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Optical response of a bilayer crystal
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We extend the recently developed classical theory for the optical response of a single-layer crystal to bilayers.
We account for the interaction between the two atomic planes and the multiple reflections inside the crystals.
We show how to define a global susceptibility meaningful for the bilayer crystal and how its expression varies
compared to the single-layer case. We compute both the local and the macroscopic fields, which allow us to
make a direct comparison with experimental data.
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I. INTRODUCTION

A two-dimensional (2D) atomic crystal is a single plane
of atoms or molecules whose properties are significantly
different from those of its three-dimensional (3D) precursor.
This is true from a thermodynamic point of view and it
becomes impressive when we consider electronic properties.
Charge carriers in graphene are massless Dirac fermions [1].
A transition-metal dichalcogenide monolayer is a direct band-
gap semiconductor, while bilayer, three-layer, and multilayer
crystals are indirect band-gap semiconductors [2]. These
single-layer crystals have promise for a large number of
applications [3] because they are stable under ambient condi-
tions and, despite their reduced dimensionality, they are truly
macroscopic objects [4].

In spite of their atomic layer thickness, these materials
exhibit strong light-matter interaction [5,6]. It was a surprising
discovery that 2D crystal monolayers, deposited on suitable
substrates, produce an optical contrast of up to several percent
at specific wavelengths, making them easily visible [6,7]. It
was some time before this phenomenon was fully compre-
hended and a proper theoretical description could be provided.
The first analysis treated the single-layer crystal as a slab
with an effective thickness [6]. Only a few years later the
adoption of the surface-current model allowed for a com-
pletely satisfactory analysis of the optical experiments on
these crystals [8–12].

The optical response of a single-layer crystal provides di-
rect access to its electronic properties via its macroscopic sur-
face susceptibility and surface conductivity [12–16]. Recently,
a classical description of a 2D crystal connected these macro-
scopic quantities to microscopic atomic polarizability through
the Clausius-Mossotti-Lorenz-Lorentz relations. First, a mi-
croscopic approach has shown that retardation effects are very
relevant for the optical properties of these crystals [17]. Then,
the computation of the macroscopic field has required the ad-
vanced potential solutions of the inhomogeneous Maxwell’s
equations via the radiation-reaction electric field [18].
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The first successful technique to produce two-dimensional
materials was exfoliation [4]. Now other growth methods
are available, such as chemical vapor deposition [19]. All
these experimental techniques are able to produce 2D crystals
with different numbers of layers, starting from single-layer
materials to bilayers, three layers, and up to the bulk. Op-
tical contrast experiments are able to distinguish between
the number of constituent planes of a 2D crystal [6,20], but
a proper theoretical analysis is still lacking for the bilayer
case.

In this paper, we aim to extend the complete classical
physical picture that has been developed for the optical re-
sponse of a monolayer crystal [17] to a bilayer material,
i.e., two planes of atoms or molecules separated by a cer-
tain interlayer distance. In particular, we will address the
following questions: How does the interaction between the
two planes of a bilayer crystal influence its optical properties?
How does this interaction scale with the distance between
the atomic planes? Can we still use a surface susceptibility
to describe a bilayer crystal, or do we need to introduce a
volume susceptibility? We choose to treat bilayer hexagonal
boron nitride because it is an insulating dielectric. From the
standpoint of optics, this is the simplest example of a bilayer
crystal.

II. CLASSICAL MODEL OF RADIATING
BILAYER 2D CRYSTALS

We consider an insulating free-standing bilayer 2D crystal
formed by N atoms per unit area placed on two 2D Bravais lat-
tices with lattice spacing a (Fig. 1). The two atomic planes are
separated by a distance d, and each atom has a polarizability
α. A linearly polarized (along the x direction) electromagnetic
plane wave is incident on this 2D crystal with a harmonic
time dependence eiωt . For the sake of simplicity, normal
incidence is assumed and the crystal is initially supposed to
be in the vacuum (n1 = n2 = 1). As a consequence of electro-
magnetic excitation, the atoms of the crystal act as oscillating
dipoles,

�p1(t ) = αε0 �E (1)
loce

iωt , �p2(t ) = αε0 �E (2)
loce

iωt , (1)
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FIG. 1. A bilayer crystal is modeled as two two-dimensional
Bravais lattices in vacuum (n = 1). A linearly polarized plane wave
is incident on it from vacuum. The crystal can be free-standing,
deposited on a bulk substrate n1 = n2, or on a stratified substrate
n1 �= n2. a denotes the lattice spacing, d is the interlayer distance,
and h is the thickness of the medium with refractive index n1.

where ε0 is the vacuum permittivity, and �p1, �p2, �E (1)
loc, and

�E (2)
loc are, respectively, the induced dipole moments and the

local fields in the first and second layers. The superposition

principle provides �E (1)
loc and �E (2)

loc,

�E (1)
loce

iωt = �Eie
iωt +

∑
(m,n)

