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We investigate the one-dimensional mixture of scalar bosons and spin-polarized fermions interacting through
a δ-function potential. Using a thermodynamic description derived by employing a lattice embedding of the
continuum model and the quantum transfer-matrix method, we perform a detailed analysis of the contact and
quantum critical behavior. We show that the compressibility Wilson ratio presents anomalous enhancement at
the quantum critical points and that the boundaries of the quantum critical regions can be well mapped by
the maxima of the specific heat. As a function of the coupling strength and temperature, the contact presents
nonmonotonic behavior. In the strong-coupling regime the local minimum exhibited by the contact as a function
of temperature is accompanied by a significant momentum reconstruction at both low and high momenta. This
momentum reconstruction occurs as the system crosses the boundary between the Tomonaga-Luttinger liquid
phase to the spin-incoherent regime and provides an experimental signature of the transition.
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I. INTRODUCTION

Physical systems of ultracold atomic gases are character-
ized by a high degree of control over interaction strength,
statistics and dimensionality, which makes them ideal can-
didates for the investigation of various quantum many-body
phenomena [1–3]. The absence of defects and impurities
makes these systems particularly suited for the simulation of
many condensed-matter models, but at the same time they also
allow for the creation of more exotic quantum systems. One
example is the degenerate mixture of bosons and fermions
which has been experimentally realized in various trap and
lattice geometries. The study of Bose-Fermi mixtures (BFMs)
is extremely important from an experimental point of view
due to the sympathetic cooling of fermions via interactions
with bosons [4] but also theoretically because they exhibit
phases and phenomena which are seldom studied in the
condensed-matter context. One-dimensional BFMs, which are
characterized by enhanced quantum fluctuations, have been
investigated, on both the lattice and the continuum, using
mean-field theory [5–8], bosonization [Tomonaga-Luttinger
liquid (TLL)] [9–15], density waves [16,17], exact solutions
[18–32], and various numerical approaches [33–41]. The
phase diagram is very rich and contains Mott insulators,
spin- and charge-density waves, phase separation, Tomonaga-
Luttinger and spin-incoherent liquids, and Wigner crystals.
In recent years there has also been an increasing number
of studies on few-body mixtures, which are in general fo-
cused on the strong-coupling regime. Various methods are
employed such as the multicomponent generalization of the
Bose-Fermi mapping [42–51], approximation by spin chains
[52–54], energy-functional techniques [55–58], and trial wave
functions [59–61].

In this article we study the one-dimensional (1D) mixture
of scalar bosons and spin-polarized fermions with contact in-
teractions in the continuum. This system has been investigated

in several papers, but the vast majority of them were restricted
to the study of the ground state. However, experiments are per-
formed at finite temperature, which highlights the need for the
computation of accurate thermodynamic data. For example,
many multicomponent systems present quantum phase tran-
sitions (QPTs) at zero temperature [62] as certain parameters
are varied (pressure, magnetic field, doping, etc.). The effects
of these QPTs can also be detected at finite temperature in the
so-called quantum critical (QC) region, which is characterized
by strong coupling of the thermal and quantum fluctuations.
While the zero-temperature phase diagram gives the quantum
critical points, the determination of the boundaries of the QC
regions can be done only by computing the thermodynamic
properties.

The 1D BFM with contact interactions is integrable when
the masses of the fermions and bosons and all the cou-
pling strengths are independently equal [18,24–26]. In this
case, powerful methods associated with the Bethe ansatz
[63,64] can be employed to calculate various zero- and finite-
temperature properties. In particular, the thermodynamics of
the system can be derived using the thermodynamic Bethe
ansatz (TBA) [65,66]. In general, thermodynamic descriptions
of integrable models derived using the TBA are character-
ized by an infinite number of integral equations [66], which
makes their numerical implementation very difficult. While
the BFM is one of the very few exceptions from this rule [27],
the TBA thermodynamics of a large number of integrable
multicomponent systems like the two-component Fermi gas
(2CFG) [67,68] or two-component Bose gas (2CBG) [67]
suffer from the same drawback. Other notable exceptions are
systems characterized by q-deformed algebras at special roots
of unity, which quite typically lead to a truncation. One way
of circumventing these difficulties is provided by the quan-
tum transfer-matrix (QTM) method [69–74], which has the
advantage of producing a finite number of integral equations
that are easier to implement numerically. In Refs. [75–77]
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OVIDIU I. PÂŢU AND ANDREAS KLÜMPER PHYSICAL REVIEW A 99, 013628 (2019)

