in an overdamped
way. Consistently, we must distinguish between weak coupling (WC)
and weak ultra-strong-coupling (WUSC) regimes. In the figure α

characterizes the TLS losses [cf. Eq. (3a)]. In (b) we draw a cavity
QED sketch with the main parameters indicated.

system-bath formalism [22,23] is [cf. Eq, (1)] as follows:

H = HqR +
∑
i=1,2

N∑
k

ωk,ib
†
k,ibk,i + σx

N∑
k

ck,1Xk,1 + (a + a†)

×
N∑
k

ck,2Xk,2 + (a + a)2
∑

k

|ck|2
2ωk

. (2)

The qubit and cavity baths have independent modes ωk,i (i =
1, 2) with bosonic quadratures Xk,i ≡ b

†
k,i + bk,i . Both noise

channels can be described using spectral density functions
Ji (ω) = 2π

∑
k c2

k,iδ(ω − ωk,i ). In this paper, we are consid-
ering an Ohmic noise spectrum for both the cavity and the
spin, i.e., Ji (ω) ∼ ω. In the Markovian limit, the dissipation
strength is determined by the spontaneous emission rates of
the qubit (γ ) and the cavity κ because [cf. Fig. 1(b)]

γ = J1(�) = πα�, (3a)

κ = J2(�) = παcav� . (3b)

with α (αcav) as dimensionless parameters characterizing the
dissipation strength for the TLS (cavity).

The last term in Eq. (2) deserves some discussion. This
regularization of the bosonic modes arises from a cavity-bath
coupling of the form ∼ (a + a† − �)2, where a + a† is the

cavity quadrature and � is the electromagnetic field injected
by the bath. This type of coupling—which is very natural
in superconducting circuits—ensures that the total energy is
bounded from below and leads to the quadratic correction
of the bosonic modes. Importantly, the quadratic correction
ensures that the resonance of the cavity stays at �, irrespective
of the dissipation strength αcav. Note also that we do not find a
similar term in the qubit-bath coupling because of saturation:
(σx )2 = 1. Further parameter renormalization is associated
with quantum many-body effects between the bath and the
cavity QED system [10,24].

The cavity mode in (1) can be diagonalized together with
its environment. In doing so, Hamiltonian (2) is rewritten as a
spin-boson model [19] for a two-level system coupled to two
baths, one of which contains the cavity mode,

H = �

2
σz + σx

2N+1∑
k′

ck′ (b†k′ + bk′ ) +
2N+1∑

k′
ωk′b

†
k′bk′ . (4)

By joining the cavity modes and the qubit bath, we arrive at
the total spectral density J (ω) = 2π

∑
k′ c

2
k′δ(ω − ωk′ ),

J (ω) = παω + 4g2παcav�
2ω

(�2 − ω2)2 + (παcav�ω)2
. (5)

The second term characterizes the bath containing the cavity
mode and is peaked around the cavity frequency � [25]. The
first term accounts for the intrinsic qubit Ohmic environment.
We will correct this spectral function by introducing a hard
cutoff ωc [20].

Finally, note that models (2) and (4) are completely equiv-
alent. When writing the model as (4), Rabi oscillations can be
understood as non-Markovian decaying oscillations coming
from the peaked spectral density. Details on the cavity-bath
diagonalization and the effective spectral density are given in
Appendix B.

B. Effective RWA models

It has been recently shown that the low-energy spectrum of
a spin-boson model (5) can be very well approximated by an
effective excitation number conserving Hamiltonian derived
from a polaron transformation [17,18]. The basic idea is to
construct a unitary transformation that disentangles the TLS
from the bath,

Up = exp
[
σx

∑
(fkb

†
k − f ∗

k bk )
]
, (6)

and choosing the displacements fk with the Silbey-Harris
prescription that the ground state of Hp = U

†
pHUp be as close

as possible to |0〉 ⊗ |0〉 the ground state of the uncoupled TLS
|0〉 and of the bath |0〉. Minimization yields the self-consistent
relation,

fk = −ck/2

�r + ωk

with �r = � exp

(
−2

∑
k

f 2
k

)
, (7)
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and the effective Hamiltonian Hp is well approximated within
the single-excitation sector by [26]

Hp1
∼= �r

2
σz +

N∑
k

ωkb
†
kbk − 2�r

(
σ+

N∑
k

fkbk + H.c.

)

− 2 �rσz

N∑
k,p

fkfpb
†
kbp. (8)

This model has two important features. First, our TLS appears
with the renormalized frequency �r , that determines the
dynamics of the qubit in the bath [cf. Sec. III B]. Second, the
model develops a conserved quantity [Hp, σz + ∑

k b
†
kbk] = 0

and becomes tractable with the same techniques as the RWA
models.

