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Field-squeeze operators via coherent population trapping
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We present a scheme to generate unitarily two-mode and four-mode field squeezing in optical cavities with
the near-resonantly dressed three-level atoms in the � configuration. The dressing fields open two coherent
population trapping (CPT) windows, within which the atoms stay predominantly in the dark state and yield
strong nonlinearities for both the dressing fields themselves and the other applied fields. The two-mode squeeze
operator is separated from degrees of freedom of atoms in a common CPT window, and the multimode squeeze
operator is segregated in different CPT windows. The resulting two-mode and multimode interaction strengths
are at least one order higher than in the previous dispersive schemes, where all fields are far off resonant with
the atoms. The present near-resonant scheme is robust to spontaneous emission since atoms are nearly trapped
in a long-lived superposition state.
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I. INTRODUCTION

Squeezing is one of the key concepts in quantum optics
and laser physics because of its fundamental importance and
its wide applications in high-precision measurements and
quantum communications. Squeezed states have less quantum
fluctuations in one quadrature than a coherent state has [1–3].
Of particularly important interest is the two-mode squeezing,
which is closely correlated with continuous variable entangle-
ment. Moreover, when the squeezing parameter is large one
can have Einstein-Podolsky-Rosen (EPR) entanglement [4,5].

In the usual cases [1–3], on resonance or close to res-
onance, atoms are excited and their spontaneous emission
destroys any possible squeezing of the coupled optical fields.
In order to overcome the spontaneous emission and to seek for
squeezing, one has to work in the far-off-resonance regimes,
where �l/|�l| � 1 (�l are real Rabi frequencies associated
with the lth driving fields and �l are the detunings of the
atomic frequencies from the driving field frequencies). In
the far-off-resonance regimes, the atoms are hardly excited
and then there is hardly spontaneous emission [3]. At the
same time, the dispersive interactions are dominant over the
absorptive interactions. There have been existing schemes that
are based on this and separate out the field-squeeze operator
from the coupled atoms [6–9]. Reid et al. [6] early intro-
duced the phenomenological Hamiltonian of the parametric
form h̄(ξ ∗a1a2 + ξa

†
1a

†
2) from the far-off-resonant three-level

atoms in � configuration, where a1,2 and a
†
1,2 are the anni-

hilation and creation operators. Guzmán et al. [7] presented
an explicit analysis on the method of producing single- and
two-mode squeeze operators. This method was also applied to
multimode cases and to the other level schemes [8,9]. In these
schemes the far-detuned driving fields contribute to the cavity
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mode parametric down-conversion strengths only the second-
order small quantities O(�k/�k )O(�l/�l ). This means that
we are faced with a challenge to increase the parametric
interaction strengths. Once they are too much smaller than the
cavity damping rates, squeezing can no longer appear in the
output fields.

Now the natural question we are faced with is, can we iso-
late the field-squeeze operators from the degrees of freedom of
the near-resonantly driven atoms (|�l|/�l � 1)? The answer
is yes. Our scheme is based on coherent population trapping
(CPT) [10], which is one of the most remarkable coherence
effects in light-matter interactions. When two optical fields
interact resonantly with three-level � atoms [as shown in
Fig. 1(a)], the atoms are pumped into a superposition of
the ground states and are no longer excited. This coherent
phenomenon is based on “dark resonance” [10–14]. The su-
perposition state in which the atoms are populated is called the
“dark state.” Once the atoms enter the dark state, they are no
longer excited and so become transparent to the applied fields
[Fig. 1(b)]. It is the dark resonance that underlies those well-
known coherent effects such as CPT and electromagnetically
induced transparency [11–14]. One of the greatest interests is
in giant nonlinearities close to the dark resonance. The ratio
of dispersion to absorption will be much larger than that under
other circumstances when the system approaches resonance
[Fig. 1(c)]. Another important point is that all population is
almost trapped in the dark state, and spontaneous emission is
hardly involved in the quantum noise manipulation. As will be
shown below, the above two advantages of the CPT system are
perhaps the best conditions for the creation of squeezed states.

In this paper we show that the unitary field-squeeze op-
erators can be isolated from the degrees of the nearly res-
onant atoms. CPT happens when the dressing fields are on
two-photon resonances with the three-level atoms on the
� dipole-allowed transitions. When we tune the dressing
fields, there exist two frequency windows, which center at the
atomic resonance frequencies and within which CPT occurs
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FIG. 1. (a) Interaction of three-level atom with two dressing fields in � configuration with Rabi frequencies �1,2 and detunings �1,2.
(b) The absorption Imχ1 (real line) and dispersion Reχ1 (dashed line) in units of |μ13|2/(ε0h̄) versus the normalized detuning �1/γ (�2 =
−�1) for given Rabi frequencies �1,2 = 5γ (γ1,2 = γ ). The deep dip of the symmetric solid curve opens a window for CPT at ω31 (i.e.,
�1 = 0). (c) The ratio of the dispersion to the absorption η1 = Reχ1/Imχ1 shows a giant value in the central regime of the CPT window.

or dominates accompanied with strong nonlinearities. For
convenience of description we refer to these two windows
as “CPT windows.” The quantized fields to be controlled
are applied within the CPT windows, where the atoms are
mainly populated in the dark state and strong nonlinearities
are utilized. In the same CPT windows we separate the two-
mode squeeze operator from the dark state, and in the different
CPT windows we segregate the multimode squeeze operator.
The driving fields contribute to the cavity mode parametric
interaction strengths the first-order small quantity O(�/�)
(�1 = −�2 = �, �1,2 = �) and to the beam-splitter interac-
tion strengths the zero-order quantity O(1). By comparison,
these interaction strengths are at least one order larger than
in the previous dispersive cases. The near-resonantly driven
scheme is free from spontaneous emission decoherence since
atoms almost stay in a long-lived superposition state.