we succeeded in deriving such thermodynamic descriptions
for the 2CBG and 2CFG and in this article we show that the
same method can also applied in the case of the Bose-Fermi
mixture. Our result hints strongly that similar efficient thermo-
dynamic descriptions involving only κ integral equations for
a κ-component system can be derived using the same method.

We use this result to perform a detailed analysis of the
universal Tan contact [78–91] which governs the 1/k4 of
the momentum distribution. At finite temperature and as a
function of the coupling strength, the contact presents local
maxima for small values of the boson fraction, a feature which
is not present at zero temperature. Even more interesting,
the contact develops a local minimum as a function of the
temperature, which results in a counterintuitive momentum
reconstruction at the system’s transition from the TLL phase
to the incoherent regime. In addition, we determine the bound-
aries of the quantum critical regions which can be identified
with the maxima of the grand-canonical specific heat. Similar
to the case of the 2CBG [92], the Wilson ratio presents
anomalous enhancement in the vicinity of the quantum critical
points and can be used to distinguish between different phases.

The plan of the paper is as follows. In Sec. II we introduce
the model and in Sec. III we present the TBA thermodynam-
ics and our results derived in the quantum transfer-matrix
framework. The analysis of the contact and momentum re-
construction is presented in Sec. IV and the determination
of the boundaries of the QC regions is performed in Sec. V.
The derivation of the thermodynamics is outlined in Secs. VI
and VII. We summarize in Sec. VIII.

II. MODEL

The model investigated in this article describes one-
dimensional scalar bosons and spinless fermions with contact
interactions. The Hamiltonian in second quantization is

H =
∫

dx
∑

σ∈{B,F }

(
h̄2

2mσ

∂x�
†
σ ∂x�σ − μσ�†

σ�σ

)

+ gBB

2
�

†
B�

†
B�B�B + gBF �

†
B�

†
F �F �B, (1)

where �B(x) and �F (x) are bosonic and fermionic fields
satisfying canonical commutation and anticommutation rela-
tions, mB and mF are the masses of the bosonic and fermionic
particles, and μB and μF are the chemical potentials. In (1),
gBB and gBF are the Bose-Bose and Bose-Fermi interaction
strengths which can be expressed in terms of the 1D scattering
lengths aBB and aBF via gσσ ′ = −h̄2/mσσ ′aσσ ′ , with σ, σ ′ ∈
{B, F } and mσσ ′ = (mσ + mσ ′ )/mσ mσ ′ the reduced mass.

The Hamiltonian (1) is integrable when the masses mB =
mF = m and coupling strengths are equal gBB = gBF = g
[18,24,25]. This is the case that will be considered in the rest
of this article and in order to correspond to the literature we
are going to use units of h̄ = 2m = 1 and introduce g = 2c
with c > 0. For a system of M particles, of which MB are
bosons and MF = M − MB are fermions, the energy spectrum
of (1) is [24,25]

EBF =
M∑

j=1

(
k(1)

j

)2 − μBMB − μF (M − MB), (2)

with {k(1)
j }M

j=1 satisfying the Bethe ansatz equations (BAEs)

eik(1)
s LBF =

MB∏
p=1

k(1)
s − k(2)

p + ic/2

k(1)
s − k(2)

p − ic/2
, s = 1, . . . , M, (3a)

1 =
M∏

j=1

k(2)
l − k(1)

j + ic/2

k(2)
l − k(1)

j − ic/2
, l = 1, . . . , MB, (3b)

where LBF is the length of the system and we have assumed
periodic boundary conditions.