C. Estimating �r

The qubit renormalized frequency �r [cf. Eqs. (7) and (8)]
admits analytical solutions in the continuum limit where we
can write

�r = � exp

[
−1/2

∫ ωc

0
J (ω)/(ω + �r )2

]
, (9)

using the UV cutoff ωc. The resulting expression is not
tractable and requires the numerical solution of a transcen-
dental equation for �r in (9). One extreme limit of this
equation appears when the qubit decouples from the cavity
(g = 0). In that case Eq. (9) can be solved, resulting in the
Ohmic spin-boson model. Then, �r = �(�/ωc )α/(1−α), and
the localization-delocalization transition at α = 1 [19]. When
we depart from this limit g 	= 0, the second summand in
(5) decreases the onset of the localization transition to lower
values of α.

The predictions of the polaron ansatz can be compared
with the adiabatic renormalization group (ARG) [19] in the
continuum limit. Applied to the spin-boson model, the ARG
predicts a qubit frequency at

�ad
r = � exp

[
−1/2

∫ ωc

�r

J (ω)/ω2

]
. (10)

Comparing (9) and (10) we see a difference in the lower
limit of the integral. The reason is that the RG flow stops at
ωc ∼ �r . If g = 0, both methods yield the same result except
corrections on the order of O(�r/ωc ). Therefore, they predict
the same �r , however, if g 	= 0, the ARG is different from a
polaron (and becomes less accurate). Our interpretation is that
the cavity � behaves as an effective cutoff and for � ∼ � the
ARG should fail. More generally, we also expect the ARG
to fail whenever cavity losses and/or light-matter coupling
dominate over the TLS intrinsic dissipation.

D. Modified Wigner-Weisskopf

We have just discussed that (8) conserves the num-
ber of excitations. We can solve the dynamics within a
single-excitation subspace à la Wigner-Weisskopf. There, the

dynamics is fully determined by the wave function,

|�(t )〉 = Up[fk]

(
ψσ+ +

∑
k

ψkb
†
k

)
|0, 0〉 . (11)

Using (8) and (11), the coefficients {ψ,ψk} satisfy the set of
coupled linear equations,

ψ̇ = −i2�r

∑
ψkfk, (12a)

ψ̇k = −i(ωk − �r )ψk + i2 �rfk

(
ψ −

∑
k′

fk′ψk′

)
. (12b)

From these coefficients we may derive, for instance, the
excitation probability of the two-level system,

Pe = 〈ψ (t )|σz|ψ (t )〉 + 1

2
. (13)

In the regime g/�, α, αcav � 1, we can solve for the qubit
amplitude ψ applying the Markov approximation on the
qubit losses and replacing the second summand in (5) with
a Lorentzian centered on the cavity resonance �. Then an
analytical solution is possible as it is fully developed in our
Appendix C. In the ultrastrong coupling, both for losses and
light-matter coupling, analytical advances are possible in the
calculation of the qubit noise spectrum S(ω) as we explain
in Sec. III C. However, for the time evolution, in general, an
analytical solution is no longer possible. Then, we approxi-
mate the environment using a finite number of modes N as
explained in Appendix A. In doing so, we can solve the set of
O(N ) ordinary differentials (12a) and (12b) numerically, e.g.,
using Lanczos, Runge-Kutta, or any other available method.

E. Matrix-product states

In order to confirm the predictions of Hp, we also run
numerical simulations on the unapproximated model Hp =
U

†
pHUp using a matrix-product state (MPS) ansatz. Whereas

working with Hp significantly decreases the amount of en-
tanglement in the MPS simulation, we introduce another
optimization and express Hp as a tight-binding model [27].
The simulated model reads

Hp = �r

2
σze

−θc
†
0eθc0 + 2 �rθ σx (c0 + c

†
0)

+
∑

i

(βic
†
i+1ci + βic

†
i ci+1 + αic

†
i ci ), (14)

where θ2 = ∑
k f 2

k . The new collective modes ci are con-
structed from the original ones bi using a Lanczos recursion
[27] that also produces the real numbers αi and βi . This new
model has the advantage that it can be simulated using both
Arnoldi- and Trotter-type MPS methods [28].

III. CAVITY-QED BEYOND THE MARKOVIAN REGIME

A. Ground state

We will now show how to apply the previous formalism to
study the equilibrium properties and dynamics of the cavity-
QED setup in all regimes. We begin with the nature and
properties of the ground state.
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FIG. 2. Frequency renormalization (�r ). In (a) we compare the
prediction of our three theories: polaron, adiabatic RG, and the MPS
numerical simulation as a function of α. We set κ = παcav = 0.01π

and g = 0.2. In the inset we show the dependence on g strength for
α = 0.1 and the same κ . In (b) we do the same but setting κ = π0.8
and g = 0.4 (main panel) and κ = π1.5 and g = 0.6 (inset). In all
the figures the cavity and qubit bare parameters are � = � = 1.

The construction of the polaron Hamiltonian provides
a zeroth-order approximation to the ground-state Up |0, 0〉,
which predicts that the qubit has some probability to be
excited. This is consistent with earlier findings in lossless
cavities [8,29] and in the spin-boson model without cavities
[19], but our treatment allows us to interpolate between both
limits. The equilibrium z magnetization is proportional to the
qubit renormalized frequency,

〈σz〉eq = 〈0, 0|U †
pσzUp|0, 0〉 = −�r

�
, (15)

which, as we saw before, can be computed from the displace-
ments fk (7).