′ �E (1)
n,m(t ) +

∑
(m,n)

′′ �E (2)
n,m(t ),

�E (2)
loce

iωt = �Eie
iω(t−d/c) +

∑
(m,n)

′ �E (2)
n,m(t ) +

∑
(m,n)

′′ �E (1)
n,m(t ), (2)

where �Ei is the incident electric field, and the sums
∑′ count

the contributions coming from all the other dipoles of the
same layer, while

∑′′ count those coming from all the dipoles
of the other layer. The expression of the dipole fields is

�E (i)
n,m(t ) = 1

4πε0r3

(
3( �̃pi · r̂ )r̂ − �̃pi − (�r × �̈pi ) × �r

c2

)
, (3)

where

�pi = �pi

(
t − r

c

)
= �pie

i(ωt−kr ),

�̃pi = �pi

(
t − r

c

)
+ r

c
�̇pi

(
t − r

c

)
= �pie

i(ωt−kr )(1 + ikr )

with i = 1, 2 and where (n,m) label the lattice sites located
at r ≡ rn,m.

We will first develop a microscopic theory to compute

the local fields �E (1)
loc, �E (2)

loc. Afterward, we will consider the
macroscopic theory to obtain first the polarization,

�P =
�P1 + �P2

d
= N

d
(�p1 + �p2), (4)

and then the macroscopic electric field �E and the electric
susceptibility χ through

�P = ε0χ �E. (5)

III. MICROSCOPIC THEORY

We perform the sums in Eqs. (2) by dividing the compo-
nents parallel to the crystal planes from those perpendicular

to them,

∑
(n,m)

′ �E (i)
‖ = α

4π
�E (i)

loc‖

×
∑

(m,n)�=(0,0)

{
e−ikrnm

(
1 + ik rnm + k2r2

nm

2 r3
nm

)}
, (6)

∑
(n,m)

′ �E (i)
⊥ = − α

4π
�E (i)

loc⊥

×
∑

(m,n)�=(0,0)

{
e−ikrnm

(
1 + ik rnm − k2r2

nm

r3
nm

)}
, (7)

∑
(n,m)

′′ �E (i)
‖ = α

4π
�E (i)

loc‖

×
∑
(m,n)

{
e−ikr ′

nm

2 r ′3
nm

[(
1 + ik r ′

nm + k2r ′2
nm

)

−3 d2

r ′2
nm

(1 + ik r ′
nm) + d2k2

]}
, (8)

∑
(n,m)

′′ �E (i)
⊥ = − α

4π
�E (i)

loc⊥

×
∑
(m,n)

{
e−ikr ′

nm

r ′3
nm

[(
1 + ik r ′

nm − k2r ′2
nm

)

−3 d2

r ′2
nm

(1 + ik r ′
nm) − d2k2

]}
. (9)

One can easily find that �E (i)
loc⊥ = 0 for a normally incident

electromagnetic wave.

A. Square and triangular lattice

For the parallel components, we obtain numerical results
consistent with the following expressions for the local fields:

E
(1)
loc = Ei + α

4πa3

[
(C0 + i C1ka)E(1)

loc

+ (Cd + i C1kae−ikd )E(2)
loc

]
, (10)

E
(2)
loc = Eie

−ikd + α

4πa3

[
(C0 + i C1ka)E(2)

loc

+ (Cd + i C1kae−ikd )E(1)
loc

]
, (11)

where the terms proportional to E
(1)
loc in Eq. (10) and to E

(2)
loc in

Eq. (11) come from the sums
∑′ in Eq. (2) and have already

been computed in Ref. [17]. The terms proportional to E
(2)
loc in

Eq. (10) and to E
(1)
loc in Eq. (11) come from the sums

∑′′ in
Eq. (2).

For both the square and the triangular lattice, we find that
C1 = −2πNa2. For the square lattice, we have

C0 =
∑

(m,n)�=(0,0)

1

2(n2 + m2)
3
2

≈ 4.517,

Cd =
∑
(m,n)

(n2 + m2 − 2 d2/a2)

2(n2 + m2 + d2/a2)
5
2

, (12)

where C0 = 2ζ (3/2)β(3/2), with ζ (s) = ∑∞
n=1 1/ns the Rie-

mann zeta function and β(s) = ∑∞
n=0(−1)n/(2n + 1)s the
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FIG. 2. Atomic structure of hexagonal boron nitride. The lattice
parameters are a ≈ 0.25 nm and c ≈ 0.67 nm [21].