Our scheme should be distinguished from the electromag-
netically induced transparency (EIT) based Kerr interactions.
EIT is a special case of CPT, where the probe field Rabi
frequency is much weaker than the coupling field Rabi fre-
quency, and the dark state is approximately the ground state
coupled by the probe field [11–14]. EIT-based Kerr inter-
actions are established by introducing a cascaded dispersive
perturbation (the common or another probe field couples
the control-field coupled ground state to an auxiliary state
[15–20]) or by tuning the probe field [21]. This leads to a giant
enhancement of the Kerr nonlinearities. In sharp contrast, in
the present scheme, the atoms are near-resonantly dressed
with the same or comparable Rabi frequencies, and the dark
state is the coherent superposition of the two equally popu-
lated ground states. The subtle effects of the nonlinearities on
the quantum correlations are deeply hidden behind the dark
resonances [22–24]. Close to or beyond CPT, a dissipation
mechanism has been identified for two-mode squeezing of the
optical fields [25]. Here we will reveal an essentially different
mechanism for the two-mode or multimode squeezing close
to CPT. The mechanism is based on the two-mode two-
photon resonances with the dressed transitions between the
second adjacent dark states. By this mechanism, the two-mode
interaction strengths are at least one order larger than in the
usual dispersive interactions [6–9].

This paper is organized as follows. In Sec. II we describe
the physical background on which our scheme is based by
recalling briefly the CPT effect and the nonlinearities within
the CPT windows. Section III presents the two-mode para-
metric interaction of the two quantized fields in a common
CPT window, and shows that a unitary two-mode squeeze
operator is separated out from the degrees of freedom of
the near-resonant atoms. The coherence effects on the two-
mode parametric interaction are analyzed and the fluctuation
spectra of the output fields are presented. In Sec. IV we
derive the four-mode parametric interactions within two CPT
windows and show the generation of the unitary four-mode
squeeze operator. The four-mode quantum correlation is also
calculated. Finally, the conclusion is given in Sec. V.

II. CPT AND NONLINEARITIES

Our purpose is to study the interactions within the CPT
windows of dressed three-level atoms in � configuration, as
shown in Fig. 1(a). In order to clarify the physics, we first
describe the CPT windows. The atoms have two metastable
states |1〉 and |2〉 and an excited state |3〉. Two coherent
fields of frequencies ω1 and ω2 interact with the atoms on
the electronic-dipole allowed transitions |1〉 ↔ |3〉 and |2〉 ↔
|3〉, respectively. The transition |1〉 ↔ |2〉 is electronic-dipole
forbidden. The master equation for the density operator ρ of
the atom-field system is derived in the dipole approximation
and in the frame rotating at the dressing field frequencies as
[1,2]

ρ̇ = − i

h̄
[H0, ρ] + Lρ, (1)

where the Hamiltonian takes the form

H0 =
∑
l=1,2

h̄(�lσll + �lσ3l + �∗
l σl3). (2)

In the above formulas, h̄ is the Planck constant. σkl = |k〉〈l|
are the projection operators for k = j and the spin-flip op-
erators for k �= l. �l = ωl − ω3l are the detunings of the
driving field circular frequencies ωl with respect to the atomic
transition circular frequencies ω3l . The Rabi frequencies are
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defined as 2�l = μl3El/h̄, where μl3 are the electric dipole
moments and El are the electric amplitudes of the driving
fields. The damping term in Eq. (1) takes the form [1] Lρ =∑

l=1,2 γlLσl3ρ, where Lσl3ρ describes the atomic decays with
rates 2γl , and Loρ = 2oρo† − o†oρ − ρo†o, o = σ13, σ23.

In order to show clearly the CPT effect, we introduce the
superposition states of the metastable states

|b〉 = (�∗
1|1〉 + �∗

2|2〉)/�̃,

|d〉 = (�2|1〉 − �1|2〉)/�̃, (3)

where we have defined �̃ =
√

|�1|2 + |�2|2. Using the su-
perposition states, on resonance �1,2 = 0, we rewrite the
Hamiltonian (2),

H0 = h̄�̃(σb3 + σ3b ), (4)

where σb3 = |b〉〈3| and σ3b = |3〉〈b| are the spin flip operators
involving the |b〉 state. Only the superposition state |b〉 is
coupled to the excited state |3〉, while |d〉 decouples from
the coherent interaction. The stimulated and spontaneous
transitions |b〉 ↔ |3〉 and |3〉 � |d〉 act as successive optical
pumping, through which the atoms are driven into |d〉. Since
there is no population transfer out of |d〉, all population is
accumulated in |d〉 after several radiative lifetimes. For this
reason, the state |d〉 is usually called the dark state. This effect
is usually referred to as the dark resonance, which underlies
CPT. On resonance, we can obtain the atomic coherence for
the metastable states as

ρ12 = − �∗
1�2

|�1|2 + |�2|2 , (5)

which reaches its maximum |ρ12| = 1
2 for |�1| = |�2|. At this

time, the fields decouple from the system when the atoms
are trapped into a dark state entirely. On exact resonance, the
medium of the atoms are transparent to the dressing fields.

Generally, the responses of the atoms to the dressing fields
are described by the susceptibilities χl = −μl3ρ3l/(ε0El ),
which are written in the form

χ1 = A1|�2|2, χ2 = A2|�1|2, (6)

with the complex parameters A1,2 being functions of |�1,2|2
and being given in Appendix A. The imaginary and real
parts of the susceptibilities describe the absorption and the
dispersion of the atoms, respectively. It is clear that the
susceptibilities have deep dependences on the field intensities
|�1,2|2. Plotted in Fig. 1(b) are the imaginary part Imχ1 and
real part Reχ1 of the susceptibility in unit of |μ13|2/(ε0h̄) rel-
ative to the detuning �1/γ for given dressing field intensities
�1,2 = 5γ . Here we have have assumed that �2 = −�1 and
γ1,2 = γ , and the same assumption is taken throughout the
present article. When the driving fields are tuned from the
exact dark-state resonance (�1 = �2 = 0) by the detunings
�1 = −�2 = � �= 0), two frequency windows are opened,
which locate at ω1 = ω31 and ω2 = ω32, respectively, and
which are named the CPT windows, as in the Introduction.
Shown in Fig. 1(b) is the CPT window at ω1 = ω31. The
width for the CPT window is determined by �1 = −�2 =
±5γ , at which the absorption Imχ1 takes its maximal value.
This is described in terms of the populations of the dark
state as below. When CPT windows are much wider than

the bandwidths of the dressing and applied fields, within the
CPT windows, the absorption remains negligibly weak while
dispersion is remarkably large compared with the usual case.