Let us now compare the estimates of 〈σz〉 and �r from
the adiabatic renormalization-group (10), the polaron method
Eq. (9), and an exact solution of Hp with the MPS discussed
in Secs. II C and II E. Figure 2 summarizes the ground-state
properties for different values of the dissipation and coupling
strength. Those simulations have been performed with N =
256 modes for the cavity bath and a similar amount for the
qubit bath, ensuring numerical convergence to a quasicontin-
uum limit. In panel 2(a) we plot the qubit renormalization �r

as a function of the TLS dissipation [α, cf. Eq. (3a)] for bare
parameters � = � = 1, a USC coupling strength g = 0.2,

and a low cavity spontaneous emission κ = παcav� = π0.01.
We compare three methods: the polaron, the ARG, and the
MPS simulations as explained in Sec. II. The dependence of
�r on α resembles the pure Ohmic spin-boson model. As we
have anticipated and explained in Sec. II C, the ARG is not
accurate for small TLS intrinsic noise strength α. The inset of
Fig. 2 also shows that the qubit-cavity coupling lowers even
further the qubit frequency �r due to the friction induced by
the additional bosonic modes from the cavity and its bath.

Figure 2(b) shows the ground state for stronger cavity
dissipation, entering the WUSC regime. As seen in the main
panel, for relatively high cavity losses (κ = παcav� = π0.8)
the trend of �r is qualitatively similar to the uncoupled
case g = 0. However, if we increase κ (and g) enough, both
the polaron and the ARG models predict a sharp transition,
leading to localized solutions �r = 0. Since the MPSs are
numerically exact simulations and do not exhibit such a
transition, we conclude that this is an artifact of the polaron
method that constrains its applicability to large values of
dissipation and light-matter coupling g � 0.6 and κ � 1. The
remaining of this paper will stay well within this regime in
which simulations verify well against the MPS.

B. Nonperturbative Rabi oscillations

In this section we study the dynamics of the cavity-QED
setup, solving numerically and analytically the qubit excita-
tion probability Pe (13) with the polaron methods detailed in
Sec. II D and in Appendix C. The first result is the evidence of
coherent light-matter (Rabi) oscillations that: (i) are resonant
around the qubit renormalized frequency �r and (ii) dampen
exponentially with a modified spontaneous emission rate,

γr � J (�r ) (16)

determined by the joint spectral function (3a) that we intro-
duced in Sec. II. We find that Rabi oscillations start approxi-
mately at the boundary,

g ∼= |κ − γr |/4. (17)

Above this critical value, the TLS and the cavity exchange
excitations coherently; below this boundary, the qubit exhibits
overdamped exponential decay without oscillations. It is re-
markable that this boundary is formally the same as the one
in the RWA and Markovian approximation (g/�, α, αcav � 1
regime) [30] but extends to the USC and WUSC regimes,
which do not admit a perturbative treatment.

In Fig. 3 we show the qubit dynamics for varying g.
In our calculations we start with the qubit in the ground-
state Up|0, 0〉 and perturb it with a π pulse, obtaining state
|�(0)〉 = σxUp|0, 0〉 = Upσx |0, 0〉 = Upσ+|0, 0〉. Note that
this corresponds to {ψ = 1, ψk = 0} in Eqs. (12a) and (12b).

In Fig. 3(a) we see the appearance of oscillations for g �
|γr − κ|/4 ∼= 0.1. These plots confirm that the TLS dynamical
frequency is given by �r since this resonance changes with g,
we explore on- and off-resonant oscillations as we increase
the coupling strength for fixed �. With the parameters used,
� = �r = 0.68, which is reached at g = 0.3. Figure 3(b)
shows the qubit dynamics at precise couplings. This includes
the resonant case g = 0.3, which shows resonantlike Rabi
oscillations in the middle plot. For lower coupling g = 0.05,
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FIG. 3. Rabi oscillations. Panel (a) is a contour for Pe(t ) as a function of the light-matter coupling. The parameters used are κ = π0.01�

and � = 0.68. This value for the cavity frequency is chosen for being in resonance with the renormalized qubit frequency �r when g = 0.3
[see the inset of Fig. 2 (a)]. In (b) we plot three cuts for g = 0.05, 0.3, and 0.6. The bare TLS frequency � = 1. The gray dashed lines
correspond to the approximate formula Eq. (18). The horizontal black dotted lines stand for the equilibrium value P eq

e = (1 − �r/�)/2.

losses dominate, and the TLS dynamics is overdamped—
i.e., exponential decay in the polaron frame—. Since for
α = 0.1, �r 	= �, this is an example of WUSC dynamics.
The right-hand plot shows a USC coupling dynamics with
g = 0.6, where �r

∼= 0.4 and the dynamics are nonresonant
Rabi-like oscillations.