Dirichlet beta function [17]. For the triangular lattice,

C0 =
∑

(m,n)�=(0,0)

1

2(n2 + nm + m2)
3
2

≈ 5.517,

Cd =
∑
(m,n)

(n2 + nm + m2 − 2 d2/a2)

2(n2 + nm + m2 + d2/a2)
5
2

. (13)

Also in this case, C0 can be written in terms of special func-
tions, C0 = 3ζ (3/2)L(3/2, χ3), where L(s, χn) are Dirichlet
L series [17].

B. Honeycomb lattice

Let us consider a special case of a bipartite lattice, where
there are two different atoms in the unit cell for the single
monolayers [21]. In this case, we have to generalize Eqs. (2)
for the local fields in the bilayer, introducing four terms,
�E (i,j )

loc , where i = 1, 2 denotes the layers and j = 1, 2 labels
the species of atoms with two different polarizabilities α1

and α2. For the structure depicted in Fig. 2, as in the case
of hexagonal boron nitride, Eqs. (10) and (11) should be
modified as follows:

E
(1,1)
loc = Ei + 1

4πa3

[
α1

(
C

(1)
0 + i C1ka

)
E

(1,1)
loc

+α2
(
C

(2)
0 + i C1ka

)
E

(1,2)
loc

+α1
(
C

(2)
d + i C1kae−ikd

)
E

(2,1)
loc

+α2
(
C

(1)
d + i C1kae−ikd

)
E

(2,2)
loc

]
, (14)

E
(1,2)
loc = Ei + 1

4πa3

[
α2

(
C

(1)
0 + i C1ka

)
E

(1,2)
loc

+α1
(
C

(2)
0 + i C1ka

)
E

(1,1)
loc

+α2
(
C

(2)
d + i C1kae−ikd

)
E

(2,2)
loc

+α1
(
C

(1)
d + i C1kae−ikd

)
E

(2,1)
loc

]
, (15)

E
(2,1)
loc = Eie

−ikd + 1

4πa3

[
α1

(
C

(1)
0 + i C1ka

)
E

(2,1)
loc

+α2
(
C

(2)
0 + i C1ka

)
E

(2,2)
loc

+α1
(
C

(2)
d + i C1kae−ikd

)
E

(1,1)
loc

+α2
(
C

(1)
d + i C1kae−ikd

)
E

(1,2)
loc

]
, (16)

E
(2,2)
loc = Eie

−ikd + 1

4πa3

[
α2

(
C

(1)
0 + i C1ka

)
E

(2,2)
loc

+α1
(
C

(2)
0 + i C1ka

)
E

(2,1)
loc

+α2
(
C

(2)
d + i C1kae−ikd

)
E

(1,2)
loc

+α1
(
C

(1)
d + i C1kae−ikd

)
E

(1,1)
loc

]
. (17)

For α1 = α2, we can identify E(1,1) with E(1,2) and E(2,1) with
E(2,2), reducing to Eqs. (10) and (11). The coefficients are
C1 = −2πNa2 and

C
(1)
0 =

∑
(m,n)�=(0,0)

1

2(n2 + nm + m2)
3
2

≈ 5.517,

C
(2)
0 =

∑
(m,n)

1

2
(
n2 + nm + m2 + n + 1

3

) 3
2

≈ 11.575,

C
(1)
d =

∑
(m,n)

(n2 + nm + m2 − 2 d2/a2)

2(n2 + nm + m2 + d2/a2)
5
2

,

C
(2)
d =

∑
(m,n)

(n2 + nm + m2 + n + 1/3 − 2 d2/a2)

2(n2 + nm + m2 + n + 1/3 + d2/a2)
5
2

.

For d/a = 4/3, as in the case of hexagonal boron nitride, we
get C

(1)
d ≈ −0.010 and C

(2)
d ≈ 0.005. Notice that C

(1)
0 , C

(1)
d ,

and C1 are the same as those of the triangular lattice.

C. Dependence of the interaction of the atomic
planes on the distance d

Apart from the phase factor e−ikd that is due to the
propagation of the electromagnetic radiation in vacuum, the
only term in Eqs. (10) and (11) [or in Eqs. (14)–(17)] that
depends on the distance d between the two atomic planes is
Cd (C (1)

d , C
(2)
d ). We interpret it as a coefficient describing the

interaction between the two atomic planes. Its dependence on
the distance d (in units of a) is shown in Fig. 3. In all the cases,
the form of Cd , for large enough d (Fig. 3), fits well with the
expression

Cd 
 A	 exp

(
− d

λ	

)
, (18)

where A	 and λ	 depend on the lattice, A	 < 0 for the square
lattice and the triangular lattice (for C

(1)
d ), while it is A	 > 0

in the case of C
(2)
d in the honeycomb lattice (see Fig. 3, where

the values of A	 and λ	 in the three cases are reported). From
Eq. (18) and Fig. 3, one can see that as soon as d far exceeds
a, Cd becomes negligible. The points in Fig. 3 are obtained by
finite-size scaling as shown in Fig. 4, where the convergence
of the sum for C

(1)
d at d ≈ 1.333 (useful for hBN) is reported

as an example.