In order to show the features of the present system, we
introduce the ratio of the dispersion to absorption,

ηl = Reχl

Imχl

, η2 = −η1 (l = 1, 2). (7)

Shown in Fig. 1(c) is the dependence of the nonlinear param-
eter η1 versus the normalized detuning �1/γ . It is noted that,
for small detunings |�1| → 0, the ratios are extremely large,
|η1| → ∞. This indicates that the dressing fields experience
negligible absorptions but strong nonlinearities close to the
dark resonance. In what follows, we tune the fields to be con-
trolled within the CPT windows and analyze their interactions
with the CPT atoms. Taking advantage of the characteristics
of the CPT system, we engineer the squeeze operators which
are independent of the atomic degrees of freedom. For this
purpose we will concentrate on the interactions of the applied
fields within the CPT windows (i.e., close to the dark-state
resonance) throughout this article.

III. TWO-MODE SQUEEZING IN CPT WINDOW

Now we turn to discussing the interaction of the CPT atoms
with two applied fields. The scheme and the corresponding
mechanism are sketched in Fig. 2. Shown in Fig. 2(a) is
the simultaneous coupling of the two applied fields a1,2 to a
common transition |1〉 ↔ |3〉. Figure 2(b) describes the case
in which the circular frequencies ν1,2 of these two applied
fields are confined within the CPT windows. Depicted in
Fig. 2(c) are the two-photon transitions between the sec-
ond adjacent dark states. Since the absorption of the cavity
fields is negligible and the dispersion is giant, the quantized
fields will be in strong interactions with the CPT atoms. The
Hamiltonian for the interaction of the cavity fields a1,2 with
the atom [1,2],

HI =
∑
l=1,2

h̄(δla
†
l al + glalσ31 + g∗

l σ13a
†
l ), (8)

is added to the Hamiltonian H0 in the master equation (1)
and the cavity loss

∑2
l=1 κlLal

ρ is added to Lρ in the master
equation (1) (2κ1,2 are the cavity loss rates). In Eq. (8),
there is the remaining free term in the frame rotating at the
dressing field frequency ω1. al and a

†
l are the annihilation

and creation operators for the cavity modes, and gl are the
strengths of interactions of the lth cavity fields with the atoms,
respectively. δ1,2 = ν1,2 − ω1 are the cavity mode resonance
circular frequencies ν1,2 with respect to the driving field
circular frequency ω1. So far, involved in the present scheme
is a set of different but adjacent frequencies. We show them
in Fig. 3 for clear discrimination, including the frequencies
ν3,4 of the applied fields a3,4 that will be considered in the
next section. The frequencies on the left and right parts center
at ω31 and ω32, respectively. Either part serves for the two-
mode interactions, while both parts are for the four-mode
interactions as in the next section.

(i) Dressed atomic states. It turns out to be most convenient
to use dressed atomic states to show the mechanism for the
interaction of the quantized fields with the CPT atoms when
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FIG. 2. Interaction of two quantized fields a1,2 with the CPT atom within a common CPT window at ω31. (a) Diagram showing the
application of two cavity fields a1,2 to the |1〉 ↔ |3〉 transition. (b) The absorption Imχ1 (dip curve) in units of |μ13|2/(ε0h̄) vs the normalized
detuning �1/γ (�2 = −�1) for �1,2 = 5γ . The deep dip represents a CPT window that centers at the atomic resonance frequency ω31. The
frequencies ν1,2 of cavity modes a1,2 are within the common CPT window and located about ω1. The absorption to the cavity modes a1,2 is
negligibly small while the dispersion is very strong. (c) Three adjacent triplets in the two-dimension networks of the composite states of the
three-level atom and the two dressing fields. Dressed transitions for the cavity fields a1,2 are far off resonances between the first adjacent pairs
of triplets, but on two-photon resonances with the second adjacent dark state |0〉.

the driving fields are strong. We focus on a particular class of
conditions �1 = −�2 = � and �1,2 = �, and assume that
the Rabi frequencies are equal and much stronger than the
atomic and cavity decay rates � 
 (γ, κl ). After diagonal-
izing the Hamiltonian H0, we obtain the dressed states, which
are expressed in terms of the bare atomic states as [26]

|+〉 = 1 + sin θ

2
|1〉 + 1 − sin θ

2
|2〉 + cos θ√

2
|3〉,

|0〉 = −cos θ√
2

|1〉 + cos θ√
2

|2〉 + sin θ |3〉, (9)

|−〉 = 1 − sin θ

2
|1〉 + 1 + sin θ

2
|2〉 − cos θ√

2
|3〉,

where we have defined cos θ =
√

2�

�̄
, sin θ = �

�̄
, and �̄ =√

�2 + 2�2 (generalized Rabi frequency for the present
case). In the dressed states representation, the dressed three-
level atom has its Hamiltonian in the free form H0 =
h̄�̄(σ++ − σ−−), where σ±± = |±〉〈±|. It indicates that these
dressed states |0〉 and |±〉 have the equally spaced eigenval-
ues 0,±h̄�̄. It should be noted that once � = 0 (sin θ = 0,
cos θ = 1), the state |0〉 is simply reduced to the dark state
|d〉 = 1√

2
(−|1〉 + |2〉), as in Eq. (3). Expressing the atomic

relaxations in terms of the dressed atomic states, we obtain the
steady-state populations 〈σ00〉 = cos4 θ

1+3 sin4 θ
and 〈σ±±〉 = 1

2 (1 −
〈σ00〉). If � = 0, we have 〈σ00〉 = 1 and 〈σ±±〉 = 0. Once
again, it shows that, when � = 0, the atoms are trapped in the
dark state |0〉. As the normalized detuning rises to |�|/� = 1

FIG. 3. Diagrammatic sketch of various frequencies and detunings along the frequency axis. The left and right parts, which center at the
atomic resonance frequencies ω31 and ω32 respectively, are related to the dipole-allowed transitions |1〉 ↔ |3〉 and |2〉 ↔ |3〉 respectively. The
dressing field frequencies ω1,2 are very close to ω31 and ω32 respectively by the detunings �1,2. The frequencies ν1,2 (ν3,4) of the applied fields
coupled to the transition |1〉 ↔ |3〉 (|2〉 ↔ |3〉) are located symmetrically about ω1 (ω2) with the detunings δ1,2 (δ3,4), respectively. ω31 ± �̄

(ω32 ± �̄) are respectively the frequencies of the shifted dressed states |±〉 associated with the transition |1〉 ↔ |3〉 (|2〉 ↔ |3〉. Essentially,
ω31 + �̄ and ω32 + �̄ (ω31 − �̄ and ω32 − �̄) correspond to a common dressed state |+〉 (|−〉) of the excited state |3〉. But in order to show
clearly the level splittings relative to different transitions, we attach the split frequencies ω3l ± �̄ (corresponding to the dressed states |±〉
respectively) to about the respective central levels ω3l (l = 1, 2). The spacing �̄ measures the deviations of the dressed states from the dark
states.