We have found an analytical approximation that reproduces
and explains the TLS-cavity dynamics and the onset of the
Rabi oscillations. We take Eq. (5), remove the term that is
O(f 2), and modify the rest, replacing the effective displace-
ments fk with the original couplings fk → ck . The solution of
these simplified equations is formally identical to the one for
g/�, α, αcav � 1 (Markov and Lorentzian approximations)
but with a renormalized frequency � → �r . We denote it as
P̃e(t ). Besides, we need to impose that the time converges in
t → ∞ to the correct equilibrium solution given by P

eq
e =

(1 − �r/�)/2 [cf. (13) and (15)]. Note that our numerical
simulations verified thermalization, marked as the dotted lines
in Fig. 3. To have the correct stationary limit, we use the
simplest interpolation for our analytical estimation,

P app
e (t ) ∼= (

1 − P eq
e

)
P̃e(t ) + P eq

e . (18)

In Fig. 3(b) we show how such an approximation holds
for relatively high g (well inside the ultra-strong-coupling
regime), justifying Eq. (17). At strong-coupling g = 0.6, the
simple approximation P

app
e stops working (not shown) be-

cause we have neglected the O(f 2) terms. In any case, the
evolution still reflects detuned Rabi oscillations, converging
to the expected limit: Pe(t → ∞) → 1

2 (�r/� − 1).
We further verified the location of the critical value (17),

analyzing numerically the transition from an overdamped
dynamics to the appearance of the first oscillations. For that
we compute the maximum of the time derivative of Pe on
the time-interval [0, T ] with T sufficiently large. We denote
this quantity as max dPe/dt . If the TLS is overdamped, then
dPe/dt < 0 always, and max dPe/dt = 0. However, if some
oscillations occur, the derivative is sometimes positive. This
is represented in Fig. 4 and compared with the bound (17),
exhibiting very good agreement. Two comments are in order.
First, to generate Fig. 4 we have chosen to be approximately
at resonance at the critical value of g. Second, since �r can
go to zero faster that linearly with α, γr approaches zero by

increasing α. In the figure, we indeed see that αr (α = 0.2) ∼=
αr (α = 0.3) [cf. Fig. 4].

Summing up, our simulations justify the use of quantum
optics approximations in this nonperturbative regime. We find
that Rabi oscillations extend qualitatively into a regime where
light-matter interaction and dissipation are both nonperturba-
tive. In particular, we have studied a regime—denoted the
WUSC—in which g is big enough that we cannot make the
RWA (the definition of the USC), but at same time, losses are
also large and prevent coherent exchange between light and
matter degrees of freedom (the definition of weak coupling)
[cf. Fig. 1].

C. Qubit noise spectrum

The TLS emission spectrum S(ω) is a very useful exper-
imental tool that provides information about the coupling g

and the TLS linewidth. S(ω) is typically computed using the
input-output formalism [31]. In this framework, output and
input fields are related to the TLS state via aout = aout −
i
√

�TLSX
−(t ), where �TLS is the emission rate into the trans-

mission line in which the output signal is collected and X− is

FIG. 4. Weak-coherent coupling. We plot the maximum deriva-
tive of the qubit excitation probability max dPe/dt as a function of g

for different noise strengths (solid lines). This derivative is negative
or zero in the overerdamped regime. The vertical dashed lines mark
the prediction for the critical g given by (17). Equal colors mean
equal parameters.
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FIG. 5. S(ω) at resonance (�r = �). The parameters are those
of Fig. 3 g = 0.3, α = 0.1, � = �r = 0.68, and κ = π0.01�.
The blue lines stand for S(ω) calculated with Eqs. (20a) and (20b).
The gray dashed lines are calculated with the approximations (21a)
and (21b).

the negative frequency component of the qubit-TL coupling
operators (σx in our case) [32,33]. The emission spectrum
is defined as S(ω) = ∫ ∞

0 dt
∫ ∞

0 dt ′e−iω(t−t ′ )〈X+(t )X−(t ′)〉.
Since Hp is number conserving, S(ω) can be calculated
directly from the Laplace transform α(s) in (12a). After some
algebra (fully specified in Appendix D), we end up with

S(ω) ∼ 1

[ω − �r − R(ω)]2 + �(ω)
, (19)

where R(ω) and �(ω) are the real and imaginary parts of the
self-energy of the qubit. The former gives the position of the
eigenvalues, and the latter gives the linewidth. Their explicit
expressions are

R(ω) = 2�r [(K′)2 + (K′′)2] − 2 �rK′′

[(2�r )2 − K′′]2 + (K′)2
(20a)

�(ω) = (2�r )2K′

[(2�r )2 − K′′]2 + (K′)2
, (20b)

and K′ (K′′) is the real (imaginary) part of

K = −i(2�r )2
∫ ∞

0

J (ν)

(ν + �r )2

1

(ν − ω) − i0+ dν.

We note that the renormalized frequency �r is again explicit.
If α, αcav, g/� � 1, the linewidth reduces to

�(ω) = g2παcav�/2

(ω − �)2 + (παcav�/2)2
+ πα�, (21a)

R(ω) = g2(ω − �)

(ω − �)2 + (παcav�/2)2
(21b)

recovering the standard results in cavity QED (using, e.g.,
master equations for dealing with the bath [34]).