IV. MACROSCOPIC THEORY

We proceed from the local fields to the macroscopic fields
by using an approach similar to the one developed in [18,22].

013802-3



LUCA DELL’ANNA AND MICHELE MERANO PHYSICAL REVIEW A 99, 013802 (2019)

-6

-5

-4

-3

-2

-1

 0

 0.7  0.8  0.9  1  1.1  1.2  1.3  1.4  1.5

ln
 |C
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FIG. 3. Cd (absolute value) for the square lattice (squares), Cd =
C

(1)
d for the triangular and the honeycomb lattices (triangles), and

C
(2)
d for the honeycomb lattice (circles), in logarithmic scale, as

functions of the distance d in units of a, the lattice parameter. The
lines are obtained by fitting the numerical values by Eq. (18), where
A	 ≈ −114.80, λ	 ≈ a/6.53 for the square lattice (dashed line);
A	 ≈ −170.75, λ	 ≈ a/7.31 for the triangular and honeycomb lat-
tices (dotted line); and A	 ≈ 71.38, λ	 ≈ a/7.19 for C

(2)
d appearing

in the honeycomb lattice (dotted-dashed line). The empty points are
the values of ln |C (1)|

d (triangle) and ln |C (2)
d | (circle) for the bilayer

hBN.

The macroscopic fields to be computed are the reflected and
the transmitted fields Er , Et , plus the result of all the positive
(negative) traveling waves between the two planes E+ (E−).
These fields must obey the boundary conditions.

A. Square and triangular lattice

1. Noninteracting case

We note that the macroscopic surface current on the first
(second) atomic plane is given by [18,22] i k

η
NαE

(i)
loc = iωPi

(i = 1, 2). For the sake of simplicity, we first consider the case
of a distance d in between the two atomic planes big enough
to have Cd = 0. The boundary conditions link together the

-0.018
-0.017
-0.016
-0.015
-0.014
-0.013
-0.012
-0.011

-0.01

 2000  4000  6000  8000  10000

C d
(1

)

L

FIG. 4. Convergence for C
(1)
d at d/a = 4/3 (as in the case of

hBN) obtained summing over 2L × 2L sites (−L � n,m � L). The
asymptotic value is obtained by fitting the points with the function
a + b/L, getting a = −0.009 95 (the asymptotic value for C

(1)
d ,

dotted line) and b = −3.64.

macroscopic and the microscopic fields,

Ei + Er = E+ + E−,

Ei + Er = E
(1)
loc

(
1 − αC0

4πa3

)
,

Hi − Hr = H+ − H− + i
k

η
NαE

(1)
loc = H+ − H− + iωP1,

E+e−ikd + E−eikd = Et,

Et = E
(2)
loc

(
1 − αC0

4πa3

)
,

H+e−ikd − H−eikd = Ht + i
k

η
NαE

(2)
loc = Ht + iωP2. (19)

The relation between �E and �H is η �H = ŝ ∧ �E, ŝ is the unit
vector along the propagation direction, and η is the impedance
of vacuum. We have six equations and six unknown vari-
ables: Er , Et , E+, E−, E

(1)
loc , and E

(2)
loc . This approach is

self-consistent because the solutions for E
(1)
loc and E

(2)
loc are

identical to those provided by the microscopic equations (10)
and (11) with Cd = 0. The macroscopic field in the first layer
is naturally given by Ei + Er and in the second layer by Et .
We note that for both layers, the local field is given by the
macroscopic field divided by (1 − αC0

4πa3 ). In this sense, it has
the same expression of the monolayer [17].

2. Interacting case

In the case of interacting atomic planes (Cd �= 0), the
system of Eqs. (19) changes because [Eqs. (10) and (11)] the
field applied to one plane induces a local field and hence a
polarization also on the other plane,

Ei + Er = E+ + E−,

Ei + Er = E
(1)
loc

(
1 − αC0

4πa3

)
− E

(2)
loc

αCd

4πa3
,

Hi − Hr = H+ − H− + i
k

η
NαE

(1)
loc = H+ − H− + iωP1,

E+e−ikd + E−eikd = Et,

Et = E
(2)
loc

(
1 − αC0

4πa3

)
− E

(1)
loc

αCd

4πa3
,

H+e−ikd − H−eikd = Ht + i
k

η
NαE

(2)
loc = Ht + iωP2. (20)

Also for the interacting case, self-consistency with the micro-
scopic equations (10) and (11) is verified. Importantly, now
the local fields are coupled to the macroscopic fields of both
layers. Their expression is now different from the one found
for the monolayer. For Cd = 0, we recover the noninteracting
case.