III. THERMODYNAMICS

A. The TBA result

From a historical point of view, the first method employed
to determine the thermodynamics of an integrable model
was the thermodynamic Bethe ansatz [66] introduced by
Yang and Yang in their study of the Lieb-Liniger model
[65]. In the TBA framework the Bose-Fermi mixture was
investigated in Ref. [27]. Introducing an effective magnetic
field and chemical potential defined by μ = (μB + μF )/2 and
2H = μB − μF , the grand canonical potential per length is
(β = 1/T )

φYCZ (μ, H, β ) = − 1

2πβ

∫
R

ln[1 + e−βε(k)]dk, (4)

with ε(k) satisfying the system of nonlinear integral equations
(NLIEs)

ε(k) = k2 − μ + H − β−1
∫
R

b1(k − λ) ln[1 + e−βϕ(λ)]dλ,

ϕ(λ) = −2H − β−1
∫
R

b1(λ − k) ln[1 + e−βε(k)]dk,

with b1(k) = c/2π (c2/4 + k2). It should be noted that in
general the TBA description of multicomponent systems in-
volves an infinite number of NLIEs. Therefore, it is extremely
fortunate that in the case of the BFM we encounter only two
equations, which is due to the fact that the Bethe equations (3)
have only real solutions. However, in the case of all the other
multicomponent systems with contact interactions like the
2CBG and 2CFG and even many single-component systems,
the Bethe equations have complex solutions, which means that
the TBA description is very hard to implement numerically. A
more efficient method which has the advantage of producing
only a finite number of integral equations even for models
whose BAEs admit complex solutions is the QTM technique.
Even though the QTM can be defined only for lattice models,
this difficulty can be circumvented by considering a lattice
embedding for the continuum model. In Refs. [75–77] we
employed this method and succeeded in deriving a system
of only two NLIEs characterizing the thermodynamics of the
2CBG and 2CFG. The same method can be used in the case
of the Bose-Fermi mixture, as we will show below.

B. Alternative thermodynamic description

The lattice embedding of the BFM is the Perk-Schultz spin
chain with the (− + −) grading (see Sec. VI). The derivation
of the QTM thermodynamic description is relatively involved
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and will be presented in Sec. VII. Here we present the main
result and show the equivalence with the TBA description.
The grand-canonical potential per length is

φ(μ, H, β ) = − 1

2πβ

∫
R

[ln A1(k) + ln A2(k)]dk, (5)

with the two auxiliary functions a1,2(k) [A1,2(k) = 1 +
a1,2(k)] satisfying the system of NLIEs

ln a1(k) = −β(k2 − μ − H ) +
∫
R

K0(k − k′) ln A1(k′)dk′

+
∫
R+iε

K2(k − k′) ln A2(k′)dk′, (6a)

ln a2(k) = −β(k2 − μ + H ) +
∫
R−iε

K1(k − k′) ln A1(k′)dk′,

(6b)

where ε → 0 and the kernels are defined by K0(k) = 1
2π

2c
k2+c2 ,

K1(k) = 1
2π

c
k(k+ic) , and K2(k) = 1

2π
c

k(k−ic) .
We can analytically check the validity of our results

in some particular cases. In the noninteracting limit c →
0, using limc→0 K1(k + iε) = limc→0 K2(k − iε) = 0 and
limc→0 K2(k) = δ(k), the NLIEs (6) decouple

ln a1(k) = −β(k2 − μ − H ) + ln[1 + a1(k)],

ln a2(k) = −β(k2 − μ + H )

and can be solved, obtaining for the grand-canonical
potential φ(μ, H, β ) = 1

2πβ

∫
R ln[1 − e−β(k2−μ−H )]dk −

1
2πβ

∫
R ln[1 + e−β(k2−μ+H )]dk, which is the known result

for a noninteracting mixture of fermions and bosons with
different chemical potentials. For large values of H the
fermionic degrees of freedom are strongly suppressed,
a2(k) ∼ 0. Equations (6) reduce to the Yang-Yang equation
for the Lieb-Liniger model [65]

ln a1(k) = −β(k2 − μ − H ) +
∫
R

K0(k − k′) ln A1(k′)dk′

and φ(μ, H, β ) = − 1
2πβ

∫
R ln[1 + a1(k)]dk, which repro-

duces the TBA result for single-component bosons with con-
tact interactions. In the impenetrable limit c → ∞ our result
should coincide with the one obtained by Takahashi for two-
component impenetrable fermions, i.e.,

φ∞(μ, H, β ) = − 1

2πβ

∫
R

ln[1 + 2 cosh(βH )e−β(k2−μ)]dk.