The expressions (20a) and (20b) evidence important cor-
rections in the response profile with the most evident fact
of an asymmetry between peaks at the dressed resonance
� = �r [cf. Fig. 5]. This is a signature of the modified
coupling constants ck → fk in the nonperturbative polaron
Hamiltonian. From Eq. (7) the effective coupling coefficients
fk are smaller than ck for ωk < �r and bigger in the region
of the spectrum, leading to the asymmetric profiles. A similar

phenomenon has been identified in the USC regime, which
accounts for large g but only for weak dissipation [35].

In the previous section we tested a simple approximation
to the TLS dynamics (13). This consisted in taking the RWA,
weak-, and strong-coupling solutions—i.e., α, αcav, g/� �
1—, but replacing the qubit resonance � → �r and correct-
ing for the equilibrium state. If we use this approximation to
estimate S(ω), we find that it more or less accounts for the
linewidths. However, our qualitative method fails to reproduce
the asymmetry of the peaks [cf. Fig. (5)] and has a minor
error in the peak location due to the the Bloch-Siegert and
dissipation-induced shifts.

IV. CIRCUIT QED IMPLEMENTATION

The model that we have discussed in this paper admits
a straightforward realization using superconducting circuits.
The three elements that we need are as follows: (i) a qubit
that is ultrastrongly coupled to the cavity [14,15], (ii) a pos-
sibly ultrastrong coupling between the same qubit and some
external environment, such as a transmission line [21], and
(iii) a strong or ultrastrong coupling between the supercon-
ducting cavity and its own bath, a regime already achieved in
Ref. [36].

All these three elements admit full and independent tun-
ability, probing arbitrary values of g, κ , and γ . First of all, the
coupling of the qubit to the photons—g and γ in our model—
can be tuned using superconducting quantum interference
devices (SQUIDs) that can be embedded in the design of the
qubit itself [20,37] as demonstrated in Ref. [21] for a flux
qubit in an open transmission line. Moreover, the coupling
between the cavity and its own bath κ can also be adjusted
using in-line dc SQUIDs. This has been demonstrated in the
laboratory and used for photon trapping and release [38,39]—
applications that are much more demanding than the simple
stationary tuning of the parameter κ in our model.

Assuming superconducting circuit implementations, we
can probe the physics of the combined environments in
various ways. We have studied the spectral function J (ω),
which can be reconstructed from the spontaneous decay of
an excited qubit. This requires a protocol in which: (i) the
cavity is decoupled κ → 0, (ii) the qubit is excited, (iii) all
couplings are switched on for a brief period of time, and
(iv) the excited population of the qubit is measured in a
nondestructive way [40]. Alternatively, it is possible to relate
the spectral function to the qubit spectroscopy by studying the
low-power transmission spectrum of the cavity and relating
the total line shape to the spectral function using the theory
from Ref. [26].

V. CONCLUDING REMARKS

We have studied a cavity QED model beyond the standard
perturbative treatment of losses using numerical and analyti-
cal techniques that apply for computing both the spectrum and
the dynamics. Our paper builds on the polaron Hamiltonian
[26] and matrix-product state simulations. In the former case,
we have shown that techniques to solve the RWA and weak
noise regime [as a Wigner-Weisskopf or S(ω) calculation] can
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be extended to work with a variety of regimes—USC, weak,
strong coupling, etc.,—.

As concrete applications, we have discussed in detail the
case of a two-level system that couples ultrastrongly to both
the cavity and the bath —i.e., both g and γ are comparable
to the qubit and cavity resonances. Using our techniques, we
prove that strong dissipation renormalizes the qubit frequency,
leading to a new resonance � = �r and changing its decay
rate γr . Our simulations show that this renormalized decay
rate can be used to define the onset of Rabi oscillations (g ∼=
|γr − κ|/4) in a formula that extends beyond the RWA for all
ranges of parameters. This suggests a regime where light and
matter are ultrastrongly coupled, but losses are large enough
to suppress Rabi oscillations. We call this regime the WUSC
[cf. Fig. 1].

This paper has different possible continuations. On the
experimental side, we have shown that all regimes and physics
shown in this paper can be probed using state-of-the-art circuit
QED technology. On the theoretical side, our numerical meth-
ods open the door to extend those experiments to study very
challenging cavity QED phenomena, such as transmission-
reflection experiments, Dicke physics, or nonlinear optics in
the USC and WUSC regimes—enabling ultrasfast broadband
photon sources, opening access to stronger nonlinearities and
facilitating the study of non-Markovian open quantum sys-
tems among other phenomena to be explored. In these exam-
ples, the theoretical techniques may need to go beyond the first
excited states, which lie in the single-excitation manifold in
the polaron picture. Fortunately, the techniques used here (the
MPS and the polaron Hamiltonian) already have shown their
utility in working with higher excited states in spin-boson-like
models [41–43].
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APPENDIX A: BATH DISCRETIZATION

In this appendix we explain how to discretize the bath for
performing the numerical simulations.