B. Honeycomb lattice

We note that the macroscopic surface current on the first
(second) atomic plane is given by i k

η
N (α1E

(i,1)
loc + α2E

(i,2)
loc ) =

iωPi (i = 1, 2) [18]. In this case, we have eight equations and
eight unknown variables: Er , Et , E+, E−, E(1,1)

loc , E(1,2)
loc , E(2,1)

loc ,
and E

(2,2)
loc . These equations are reported in Appendix A.
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The solutions for the local fields are self-consistent with the
solutions of Eqs. (14)–(17).

V. THE SUSCEPTIBILITY OF AN INSULATING
BILAYER CRYSTAL

From Eq. (5) we have

χ = P1x + P2x

dε0(Ei + Er + Et )
. (21)

For the square and the triangular lattices,

χ = 4πa3Nα

4πa3d − (C0 + Cd )dα
. (22)

For the honeycomb lattice,

χ = N
(

α1+α2
d

− α1α2(C (1)
0 −C

(2)
0 −C

(1)
d +C

(2)
d )

2πa3d

)
1 − (C (1)

0 +C
(2)
d )(α1+α2 )

4πa3 + α1α2((C (1)
0 +C

(2)
d )2−(C (2)

0 +C
(1)
d )2 )

(4πa3 )2

.

(23)

Our calculations indicate that in the interacting case, it is no
more meaningful to provide a χs for each single plane (we
would obtain different results for the two planes), but only a
global χ . For the noninteracting case, this is of course still
possible,

χs = P1x

ε0(Ei + Er )
= P2x

ε0Et

= P1x + P2x

ε0(Ei + Er + Et )
= χd.

(24)

For the square and triangular lattices,

χs = 4πa3Nα

4πa3 − C0α
, (25)

while for the honeycomb lattice,

χs = N
(
α1 + α2 − α1α2(C (1)

0 −C
(2)
0 )

2πa3

)
1 − C

(1)
0 (α1+α2 )

4πa3 + α1α2(C (1)2
0 −C

(2)2
0 )

(4πa3 )2

. (26)

These last two expressions are of course equal to the surface
susceptibilities of the monolayers. Looking at the expres-
sions (22) and (25), we can compare the surface susceptibility
of a monolayer with the susceptibility of the bilayer, and we
have

χs

d
> χ. (27)

The same relation holds for the hexagonal BN with reasonable
assumptions for the atomic polarizabilities (see below). For
the special case of square lattices (N = 1/a2) and d = a, we
obtain

χ = Nα

1 − (C0+Cd )Nα

4π

, (28)

where N = 1/a3. As expected, χ is closer than χs/a to the
susceptibility of the bulk χ3D = Nα/(1 − Nα/3). Indeed, for
the square lattice, C0 ≈ 4.517 and Cd=a ≈ −0.164 so that
(C0 + Ca )/4π ≈ 0.346, very close to 1/3.

In the bulk, coupling a layer with at least the two nearest-
neighboring ones, one could naively expect to have (C0 +
2Ca )/4π , which is even closer to 1/3, the 3D factor.

VI. THE FRESNEL COEFFICIENTS OF AN INSULATING
BILAYER CRYSTAL

A. Free-standing bilayer crystal

We want to express the Fresnel coefficients in terms of χ .
The best way to do this is to write Eqs. (19), (20), and (A1) in
term of χ and to solve them in this form,

Ei + Er = E+ + E−,

Ei + Er = P1

χdε0
+ (P1 − P2)CF

ε0
,

Hi − Hr = H+ − H− + iωP1,

E+e−ikd + E−eikd = Et,

Et = P2

χdε0
− (P1 − P2)CF

ε0
,

H+e−ikd − H−eikd = Ht + iωP2. (29)

Here CF has the dimension of the inverse of a distance. Even
in the case of the honeycomb lattice [Eqs. (A1)], we have
six equations instead of eight. For the noninteracting case,
CF = 0 m−1. For the interacting case, for the square and the
triangular lattices,

CF = Cd

4πa3N
, (30)

while the value for the honeycomb lattice is reported in
Appendix B. Defining rs = Er/Ei , ts = Et/Ei as the reflec-
tion and the transmission coefficients, the noninteracting case
appears as a natural extension of the monolayer. We obtain

r s = r1 + r2(t1 + r1)e−2ikd

1 − r1r2e−2ikd
, (31)

t s = t1t2e
−ikd

1 − r1r2e−2ikd
, (32)

where the subscripts 1 (2) refer to the first (second) crystal
plane met by the incident wave, and r1 = r2, t1 = t2 are,
respectively, the reflection and transmission coefficients for
a free-standing single-layer crystal [provided by formula (2)
of Ref. [12], where the surface susceptibility must be replaced
with χd]. For the interacting case, we find

rs = A + D, ts = B − D, (33)

where A and B are, respectively, equal to (31) and (32), and
D is given by

D = 2kd(eikd − 1)2χ2

eikd (kdχ − 2i) − kdχ

× dCF

−ikdχ + eikd (4CF dχ + ikdχ + 2)
. (34)