(7)

While we have not succeeded in proving analytically the
equivalence of our result with (7), we have checked it numer-
ically and found perfect agreement.

The equivalence of the TBA and QTM thermodynamic
descriptions is shown in Fig. 1, where we plot the numerically
evaluated relative error defined as

�|φ − φYCZ | = |φ − φYCZ |
max[φ, φYCZ ]

, (8)

which shows that (4) and (5) (modulo numerical errors)
produce identical results. Because in both cases we have

FIG. 1. Plot of the relative errors between the TBA grand-
canonical potential (4) and our result (5) for c = 1 and H = −0.25,

0, 0.25. Here t = T/c2.

φ(c, μ, H, T ) = c3φ(1, μ/c2, H/c2, T/c2), it is sufficient to
consider only c = 1. The computational complexities of both
descriptions are the same, which means that choosing one of
them is a matter of personal choice. In the rest of the paper
we use (5) and (6) mainly because our auxiliary functions
have zero asymptotics at infinity, resulting in a more precise
treatment of convolutions using the fast Fourier transform.

The thermodynamic descriptions for the 2CBG [75,76],
2CFG [77], and BFM, (4) and (6), derived in the quan-
tum transfer-matrix framework, involve only two auxiliary
functions a1,2(k) and the same expression for the grand-
canonical potential (5). The system of NLIEs is different
in each case and can be compactly written as ([ f ∗ g](x) =∫
R f (x − x′)g(x′)dx′)(

ln a1(k)
ln a2(k)

)
=

(
d1(k)
d2(k)

)
+ K ∗

(
ln A1(k)
ln A2(k)

)
, (9)

with d j (k) = −β[k2 + μ + (−1) jH] and kernel matrices

KBB =
(

K0 K2

K1 K0

)
, KFF =

(
0 K2

K1 0

)
(10)

for the 2CBG and 2CFG and

KBF =
(

K0 K2

K1 0

)
(11)

for the Bose-Fermi mixture. It is therefore tempting to con-
jecture that the thermodynamics of a three-component system
with contact interactions can be described by three auxiliary
functions ai(k) (i = 1, 2, 3), Ai(k) = 1 + ai(k), with grand-
canonical potential

φ({μi}3
i=1, β ) = − 1

2πβ

∫
R

ln A1(k) + ln A2(k) + ln A2(k)dk,

and ai(k) satisfying⎛
⎝ln a1(k)

ln a2(k)
ln a3(k)

⎞
⎠ =

⎛
⎝d1(k)

d2(k)
d3(k)

⎞
⎠ + K ∗

⎛
⎝ln A1(k)

ln A2(k)
ln A3(k)

⎞
⎠, (12)

with d j (k) = −β(k2 + μ j ). In the case of a three-component
bosonic and fermionic system we conjecture that the kernels
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are

KBBB =
⎛
⎝K0 K2 K2

K1 K0 K2

K1 K1 K0

⎞
⎠, KFFF =

⎛
⎝ 0 K2 K2

K1 0 K2

K1 K1 0

⎞
⎠

and in the case of the Bose-Bose-Fermi and Bose-Fermi-
Fermi mixtures the kernels are

KBBF =
⎛
⎝K0 K2 K2

K1 K0 K2

K1 K1 0

⎞
⎠, KBFF =

⎛
⎝K0 K2 K2

K1 0 K2

K1 K1 0

⎞
⎠.

These conjectured thermodynamic descriptions present the
correct limits when c → 0 and when one of the components
is suppressed, however a definitive proof of their validity
requires the numerical checking with the TBA predictions.
This is beyond the scope of the present paper.