013805-4



FIELD-SQUEEZE OPERATORS VIA COHERENT … PHYSICAL REVIEW A 99, 013805 (2019)

we have 〈σ00〉 = 〈σ±±〉 = 1
3 . At this time, the absorption to

the dressing fields reaches its maximum, by which the width
for the CPT window is determined. For the exact CPT case,
the fields undergo neither absorption and nor dispersion, and
so no squeezing occurs. Instead, in what follows we will
focus on the near-resonance conditions � �= 0 but |�| � �̄.
Under such conditions, the atoms are very slightly excited,
and then we have two CPT windows at the atomic resonance
frequencies ω31 and ω32. What we are interested in is the
atom-field interactions within the CPT windows.

(ii) Two-mode interaction within a common CPT window.
We are now in the position to show the two-mode interaction
with the dressed atoms. To do so, we make once again a
unitary transformation with H0 + ∑

l=1,2 h̄δla
†
l al , and then a

rotating-wave approximation. Now we have the interaction
Hamiltonian

H ′
I = h̄σ+0e

i�̄t (G1a1e
−iδ1t + G2a

†
2e

iδ2t )

+ h̄σ0−ei�̄t (G̃1a1e
−iδ1t + G̃2a

†
2e

iδ2t )

+ H.c., (10)

where σ+0 = |+〉〈0| and σ0− = |0〉〈−| are the spin flip opera-
tors for the dressed-state atomic states, H.c. is Hermitian con-
jugate, and we have used G1 = −g1 cos2 θ/2, G2 = g∗

2 (1 +
sin θ ) sin θ/2, G̃1 = g∗

1 (1 − sin θ ) sin θ/2, G̃2 = g2 cos2 θ/2.
It is easily seen from Eq. (10) that two cavity modes are in
resonant interactions with the corresponding dressed transi-
tions once δ1,2 = ±�̄. For that case, the squeezing occurs
due to engineered dissipation, which has been presented in
[25]. Here we consider the different case, however, in which
the cavity fields are far off resonances with the first adjacent
dark states but on two-photon resonances with the second
dark states, as shown in Fig. 2(c). Then, we tune the cavity
fields δ1,2 = ±δ + δ̃/2, and assume that (�, δ) 
 |δ − �̄| 

(δ̃, |gl〈al〉|, γl, κl ), l = 1, 2. In Appendix B we include N

atoms and derive the effective Hamiltonian in the form

H12 = h̄(ξ ∗a1a2 + ξa
†
1a

†
2), (11)

with the two-mode coupling coefficient

ξ = g∗
1g

∗
2N

2
√

2δ̄

(
�

�

)
, (12)

where δ̄ = √
2� − δ is the detuning of the cavity field from

the dressed transition. The Hamiltonian (11) is no longer
dependent on the atomic spin projection operators and spin-
flip operators. This is one of our key results in the present
work.

(iii) Analysis of atomic coherence effects. Before we pro-
ceed to further discussion, it is interesting for us to summarize
the characteristic features of the two-mode interaction within
the common CPT window.

(a) The parametric down-conversion interaction happens
for the cavity fields when the dressing fields are close to
resonances with the atoms. In this case, it is the coherent
effects that lead to absorption cancellation and dispersion
enhancement. This is in sharp contrast to the previous cases,
e.g., Ref. [7], in which all fields (including the dressing and
cavity fields) are all far off resonances, and the dispersion is

greatly reduced although the dispersion is dominant over the
absorption.

(b) The ground states give the complete contribution al-
though only one ground state |1〉 is directly coupled to the
cavity fields a1,2. It seems that only 50% population is in-
volved since the other ground state |2〉 is not coupled directly.
However, the dark state as the coherent superposition of the
ground states behaves as a single state and thus contributes
the entire population (〈σ00〉 ≈ 1) to the two-mode interaction
strength |ξ |.

(c) CPT-based nonlinearities boost the two-mode paramet-
ric interaction strength compared with the previous schemes
based on the dispersive interactions. The two-mode interac-
tion strength displays a dependence on the first-order small
quantity O(�/�) of the dressing fields (|�|/� � 1). This is
completely different from the case in dispersive interactions
(e.g., in Refs. [3,7]), where there is a second-order dependence
on the corresponding small quantities O(�k/�k )O(�l/�l ),
where �l/|�l| � 1. This means that, for the present near-
resonant case, the two-mode interaction strength is raised by
at least one order of magnitude. Once the dressing fields E1,2

are too far from the CPT window center or the signal fields
a1,2 become too strong, feedback and saturation effects will
spoil perfect squeezing, but those considerations are beyond
the scope of the present work.

(iv) Squeeze operators and correlation spectra. The ef-
fective parametric interaction (11) means that the two cavity
modes a1,2 in the CPT window [Figs. 2(b) and 2(c)] can be
prepared in the two-mode squeezed state. When the cavity
loss rates are negligibly small, the two-mode state evolves
according to the unitary operator

S2(ζ ) = eζ ∗a1a2−ζa
†
1a

†
2 , (13)

where we have defined the parameter ζ = iξτ with τ being
the interaction time. Applying it to the vacuum states, we
can obtain two-mode squeezed states. This evolution operator
is just the two-mode squeeze operator, and |ζ | is a squeeze
parameter.