As expected, due to the interaction, the Fresnel coefficients
now depend explicitly also on CF . This occurs only for terms
at the order of k3d3 or bigger since their Taylor expansions

rs = −iχkd − χ (1 + χ )k2d2 + O(k3d3),

ts = 1 − i(1 + χ )kd − 1
2 (1 + 2χ + 2χ2)k2d2 + O(k3d3)

(35)

are the same for the noninteracting and the interacting case up
to the second order, apart from the different expression of χ

in the two cases.
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B. Bilayer crystal on a substrate

1. Semi-infinite substrate

We consider now the case of a bilayer crystal deposited
on a homogeneous transparent medium (n1 = n2) that fills the
half-space below it. As was done in [6,20], we assume that we
can neglect the interaction of the 2D crystal with the substrate.
With respect to Eqs. (29), only the relation between �E and �H
in the transmitted waves changes,

η

n1

�H t = ŝt ∧ �Et . (36)

2. Stratified substrate

For comparison with the experimental data, it is also useful
to consider the case of a bilayer deposited on a stratified
medium (Fig. 1, n1 �= n2),

Ei + Er = E+ + E−,

Ei + Er = P1

χdε0
+ (P1 − P2)CF

ε0
,

Hi − Hr = H+ − H− + iωP1,

E+e−ikd + E−eikd = E1+ + E1−,

E1+ + E1− = P2

χdε0
− (P1 − P2)CF

ε0
,

H+e−ikd − H−eikd = H1+ − H1− + iωP2,

E1+e−iβ + E1−eiβ = Et, H1+e−iβ − H1−eiβ = Ht, (37)

where β = kn1h, and h is the thickness of medium 1. For
the noninteracting case, the Fresnel coefficients for these two
types of substrates are still provided by (31) and (32). The
only difference is that for the semi-infinite substrate, r2 and t2
must be replaced with formula (6) of [12] and for the stratified
substrate with formulas obtained starting from the equation
system (7) of [12]. Taylor’s expansions (see Appendix C) of
these expressions, for the noninteracting and the interacting
case, are identical up to the second order in kd. Only the value
of χ is different in the two cases. The first-order terms of these
expansions are the Fresnel coefficients of the substrate.

VII. ANALYSIS OF OPTICAL CONTRAST
MEASUREMENTS

In Fig. 2 the crystal structure of the bilayer hBN is reported.
The dimensions of the unit cell are a = 0.25 nm and c =
0.666 nm. The unit cell is bimolecular, with each atomic layer
consisting of a flat network of B3N3 hexagons with an inter-
planar distance of d = c/2 [21]. Figure 6 shows variations of
the optical contrast (for the definition of this quantity, see [6])
in the spectral range 410 < λ < 740 nm for monolayer and
bilayer hBN on top of a SiO2/Si wafer with a nominal
thickness of 290 nm. Dots are the experimental data that have
been extracted from Ref. [20] via software digitization. The
same paper reports the theoretical fits to these experimental
data based on a slab model, and it assumes the same refractive
index for monolayer and bilayer crystals. In practice, Ref. [20]
assumes that the equality holds in Eq. (27).

The value of χs for the monolayer has already been de-
duced in Ref. [15]. The solid line is the best theoretical fit

FIG. 5. Optical contrast of monolayer and bilayer hBN on top
of a SiO2/Si wafer. Solid dots: experimental data for the mono-
layer [20]; open dots: experimental data for the bilayer [20]. Solid
lines: best theoretical fits assuming, respectively, χs = 1.3 nm for the
monolayer and χd = 1.1 nm for the bilayer (see the text). Dashed
line: theoretical fit assuming no variation of the susceptibility from
the monolayer to the bilayer.

assuming χs = 1.3×10−9 m. The value of the surface conduc-
tivity was estimated to be σ � 2×10−6 �−1, confirming that
we are dealing with an insulating dielectric material. Starting
from the Fresnel coefficients derived from Eqs. (37), the
best theoretical fit (solid line) for the bilayer gives χ = 3.34,
so that we have

χs = 1.3 nm > χd = 1.1 nm. (38)

If we assume no variation of the susceptibility from the
monolayer to the bilayer (i.e., χd = 1.3 nm), the theoretical
fit that we obtain is the dashed line in Fig. 5. The experimental
data are clearly consistent with a variation of the susceptibility
from the monolayer to the bilayer and more specifically with
our Eq. (27). The optical contrast measurements are very
sensible to the SiO2 thickness, as discussed in Appendix D.