1. The Ohmic case

In the spin-boson model,

H = �

2
σ z + σx

∑
k

(gka
†
k + H.c.) +

∑
k

ωka
†
kak, (A1)

the bosonic bath is fully characterized by the spectral density,
defined here as

J (ω) := 2π
∑

k

|gk|2δ(ω − ωk ). (A2)

In the Ohmic case [J (ω) = παω] the spontaneous emission
rate in the Markovian regime is given by

� = J (�) = πα�. (A3)

The dimensionless parameter α quantifies the spin-boson-
coupling strength.

To find a discretization, i.e., a finite set of coupling con-
stants gk , we first rewrite the sum in (A2),

J (ω) = 2π
∑

k

�ωk

|gk|2
�ωk

δ(ω − ωk ), (A4)

so that

J (ω) = 2π
|gk|2
�ωk

, (A5)

with �ωk as the frequency interval around ωk . When a
frequency is degenerate ωk � ωk′ , we have to add up all
contributions coming from the different couplings.

A transmission line is a model for an Ohmic bath. Its
discrete version is a set of coupled harmonic oscillators,

HTL =
∑ p2

i

2 �x
+

∑ (xi − xi+1)2

2 �x
. (A6)

The normal modes are known. In the chiral k � 0 case,

k = �k{0, 1, . . . , N}, (A7)

where the momentum spacing relates to �x,

�k = 2π

(2N + 1)�x
, (A8)

which itself dictates the cutoff,

�x = 2v

ωc

. (A9)

The dispersion relation is then simply obtained from the speed
of light (v = 1),

ωk = ωc sin(�x k/2). (A10)

In our model for the TLS �ωk = v �k = �k so that using
(A5) and (A3),

gk =
√

α��k

2

√
ωk =

√
���k

2π

√
ωk, (A11)

which are the couplings used in our numerical simulations.
In Fig. 6 we compare the continuum spectral density and this
discretization. The agreement is clear.

2. The cavity-bath case

The cavity-bath model is the positively defined quadratic
Hamiltonian,

H = 1

2
P 2 + 1

2
�2X2 +

∑
k

1

2
p2

k + 1

2
ω2

k

(
xk − ck

ωk

X

)2

.

(A12)
This is nothing but the Caldeira-Legget model of dissipation
[22]. The spectral density of the cavity bath is given by

Jcav = π

2�

∑ c2
k

ωk

δ(ω − ωk ). (A13)
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units of

u
n
it

s 
of

FIG. 6. Numerical discrete (circles) versus continuum Ohmic
[J (ω) = παω] bath. The parameters used are α = 0.1 and N = 128
bath modes. For aesthetic reasons, only every five points are plotted.

This expression ensures that �cav = J (�) [cf. Eq. (A3)].
The differences between this last expression and (A2) arise
because (A12) is written in terms of positionlike operators and
in the spin boson in terms of annihilation-creation operators.

The Caldeira-Legget model can be rewritten as

H = 1
2 (PT P + XT BX), (A14)

with the matrix,

B =

⎛⎜⎜⎜⎜⎜⎝
�2 +

∑
k

c2
k

ω2
k

−c1 · · · −cN

−c1 ω2
1 0 0

· · · 0 · · · 0

−cN 0 0 ω2
N

⎞⎟⎟⎟⎟⎟⎠. (A15)

This model can be further diagonalized using a unitary trans-
formation U and eigenvalues �2 such that

B = Uω̂2UT (A16)

to give

H = 1
2 P̂T P̂ + 1

2 X̂ω̂2X̂. (A17)

We quantized the model as usual,

X̂j =
√

1

2ω̂j

(ci + c
†
i )

obtaining an expansion for the original cavity mode,

X = (U X̂)0 =
√

1

2

N+1∑
j=1

(Uω̂−1/2)1j (ci + c
†
i ). (A18)

In doing so, the qubit-cavity coupling can be written as the
spin-boson coupling,

gσx (a + a†) = g
√

2�σxX

= gσx

N+1∑
j=1

(
U

√
�

ω̂

)
1j

(ci + c
†
i ). (A19)

units of

u
n
it

s 
of

FIG. 7. Numerical discrete (circles) versus peaked spectral den-
sity continuum bath. The parameters used are g = 0.2, κ = 0.01,
and N = 128 modes.

The bath frequencies are given by the eigenvalues ω̂i . As we
have performed with the Ohmic spectral density, in Fig. 7
we compare the discrete model with the continuum one. The
expression for the continuum case is explained in the next
appendix [see Eq. (B17)]. Again, the agreement is clear.

APPENDIX B: EXACT DIAGONALIZATION AND
EFFECTIVE SPECTRAL DENSITY

We have explained how to diagonalize the cavity and
its bath numerically. It turns out that this task can be also
performed analytically [44–47]. As a result, the diagonalized
cavity mode plus bath can be characterized by a effective
spectral density [25]. We summarize here, in a unified way,
both the diagonalization and the effective spectral density.