By including the cavity losses we can obtain the variance
of the internal field mode and of the individual frequency
components. By using a definite order (a†

1, a
†
2, a2, a1) and the

correspondences between the c numbers and the operators
αi ↔ ai , α∗

i ↔ a
†
i (l = 1, 2), we derive the set of Langevin

equations from the effective nonlinear interaction in Eq. (11)
as

α̇1 = −iε∗
1 − κ1α1 + |ξ |α∗

2 + Fα1 ,

α̇2 = −iε∗
2 − κ2α2 + |ξ |α∗

1 + Fα2 , (14)

together with those for α∗
1,2. ε∗

1,2 are the average amplitudes of
the input fields, and we have assumed that ξ = |ξ |eiφ and have
substituted a2 for a2e

−iφ to match standard notation [2,27].
The F terms are noises with zero means and correlations
〈Fx (t )Fy (t ′)〉 = Dxyδ(t − t ′), Dxy = Dyx , and Dx∗y∗ = D∗

xy .
Nonzero diffusion coefficients read as Dα1α2 = Dα∗

1α∗
2

= |ξ |.
We use the quadrature operators for the fields

xl = al + a
†
l , pl = −i(al − a

†
l ) (15)
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FIG. 4. Interaction of four quantized fields a1–4 with the CPT atom. (a) Diagram showing the couplings of a pair of the cavity modes a1,2

(a3,4) to the |1〉 ↔ |3〉 (|2〉 ↔ |3〉) transition in � configuration. (b) The absorption Imχ1 and Imχ2 (dip curves) in units of |μ13|2/(ε0h̄) and
|μ23|2/(ε0h̄) vs the normalized detuning �1/γ (�2 = −�1) for �1,2 = 5γ . The two deep dips center at the atomic resonance frequencies
ω31 and ω32, respectively, and stand for the coupled CPT windows. The frequencies ν1,2 of cavity modes a1,2 are within the CPT window at
ω31, while the frequencies ν3,4 of cavity modes a3,4 are located within the CPT window at ω32. All cavity fields a1–4 have large dispersion but
negligibly small absorption. The cavity modes in the same CPT window are in down-conversion interaction (for squeezing generation) with
each other, while those two modes in different CPT windows and linked by an arc are in beam-splitter interaction (for quantum state transfer)
with each other.

to define a pair of the two-mode quadrature operators as

X2 = 1√
2

(x1 + x2), P2 = 1√
2

(p1 + p2), (16)

which satisfy the commutation relation [X2, P2] = 2i. When
the variance of any quadrature is less than unity, 〈(δX2)2〉< 1
or 〈(δP2)2〉 < 1, the two-mode squeezing occurs [1,2]. Lin-
earizing Eq. (14) we obtain the stability condition |ξ | <√

κ1κ2. For κ1 = κ2 = κ , we can obtain the variances
〈(δX2)2〉 = κ

κ−|ξ | or 〈(δP2)2〉 = κ
κ+|ξ | . As |ξ | → κ , we have

〈(δP2)2〉 → 1
2 , which means that the squeezing of the internal

field mode approaches 50%.
However, this can be surpassed in the individual frequency

components of the output field, which have almost ideal
squeezing for the zero frequency. What may be measured by a
spectrum analyzer following a homodyne detection scheme is
the squeezing in the individual frequency components of the
output field [2]. By using the input-output relations [27] ain

l +
aout

l = √
2κlal (l = 1, 2) we derive the fluctuation correlation

spectra for the output fields

〈δO(ω)δO(ω′)〉 = Sout
O (ω)δ(ω + ω′), O = X2, P2 (17)

in Appendix C. The output spectra at zero frequency read

Sout
X2

(0) =
( |ξ | + √

κ1κ2

|ξ | − √
κ1κ2

)2

,

Sout
P2

(0) =
( |ξ | − √

κ1κ2

|ξ | + √
κ1κ2

)2

. (18)

If the nonlinear coupling vanishes (ξ = 0), we have Sout
X2

(0) =
Sout

P2
(0) = 1, which means that the two cavity fields stay in

a coherent state (including the vacuum state). Under general
conditions, we have 1 � Sout

X2
(0) < ∞ and 0 � Sout

P2
(0) � 1.

Since Sout
X2

(0)Sout
P2

(0) = 1, the two cavity fields come to a
minimum uncertainty field state. When the two-mode interac-
tion strength matches the cavity damping rates, |ξ | → √

κ1κ2,

we have Sout
X2

→ ∞ and Sout
P2

(0) → 0, which means that the
quadrature P out

2 at the output, in principle, can reach ideal
squeezing, at the expense of large fluctuations in the output
quadrature Xout

2 .
Actually, which quadrature is squeezed depends on the

phase of the effective coupling coefficient ξ = |ξ |eiφ . If φ �= 0,
we need transform back to a2 → a2e

iφ . As a comparison,
for φ = π , the sum operators in Eq. (16) are changed to
the difference forms X2 = 1√

2
(x1 − x2), P2 = 1√

2
(p1 − p2),

the latter of which is squeezed. Once φ �= 0, π , the two-mode
quadrature operators that can be squeezed depend on the phase
φ in a more general form. Now we can take a pair of EPR
operators for φ = π as

X = 1√
2

(x1 + x2), P = 1√
2

(p1 − p2), (19)

which commute with each other, [X,P ] = 0, and have the
same fluctuation spectrum. As a result, when the above
stability and matching condition is met, |ξ | → √

κ1κ2, we
have Sout

X (0) + Sout
P (0) → 0, which corresponds to the EPR

entanglement at the zero frequency [4,28].

IV. FOUR-MODE SQUEEZING IN COUPLED
CPT WINDOWS

Now that we have considered the common CPT window
for the two-mode interactions, we extend to the two coupled
CPT windows for the multimode interactions.

(i) Two different kinds of two-mode interactions with the
CPT atoms. On the basis of the above model, we couple the
other two cavity fields a3,4 to the other dipole-allowed transi-
tion |2〉 ↔ |3〉, as shown in Fig. 4(a). The frequencies ν3,4 of
cavity modes a3,4 are close to ω31. We can tune the cavity
fields such that a1,2 (δ1,2 = ν1,2 − ω1 ≈ ±δ) remain within
the CPT window at ω31, and a3,4 (δ3,4 = ν3,4 − ω2 ≈ ±δ) lo-
cate in the CPT window at ω32, as shown in Fig. 4(b). The
absorption of four cavity modes a1–4 is negligible while the
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dispersion is very strong. From now on we focus on the same
conditions as above, (|�|, |δ̄|) � �. Let us list two different
cases for two-mode interactions.