A. Atomic polarizabilities

Having both the χs from the optical contrast measurements
of the monolayer [15,20] and the χ for the bilayer, we can try
to deduce the atomic polarizabilities. From the equations

χs = N
(
α1 + α2 − α1α2(C (1)

0 −C
(2)
0 )

2πa3

)
1 − C

(1)
0 (α1+α2 )

4πa3 + α1α2(C (1)2
0 −C

(2)2
0 )

(4πa3 )2

, (39)

χ = N
(

α1+α2
d

− α1α2(C (1)
0 −C

(2)
0 −C

(1)
d +C

(2)
d )

2πa3d

)
1 − (C (1)

0 +C
(2)
d )(α1+α2 )

4πa3 + α1α2((C (1)
0 +C

(2)
d )2−(C (2)

0 +C
(1)
d )2 )

(4πa3 )2

,

(40)

we can now extract the values of α1 and α2 that are the
only unknown parameters of these two equations. We obtain
α1 = 1.1×10−24 cm−3 and α2 = 19.5×10−24 cm−3, which
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have the right order of magnitude if compared with the static
calculations reported in Ref. [23]. Of course, as for the 3D
case, atomic polarizabilities require a full quantum dynamical
approach for a proper treatment.

VIII. CONCLUSIONS

In this paper, we provide a complete classical description
of the optical response of a bilayer crystal. We compute both
the local and the macroscopic fields. We find that, if the
distance d between the two planes far exceeds the lattice con-
stant a, they can be macroscopically treated as two separated
monolayers. In this case, for both layers, the local field is
connected to the macroscopic field via an expression identical
to the one for the monolayer. On the other hand, for shorter
distances, although it is still possible to define a surface
polarization and hence a surface current for each single plane,
the local fields are coupled to the macroscopic fields in both
layers. As a consequence of this, it is meaningful to provide a
volume susceptibility rather than a surface susceptibility. Re-
markably, the expression for the volume susceptibility is still
very simple, and it depends on the interaction parameter Cd

(or C
(1)
d and C

(2)
d ), which rapidly decreases with d, exhibiting

an evanescent-wave character. Interestingly, for the Fresnel
coefficients the effect of the coupling between the layers in
the long-wavelength limit (small k) is fully contained in the
susceptibility. Even if we use a classical approach to compute
the susceptibility, the expression of the Fresnel coefficients
that we derive has a general validity because they concern the
macroscopic fields.

A comparison of our theory with the optical contrast mea-
surements [20] confirms that the interaction between the two
atomic planes alters the optical response of the bilayer crys-
tal. Its susceptibility is indeed modified from that expected
for noninteracting layers by an experimentally appreciable
amount.

The approach reported here is valid also for all-dielectric,
double-layer metasurfaces [24] and for bilayer heterostruc-
tures [25], and we believe that, in these contexts, our work
can lead to some potential applications. Some questions still
remain about how two layers of different materials interact.
Also twisted bilayers [26] have macroscopic properties that
are different from each other. Because metasurfaces can be

designed to have total reflection for an incident wave, it is
possible to trap and guide electromagnetic energy in a region
between two metasurfaces. Monolayer crystals can support
in general both transverse electric and transverse magnetic
modes. Bilayer crystals, twisted bilayer crystals, or bilayer
heterostructures are, therefore, promising devices for design-
ing new ultrathin waveguides.

Based on our findings, it would be interesting to compare
experimentally the optical contrast of a BN bilayer with that
of two BN monolayers separated by a distance much larger
than a, for instance in a system composed sequentially by
a substrate, a monolayer, a dielectric film, and a monolayer.
In the latter case, we expect that the optical response is well
described by the surface susceptibility of a single monolayer.
The interaction between the layers and its dependence on the
distance, Eq. (18), might be addressed experimentally also
using bilayer heterostructures.

We think that the same approach developed in this paper
can be extended to study multilayer structures up to a thick-
ness where the bulk susceptibility is found. Some questions
have yet to be answered. All the fields that we have considered
in this paper travel in the vacuum at speed c, so one may
wonder how a polarization wave that propagates with velocity
c/n emerges (n being the refractive index), and how many
layers we need in order to have a layer-independent refractive
index. For a bilayer crystal, we do not need to consider
the speed of the polarization wave because the macroscopic
field is simply given by the incident plus the reflected fields
in the first layer and by the transmitted field in the second
layer; however, in the case of many layers, we would need an
expression for the macroscopic field inside the crystal.
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APPENDIX A

Macroscopic Theory: honeycomb lattice

The eight equations with eight unknown variables are as follows:

Ei + Er = E+ + E−, Ei + Er = E
(1,1)
loc − α1

(
E

(1,1)
loc C

(1)
0 + E

(2,1)
loc C

(2)
d

) + α2
(
E

(1,2)
loc C

(2)
0 + E

(2,2)
loc C

(1)
d

)
4πa3

,

Ei + Er = E
(1,2)
loc − α1

(
E

(1,1)
loc C

(2)
0 + E

(2,1)
loc C

(1)
d

) + α2
(
E

(1,2)
loc C

(1)
0 + E

(2,2)
loc C

(2)
d

)
4πa3

,

Hi − Hr = H+ − H− + i
k

η
N

(
α1E

(1,1)
loc + α2E

(1,2)
loc

)
, E+e−ikd + E−eikd = Et,

Et = E
(2,1)
loc − α1

(
E

(1,1)
loc C

(2)
d + E

(2,1)
loc C

(1)
0

) + α2
(
E

(1,2)
loc C

(1)
d + E

(2,2)
loc C

(2)
0

)
4πa3

,
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Et = E
(2,2)
loc − α1

(
E

(1,1)
loc C

(1)
d + E

(2,1)
loc C

(2)
0

) + α2
(
E

(1,2)
loc C

(2)
d + E

(2,2)
loc C

(1)
0

)
4πa3

,

H+e−ikd − H−eikd = Ht + i
k

η
N

(
α1E

(2,1)
loc + α2E

(2,2)
loc

)
. (A1)

The noninteracting case corresponds to C
(1)
d = C

(2)
d = 0.

APPENDIX B

Expression of CF for the honeycomb lattice

Calling

� = C
(1)
0 − C

(2)
0 , (B1)

�d = C
(1)
d − C

(2)
d , (B2)

we have

CF = C
(2)
d

4πa3N
+ �dα1α2

[
16π2a6 + (

�2 − �2
d

)
α1α2 − 4πa3�(α1 + α2)

]
8Nπa3[(�d − �)α1α2 + 2πa3(α1 + α2)][2πa3(α1 + α2) − (� + �d )α1α2]

. (B3)

Notice that, for α1 = α2, this equation reduces to CF = C1
d+C2

d

8πa3N
so that the equations for the macroscopic electric fields are simply

Ei + Er = P1

χdε0
+ (P1 − P2)

(
C

(1)
d + C

(2)
d

)
8πa3Nε0

, (B4)

Et = P2

χdε0
− (P1 − P2)

(
C

(1)
d + C

(2)
d

)
8πa3Nε0

. (B5)

APPENDIX C

Taylor expansion of the Fresnel coefficients:
Semi-infinite substrate

For the Taylor expansion of the Fresnel coefficients, we
have

rs = −n1 − 1

n1 + 1
+ 2i

(
n2

1 − 1 − 2χ
)

(n1 + 1)2
kd

+ 2
(
n2

1 − 1 − 2χ
)
(n1 + 1 + 2χ )

(n1 + 1)3
k2d2 + O(k3d3),

ts = 2

n1 + 1
− 2i(n1 + 1 + 2χ )

(n1 + 1)2
kd

− 1 + 2n1 + n2
1 + 6χ + 4n1χ − 2n2χ + 8χ2

(n1 + 1)3

× k2d2 + O(k3d3). (C1)

The first terms of the expansions are the Fresnel coefficients
of the substrate. It is easy to verify that the same holds for a
stratified substrate.

APPENDIX D

Optical contrast as a function of the SiO2 thickness

The dashed line in Fig. 6 is the best theoretical fit for the
optical contrast data of a monolayer, assuming χs = 1.3 ×
10−9 m and the nominal SiO2 thickness of 290 nm. The
only way to improve the fit is by varying the SiO2 thickness,

showing that the spectral position of the optical contrast curve
depends much on the substrate. The solid line is the theoretical
fit for the same values of χs and σ but a SiO2 thickness of
270 nm. Indeed, we noticed that by increasing the thickness
of the substrate, the optical contrast curve translates toward
the infrared, and new zeros (or new oscillations as a function
of the wavelength) appear on the blue side. Starting from
the Fresnel coefficients deduced from Eqs. (37), the best

FIG. 6. Optical contrast of monolayer and bilayer hBN on top
of a SiO2/Si wafer. Solid dots: experimental data for the mono-
layer [20]; open dots: experimental data for the bilayer [20]. Dashed
lines: best theoretical fits for a SiO2 thickness of 290 nm. Solid lines:
best theoretical fits for a SiO2 thickness of 270 nm.
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theoretical fit (solid line) for the bilayer provides χ = 3.34
and a SiO2 thickness of 270 nm. For the sake of completeness,

the theoretical fit for the nominal thickness of 290 nm is
shown as a dashed line.
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