1. Exact diagonalization

The eigenvalue problem (A14) reads

�2X −
∑

ckxk +
∑

k

c2
k

ω2
k

X = ω̂2
jX, (B1a)

ω2
kxk − ckX = ω̂2

j xk. (B1b)

Here, ω̂2
j are the eigenvalues [cf. Eq. (A17)]. From (B1b),

xk = ck

ω̂2
j − ω2

k

X. (B2)

Inserting the latter in (B1a) we obtain

�X +
(∑

k

c2
k

ω2
j − ω2

k

+ c2
k

ω2
k

)
X = ω̂2

jX. (B3)

Therefore, the eigenvalues ω2
j are the zeros of the function,

g−1(ω) = ω2 − �2 −
(∑

k

c2
k

ω2
j − ω2

k

+ c2
k

ω2
k

)
. (B4)
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Defining

A(ω) :=
(∑

k

c2
k

ω2
j − ω2

k

+ c2
k

ω2
k

)
, (B5)

we rewrite g−1 in a more convenient way, namely,

g−1(ω) = ω2 − �2 − A(ω). (B6)

The zeros of g−1 are the poles of g. It is important to note that
the residues of g are as follows:

Res(f, ωj ) = 1
∂g−1

∂ω

∣∣
ω=ωj

. (B7)

The orthogonal transformation (A16) fulfills the normal-
ization condition,

1 = U 2
0j +

∑
k

U 2
kj =

(
1 +

∑
k

c2
k(

ω2
j − ω2

k

)2

)
U 2

0j . (B8)

In the second equality, we have used (B2). Now, we note that
[cf. Eq. (B4)]

∂g−1(ω)

∂ω
= 2ω

(
1 +

∑
k

C2
k(

ω2 − ω2
k

)2

)
. (B9)

Using Eqs. (B7)–(B9), we arrive at

U 2
0j = 2ω̂j

∂g−1

∂ω

∣∣
ω=ω̂j

= 2ω̂j Res(g, ω̂j ). (B10)

2. Effective spectral density

We can rewrite the spin-boson-coupling (A19) using
(B10),

g

(
U

√
�

ω̂

)
1j

= g
√

�
√

2 Res(g, ωj ). (B11)

Therefore, the effective spectral density for the spin boson
reads [cf. Eq. (A2)]

Jeff (ω) = 2πg2�
∑

j

2 Res(g, ωj )δ(ω − ω̂j ). (B12)

Using now (B11) for any well-behaved function f (ω), we
have that∫

Jeff (ω)f (ω) = 4πg2�
∑

j

Res(g, ωj )f (ωj )

= 4πg2� Im

[
1

π

∫ ωc

0
dω g(ω − i0+)

]
.

(B13)

Therefore,

Jeff (ω) = 4g2� Im[g(ω − i0+)]. (B14)

So far, everything was general (we have not specified the
spectral density for the cavity bath). We particularize to an
Ohmic spectral density, see (A13) and (3b),

Jcav(ω) = παcavω → κ = Jcav(�). (B15)

Now, we can compute A defined in (B5),

A(ω) = 2

π
�

∫
dν

J (ν)ν

ω2 − ν2
− J (ν)

ν

= 2

π
�αcav

∫
dν

ω2

ω2 − ν2

= iπ�αcavω = iκω. (B16)

Inserting the last result in the definition of g−1, taking the
imaginary part, and using (B14) we get

Jeff (ω) = 4g2κω

(�2 − ω2)2 + (κω)2
, (B17)

which is nothing but the peaked spectral density discussed in
the main text and has been used to test our bath discretization
[cf. Fig. (7)].

APPENDIX C: SINGLE-EXCITATION TIME EVOLUTION
(ANALYTICAL CALCULATIONS)

We approximate Eqs. (12a) and (12b) as follows. We
remove the term that is O(f 2) and modify the rest, replacing
the effective displacements fk with the original couplings
fk → ck . Besides, working in the rotated bases ψ̃ = ei �r tψ

and ψ̃k = ei �r tψk , these dynamical equations yield

˙̃ψ = −i2 �r

∑
ψ̃kfk, (C1a)

˙̃ψk = −i(ωk − �r )ψ̃k − i2 �rckψ̃, (C1b)

The set of amplitudes ψ̃k can be formally integrated, and we
replace the solutions in the equation for ψ̃ arriving at the
nonlocal differential equation,

˙̃ψ = − 1

2π

∫ ∞

0
dω

∫ t

0
dτ J (ω)ei(�r−ω)(t−τ )ψ̃ (τ ). (C2)

We recall that J (ω) is the sum of two contributions, one
coming from the intrinsic TLS noise and the second coming
from the cavity [cf. Eqs. (5)]. In the Markovian limit (which
is consistent with the regime we are discussing), the Ohmic
intrinsic TLS dissipation produces a local term,

− 1

2π

∫ ∞

0
dω

∫ t

0
dπ ψωei(�r−ω)(t−τ )ψ̃ (τ ) ∼= −π

2
α �r ψ̃ .