(a) Two cavity fields are coupled to one common transition.
The case of only the modes a1,2 has been discussed in the
above section. Similarly, in the presence of only the modes
a3,4, we can have the same Hamiltonian as (11) except for the
substitutions of indices 3 and 4 for 1 and 2, respectively.

(b) Two cavity fields are respectively coupled to differ-
ent transitions. In the presence of only the a1,3 modes, we
follow the same method as above and derive the effective
Hamiltonian as

H13 = h̄(ξ13a1a
†
3 + ξ ∗

13a
†
1a3), (20)

where the coupling coefficient is

ξ13 = g1g
∗
3N

4δ̄
. (21)

In this case the Hamiltonian (20) indicates that the two cavity
fields are in the beam-splitter-like interaction, which leads to
the quantum state transfer between a1,3. In addition to the
dependence on the cavity field detunings from the dressed
transitions δ̄, the effective coupling strength is not dependent
on the factor �/�. This means that quantum state transfer
can occur much more rapidly from one mode to the other than
the squeezing generation as above. The same happens for the
presence of only the a2,4 modes.

We note that no direct interaction happens between a1 and
a4 and between a2 and a3. Because of large mismatch of the
frequencies (|ν1 − ν4|, |ν3 − ν2|) 
 |ω1 − ω2|, each pair are
neither on two-photon resonances nor on Raman resonances
in the dressed atomic picture. Since a1 and a4 (a2 and a3) are
not resonant in pairing with the CPT atom, between them there
is no longer any direct interaction.

(ii) Four-mode interaction within the coupled CPT win-
dows. To sum up, the four modes are simultaneously coupled
to the atoms. Combining the above two cases, we can study
the interactions of four quantized fields with the CPT atoms.
Following the same method as above, one can obtain the
effective Hamiltonian for the four-mode interaction as

H1−4 = h̄(ξ12a1a2 + ξ34a3a4 + ξ13a1a
†
3 + ξ24a2a

†
4)

+ H.c., (22)

where we have substituted −a4 for a4 and have defined the
cross coupling coefficients between the cavity fields as

ξl,l+1 = g∗
l g

∗
l+1N

2
√

2δ̄

(
�

�

)
, l = 1, 3,

ξl,l+2 = glg
∗
l+2N

4δ̄
, l = 1, 2. (23)

The effective coupling strengths ξ12(=ξ ) and ξ13 are simply
the same as those in Eqs. (12) and (21), respectively, and ξ34

and ξ24 have the same dependences on the system parameters.
The four-mode interaction Hamiltonian (22) is independent of
the degrees of freedom of the atoms. This is the second part
of our main results.

The Hamiltonian (22) shows that all four modes a1–4

are in the loop interactions, which happen alternately in the

parametric amplifier types and in the beam-splitter types.
Once squeezing is established between two adjacent modes
a1,2 or a3,4, quantum state transfer between a1,3 or a2,4 will
lead to nonclassical correlations of the two squeezed modes
to the third mode. In particular, take a1–3 as an example. The
cavity mode a1 entangles with a2 and transfers immediately
its own state to a3. As a consequence, the cavity modes a1–3

are prepared into a squeezed state.
(iii) Four-mode squeeze operator and quantum correla-

tions. If the cavity losses are negligibly small, the four-mode
field evolves according to the unitary operator

S4(ζ ) = eζ ∗
12a1a2+ζ ∗

34a3a4+ζ13a1a
†
3+ζ24a2a

†
4−H.c., (24)

where we have defined the parameters ζ = (ζ12, ζ34, ζ13, ζ24)
and ζkl = iξklτ . The evolution operator is just the multimode
squeeze operator. Naturally, this general squeeze operator is
also independent of the atomic degrees of freedom. Differ-
ently from the two-mode case, there is not only the a1a2 form,
but also the other a1a

†
3 form. The former is responsible for

the squeezing generation while the latter corresponds to the
squeezing transfer. When it is applied to the vacuum state, the
squeezing creation and the state transfer combine to generate
multimode squeezed states.

The noise correlations of the four fields are calculated
by using the effective Hmailtonian (22) and including the
cavity loss

∑4
l=1 κlLal

ρ in the master equation (2κ1–4 are
the cavity loss rates). We choose a definite operator order,
(a†

1, a
†
2, a

†
3, a

†
4, a4, a3, a2, a1), and use the correspondences

between the c numbers and operators αk ↔ ak , α∗
k ↔ a

†
k

(k = 1–4). For the sake of simplicity we assume −iξkl to be
positive, then we substitute ξkl for −iξkl and match the stan-
dard notation as for the two-mode case. The set of Langevin
equations are derived as follows:

α̇1 = −iε∗
1 − κ1α1 + ξ13α3 + ξ12α

∗
2 + Fα1 ,

α̇2 = −iε∗
2 − κ2α2 + ξ24α4 + ξ12α

∗
1 + Fα2 ,

α̇3 = −iε∗
3 − κ3α3 + ξ13α1 + ξ34α

∗
4 + Fα3 ,

α̇4 = −iε∗
4 − κ4α4 + ξ24α2 + ξ34α

∗
3 + Fα4 , (25)

together with those for α∗
1–4. ε∗

l–4 are the average amplitudes
of the input fields. The nonzero diffusion coefficients are
Dα2α1 = ξ12, Dα4α3 = ξ34, Dxy = Dyx , and Dx∗y∗ = D∗

xy . To
investigate the multimode correlations, we first define the
quadrature operators for each cavity mode as in Eq. (15).
Then the collective quadrature operators for four modes can
be defined as

X4 = 1
2 (x1 − x2 − x3 + x4),

P4 = 1
2 (p1 + p2 − p3 − p4). (26)

When the variance of any quadrature is less than unity,
〈(δX4)〉2 < 1 or 〈(δP4)〉2 < 1, the multimode squeezing ap-
pears [1,2].The measurable quantities for the optical fields
outside the cavity are the fluctuation correlation spectra.
For the case of four modes, the analytical calculation can
be obtained in the same way as for the two-mode case in
Appendix C. It turns out to be relatively complicated, and here
we present the numerical results as follows.
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FIG. 5. (a) The four-mode correlation spectra Sout
X4

(ω) [=Sout
P4

(ω)]

for different values of η = �/
√

2�: 0.05 (dot line), 0.10 (dash line),
and 0.15 (solid line); and fixed κ1–4 = 0.25κ . (b) The four-mode
correlation spectra Sout

X4
(ω) [=Sout

P4
(ω)] for different rates of cavity

damping κ1–4: 0.05κ (dot line), 0.15κ (dash line), and 0.25κ (solid
line); and for fixed η = 0.15. The other parameters are chosen as
C1–4 = 60 and δ̄ = 5.

Sout
X4

(ω) and Sout
P4

(ω), by which we denote the output spectra
for O = X4, P4, respectively, are obtained from the general
definition as in Eq. (17). Here we rescale the decay rates,
detunings, Rabi frequencies, and Fourier frequency in units
of a rate parameter κ , in MHz. We define the cooperativity
parameters Cl = g2

l N/κ2
l . Plotted in Fig. 5 are the the four-

mode correlation spectra Sout
X4

(ω) [= Sout
P4

(ω)] (a) for different

values of the parameter η = �/
√

2� and (b) for different
values of the cavity damping κ1–4. The chosen parameters
are listed in the figure caption. It is seen that for various
choices of parameters, the fluctuation spectrum drops below
the standard quantum limit 1. This means that the four-mode
quadratures Xout

4 and P out
4 at the output have the reduced

fluctuations. The numerical results verify the prediction as
above. The direct generation of squeezing occurs between
the cavity fields a1,2 and between a3,4, while quantum state
transfer happens between the cavity fields a1,3 and between
a2,4. The combination of the squeezing with the transfer
leads to the four-mode squeezing. Generally, the degree of
squeezing depends strongly on various parameters such the
normalized detunings and the cavity damping rates. Like the
two-mode case, the optimal squeezing occurs when the inter-
action strength matches the cavity damping rates. Once we
tune the dressing fields E1,2 to be far off the CPT window
center or increase the signal fields a1–4, feedback and sat-
uration effects will prevent the squeezing from generating.
Those considerations go beyond the scope of the present
work.

We also note that the mechanism of the present scheme
is essentially different from the entanglement swapping for
continuous variables [29,30]. For the present case, squeezing
occurs for four modes through the combination of two mech-
anisms: parametric down-conversion interactions between a1

and a2 and between a3 and a4, and the beam-splitter-like

interactions between a1 and a3 and between a2 and a4. These
two kinds of interactions are in a successively cascaded,
closed contour. For the latter, two initial pairs of entangled
optical fields are produced independently, e.g., from two
nondegenerate optical parametric amplifiers. Through imple-
menting the direct measurement of the Bell-state between two
optical fields from their respective initial entanglement pairs,
the remaining two optical fields, which have never directly
interacted with each other, become entangled.

As possible experimental realization we can use cold atoms
confined in a magneto-optical trap. A great number of atomic
structures can be used as candidates for the present scheme,
for example, the 85Rb D1 (795 nm) transition hyperfine
structure. The two lower levels are the ground state hyper-
fine levels |1〉 = |5 2S1/2, F = 1〉 and |2〉 = |5 2S1/2, F = 2〉,
separated from each other by 3 GHz, while the upper state
is the excited state hyperfine level |3〉 = |5 2P1/2, F = 2〉.
The other excited state hyperfine level |5 2P1/2, F = 1〉 is
362 MHz below |3〉 and has a negligible influence. The
cavity parameters of Ref. [31] can be used for this purpose:
the waist is w ∼ 35 μm, homogeneous laser beams have
width d ∼ 50 μm, and the interaction volume is 10−7 cm3.
A density of 1011 cm3 (small enough to prevent coher-
ence losses due to collisions) corresponds to the number of
atoms N ∼ 104. Taking �/� ∼ 1/10 and δ̄ ∼ 50g, we have
approximately the effective two-mode interaction strengths
(|ξ12|, |ξ34|) ∼ 10g and (|ξ13|, |ξ24|) ∼ 10(|ξ12|, |ξ34|). This is
just a rather conservative estimate of parameters and so there
is a wide range of possibilities for the realization of the present
scheme.

V. CONCLUSION

In conclusion, we have shown a method of isolating out a
unitary field-squeeze operator from the degrees of freedom
of the near-resonantly dressed atoms. The scheme is based
on the atom-field interactions within the coherent popula-
tion trapping (CPT) windows, which are opened when two
optical fields interact with the three-level atoms in the �

configuration, and in which the absorption is negligibly small
while the dispersion is remarkably large due to the atomic
coherence. Two fields used in one common CPT window are
in parametric down-conversion interaction with each other,
while the two fields applied in different CPT windows are
in beam-splitter interactions. As a result, a unitary two-mode
or four-mode squeeze operator can be separated from the
degrees of freedom of atoms. At the same time, the interaction
strengths are at least one order larger than in the conventional
dispersive cases. The CPT-based near-resonant scheme is free
from spontaneous emission decoherence because the atoms
are hardly excited and instead stay dominantly in the coherent
superposition of the ground states.
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APPENDIX A: STEADY-STATE SOLUTIONS
OF THE DENSITY MATRIX ELEMENTS

We derive the equations of motion for the density matrix
elements from Eq. (1) as follows:

ρ̇31 = −�13ρ31 − i�1(ρ11 − ρ33) − i�2ρ21,

ρ̇32 = −�23ρ32 − i�2(ρ22 − ρ33) − i�1ρ12,

ρ̇21 = −�12ρ21 − i�∗
2ρ31 + i�1ρ23, (A1)

ρ̇11 = 2γ1ρ33 − i�∗
1ρ31 + i�1ρ13,

ρ̇22 = 2γ2ρ33 − i�∗
2ρ32 + i�2ρ23,

together with the related complex conjugates and the closure
relation ρ11 + ρ22 + ρ33 = 1. We have defined �12 = i(�2 −
�1), �13 = γ1 + γ2 − i�1, and �23 = γ1 + γ2 − i�2. At
steady state, the nondiagonal elements ρ13, ρ32, and ρ12 are
in a closed set of equations. We solve for them first and
then substitute them into the equations of the diagonal ele-
ments. After solving for the diagonal elements we substitute
them back to the nondiagonal elements. By such steps we
derive the susceptibilities in Eq. (6), where the parameters
A1,2 are