(C3)

The second summand is approximated with a Lorentzian.
Using that κ = παcav� [cf. Eqs. (5) and (3b)],

4g2κ�ω

(�2 − ω2)2 + (κω)2
∼= g2κ�

(� − ω)2 + κ2/4
. (C4)

Because it is peaked around �, we can extend the frequency
integral

∫ ∞
0 dω → ∫ ∞

−∞ dω. We use the Fourier transform
of the Lorentzian and back to the nonrotated picture ending
up with

ψ̇ = −g2
∫

dt ei(�r−�)(t−τ )e−κ|t−τ |/2ψ (τ ) − γψ/2 . (C5)

Taking the time derivative, we have the local second-order
differential equation,

ψ̈ = −(g2 − γ κ/4 − iδγ /2)ψ − (γ + κ + 2iδ)/2ψ̇, (C6)
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with δ = �r − �. The solution is [ψ (0) = 1 and ψ̇ (0) =
−γ /2]

ψ = e−(1/4)t (κ+γ+η)[(γ − κ )(1 − e(1/2)ηt ) + η + ηe(1/2)tη]

2η
,

(C7)

where

η :=
√

(γ − κ )2 − 16g2. (C8)

APPENDIX D: QUBIT EMISSION SPECTRUM

In computing the noise spectrum S(ω), several manipula-
tions can be performed. It is convenient to solve (12a) and
(12b) using the Laplace transform. We do it in the rotated
frame ψ̃ = ei �r tψ and ψ̃k = ei �r tψk . In the s domain, the
dynamical equations read

sψ̃ (s) − ψ̃ (0) = −i2�r

∑
k

ψk (s)fk, (D1a)

sψ̃k (s) − ψ̃k (0) = −i(ωk − �r )ψ̃k (s)

− i2 �rfk

(
ψ̃ (s) +

∑
k′

fk′ψ̃k′ (s)

)
.

(D1b)

Using that the qubit is initially excited, ψ (0) = 1, and the bath
is its ground-state ψk (0) = 0, we find

ψ̃ (s) = 1

s + (2�r )2
∑

k f 2
k /[s+i(ωk−�r )]

1+i2�r

∑
k f 2

k /[s+i(ωk−�r )]

, (D2)

which can be written as

ψ̃ (s) = 1

s + K (s)
, (D3)

where

K (s) = (2�r )2 K(s)

1 − iK(s)/2�r

, (D4)

and

K(s) =
∑ (2�r )2f 2

k

s + i(ωk − �r )
. (D5)

The s domain is especially useful for computing the emis-
sion spectrum, that, in our case, is given by

S(ω) =
∫ ∞

0
dt

∫ ∞

0
dt ′e−iω(t−t ′ )〈σ+(t )σ−(t ′)〉. (D6)

In the single-excitation subspace, we have that

〈σ+(t + τ )σ−(t )〉 = ψ∗(t + τ )ψ (t ). (D7)

Using the inversion formula,

f (t ) = 1

2π

∫ ∞

−∞
dω eiωtf (iω + 0+), (D8)

we get [cf. Eq. (D3)]

ψ̃ (t ) = 1

2π

∫ ∞

−∞
dω

eiωt

iω + 0+ + K (iω + 0+)
. (D9)

Since ψ̃ = ei �tψ , the relevant object is as follows:

ψ (t ) = 1

2πi

∫ ∞

−∞
dω

e−iωt

�r − ω − iK (i(�r − ω) + 0+)
.

(D10)

If we split in real and imaginary parts the kernel,

K (i(�r − ω) + 0+) = i[R(ω) − i�(ω)], (D11)

together with (D7) and the definition (19), we realize that

S(ω) ∼ 1

[ω − �r − R(ω)]2 + �(ω)
. (D12)

Thus, we just give explicit results for G(ω) and �(ω).
We use Eqs. (D4) and (D5),

K(i(�r − ω) + 0+) = −i(2�r )2
∫ ∞

0

J (ν)

(ν + �r )2

1

(ν − ω) − i0+ dν = π
(2�r )2J (ω)

(ω + �r )2
− i(2�r )2P

∫ ∞

0

J (ν)

(ν + �r )2

1

(ν − ω)
dν

≡ K′ − iK′′. (D13)

With Eqs. (D4) and (D13), we have that [cf. Eq. (D11)]

R(ω) = 2�r ((K′)2 + (K′′)2 − 2 �rK′′)
(2�r )2 − K′′)2 + (K′)2

, (D14)

�(ω) = (2�r )2K′

((2�r )2 − K′′)2 + (K′)2
. (D15)

a. Calculations in the good cavity limit

To produce analytical results we must solve the principal part in (D13). In the limit of good cavity αcav � 1 the integral
can be performed analytically. Note that �r acts as an effective cutoff. The integral with the peaked part of J (ω) cannot be
performed, in general. However, if κ is small enough, Jeff is approximated by a Lorentzian (C4). Besides, we can approximate
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ν + �r → � + �r in the denominator. Putting everything together we have a close formula for K,

K(i(�r − ω) + 0+) = i4�2
r

[
R

(0)
2 (ω)

(� + �r )2
+ γ [�r + ω + ω ln(�r/ω)]

(�r + ω)2
− i

(
�

(0)
2 (ω)

(� + �r )2
+ πγω

(�r + ω)2

)]
, (D16)

where

R
(0)
2 (ω) = g2(ω − �)

(ω − �)2 + (κ/2)2
, (D17)

�
(0)
2 (ω) = g2κ/2

(ω − �)2 + (κ/2)2
. (D18)
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