A1 = i|μ13|2
ε0h̄V

[γ1(P1P̄2 − Q1Q̄2) + γ2(P1Q̄2 − P̄1Q2)],

A2 = i|μ23|2
ε0h̄V

[γ2(P̄1P
∗
2 − Q̄1Q

∗
2 ) + γ1(P ∗

2 Q̄1 − P̄2Q
∗
1 )],

(A2)

where we have defined the parameters

P1 = (�12�
∗
23 + |�1|2)/U, Q1 = |�2|2/U,

P2 = (�12�13 + |�2|2)/U, Q2 = |�1|2/U, (A3)

U = �12�13�
∗
23 + �12|�1|2 + �∗

23|�2|2
and

P̄1,2 = 2ReP1,2, Q̄1,2 = 2ReQ1,2,

V = 3|�1�2|2(P̄1P̄2 − Q̄1Q̄2) + 2γ2|�1|2
×(P̄1 + Q̄1) + 2γ1|�2|2(P̄2 + Q̄2). (A4)

APPENDIX B: EFFECTIVE HAMILTONIAN

In this Appendix we derive the effective Hamiltonian from
Eq. (11). We tune the cavity fields δ1,2 = ±δ + δ̃/2, and
assume that (�, δ) 
 |δ − �̄| 
 (δ̃, |gl〈al〉|, γl, κl ), l = 1, 2.
In this case, the two-photon transitions are dominant over
the one-photon transitions. The effective Hamiltonian can be
derived by following the same techniques as in Ref. [32]. The
equation for the density matrix is

ρ̇ = − i

h̄
[H ′

I , ρ], (B1)

and we have its formal solution ρ(t ) = ρ(0) −
i
h̄

∫ t

0 dt ′[H ′
I (t ′), ρ(t ′)]. Substituting the solution back we

obtain

ρ̇ = − i

h̄
[H ′

I , ρ(0)] − i

h̄

[
H ′

I (t ),− i

h̄

∫ t

0
[H ′

I (t ′), ρ(t ′)]
]
.

(B2)

For |δ − �̄| 
 (|gl〈al〉|, γl ) (l = 1, 2) the first term is fast
oscillating compared with the second one and is negligible
to a good approximation. Then we can employ a Markovian
approximation for the latter. In this approximation, H ′

I in
Eq. (B1) can be substituted for

H ′′
I = H ′

I (t )
∫

H ′
I (t ′)dt ′, (B3)

where the indefinite integral is evaluated at time t without
integral constant. These arguments can be placed on a more
rigorous footing by considering time-averaged dynamics over
a period much longer than the period of any of the oscil-
lations present in the effective Hamiltonian, i.e., t 
 |δ ±
�̄|−1. Also, the secular approximation is made again. We
can remove the dynamical stark shift and obtain the effective
Hamiltonian

H ′′
I = H1 + H2 (B4)

with

H1 =
∑
l=1,2

h̄a
†
l al[υl (σ00 − σ++) − υ̃l (σ00 − σ−−)]

+h̄[(υ2 − υ̃1)σ00 − υ1σ++ + υ̃2σ−−] (B5)

and

H2 = h̄(υ∗a1a2 + υa
†
1a

†
2)(σ00 − σ++)

+h̄(υ̃∗a1a2 + υ̃a
†
1a

†
2)(σ00 − σ−−), (B6)

where we have used

υ1 = G1G
∗
1

δ − �̄
, υ̃1 = G̃1G̃

∗
1

δ − �̄
,

υ2 = G2G
∗
2

δ − �̄
, υ̃2 = G̃2G̃

∗
2

δ − �̄
, (B7)

υ = G∗
1G2

δ − �̄
, υ̃ = G̃1G̃

∗
2

�̄ − δ
.

Close to the dark resonance (|�| � �), all atoms are almost
in the dark state 〈σ00〉 ≈ 1. Under such conditions we make
a unitary transformation with exp(−iH1t/h̄). Then, including

the contribution of N atoms, taking δ̃ = (g2
2−g2

1 )N

4(
√

2�−δ)
to remove

the dynamic Stark shift of the atomic ensemble, we have the
effective Hamiltonian (11) in the main text.

APPENDIX C: THE OUTPUT FLUCTUATION SPECTRA

We present the calculation for the correlation spectra. In
order to calculate quantum correlation spectra, we linearize
Eqs. (14) around the semiclassical state corresponding to a
stable working point. Writing δO(t ) = O(t ) − 〈O〉, we ob-
tain the following equation written in a compact form, describ-
ing to first order the fluctuations in the field variables [27]:

d

dt
δO(t ) = −BδO(t ) + F (t ), (C1)

where δO = (δα1, δα2, δα
∗
1 , δα

∗
2 ) and F (t ) =

(Fα1 , Fα2 , Fα∗
1
, Fα∗

2
)T . Using the Fourier transformation

δO(ω) = 1√
2π

∫ ∞
−∞ δO(t )eiωtdt , the correlation spectrum is

derived as [27] 〈δO(ω)δO(ω′)〉 = S(ω)δ(ω + ω′), where

S(ω) = (B + iωI )−1D(BT − iωI )−1, (C2)
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where I is a unit matrix. The drift matrix B and the vector
F (t ) can be obtained from the set of Langevin equations (14).
The spectrum exists if the steady-state solutions are stable.
The stability can be verified by calculating the eigenvalues
of the matrix B. When the real parts of all eigenvalues are
positive, then the system is stable. The stability condition is
derived as ξ <

√
κ1κ2.

For the coherent inputs, by using the input-output rela-
tions [27] ain

l + aout
l = √

2κlal (l = 1, 2), we derive the output

fluctuation spectra in Eq. (17) as

Sout
X2

(ω) = 1 + 2Re[κ1(S11 + S13) + κ2(S22 + S24)

+ 2
√

κ1κ2(S12 + S23)],

Sout
P2

(ω) = 1 + 2Re[κ1(S13 − S11) + κ2(S24 − S22)

− 2
√

κ1κ2(S12 − S23)]. (C3)

The spectra at zero frequency (ω = 0) are reduced to Eqs. (18)
in the main text.
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