IV. CONTACT

The momentum distribution of 1D models with contact
interactions present a universal n(k) ∼ C/k4 decay [81,90,91].
The universal coefficient C which governs the asymptotic
behavior is called the contact and appears in a series of iden-
tities involving macroscopic properties of the system which
are called Tan relations [78–91]. The 1/k4 decay and the
Tan relations are valid also for nonintegrable systems in the
presence of a trapping potential, at zero or finite temperature,
and for few- or many-body systems. For the BFM the bosonic
and fermionic contacts are given by [51,91]

CB = c2(〈�†
B�

†
B�B�B〉 + 〈�†

B�
†
F �F �B〉),

CF = c2〈�†
B�

†
F �F �B〉.

Even though the individual contacts are hard to compute, the
total contact can be derived from the thermodynamics of the
system using the Hellmann-Feynman theorem [91]

C = CB + CF = c2

(
∂φ

∂c

)
μ,H,T

. (13)

A. Contact at zero temperature

At zero temperature the thermodynamics of the system is
described by a system of Fredholm integral equations which
can be derived from the BAEs (3) [24,25],

ρc(k) = 1

2π
+

∫ λ0

−λ0

b1(k − λ)ρs(λ)dλ, (14a)

ρs(λ) =
∫ k0

−k0

b1(λ − k)ρc(k)dk. (14b)

Here k0 and λ0 are two parameters which set the total density
n = M/LBF and the boson fraction α = MB/LBF via n =∫ k0

−k0
ρc(k)dk and α = ∫ λ0

−λ0
ρs(λ)dλ. The energy density of the

system is E = ∫ k0

−k0
k2ρc(k)dk. It is useful to introduce the

dimensionless coupling strength γ = c/n. The system is in the
Tonks-Girardeau regime when γ 
 1 and weakly interacting
when γ � 1.

Once we have computed the energy density, the total con-
tact can be derived from Eq. (13), which at zero temperature

takes the form

C = nγ 2

(
∂E
∂γ

)
n,α

. (15)

In general, it is relatively easy to derive approximate expres-
sions for the energy in the strong-coupling limit [24,25,51]

ES (γ , α) ∼
γ
1

n3π2

3

[
1 − 4

γ

(
α + sin πα

π

)

+ 12

γ 2

(
α + sin πα

π

)2]
; (16)

however, in the weakly interacting limit serious difficulties are
encountered due to the fact that the b1(k) kernel becomes a
δ function. In this limit only the first term of the asymptotic
expansion was obtained [5]

EW (γ , α) ∼
γ�1

n3

[
π2

3
(1 − α)3 + 2γα − γα2

]
. (17)

One way in which we can improve this approximate expres-
sion is to replace the γ terms which are multiplied with pow-
ers of the boson fraction with the weak-coupling expansion
of the Lieb-Liniger model [93–97] ELL(γ ) ∼

γ�1
γ − 4

3π
γ 3/2 +

( 1
6 − 1

π2 )γ 2, obtaining

EW I (γ , α) ∼
γ�1

n3

[
π2

3
(1 − α)3 + 2ELL(γ )α − ELL(γ )α2

]
.

(18)

This expression reduces to the free fermionic result for α = 0
and reproduces the Lieb-Liniger expansion when the system
is purely bosonic (α = 1). In the top row of Fig. 2 we present
results for the normalized energy density computed using (14)
together with the asymptotic expansions at strong and weak
coupling. The insets show that (18) represents a significant
improvement over (17) and for α > 0.5 the asymptotic expan-
sions are valid for almost all values of the coupling strengths.
The dimensionless contact s = C/(πn)4 calculated using (15)
is shown in the bottom row of Fig. 2. At zero temperature
the contact is a monotonically increasing function of both the
coupling constant and bosonic fraction.

B. Contact at finite temperature

At finite temperature we use (5), (6), and (13) for the
determination of the contact. The dependence of the contact
on the coupling strength for τ = 0, 1.3, 4 with τ = T/n2 and
different boson fractions is shown in Fig. 3. We distinguish
two notable features. First, for small values of the boson frac-
tion, α = 0.05 and α = 0.2, the contact at finite temperatures
develops a local maximum which is more pronounced at low
temperatures. Second, with the exception of the system close
to the purely bosonic case α = 1, for large values of the
coupling strength the contact at zero temperature is larger than
the one at finite temperature. This is rather counterintuitive
if we remember that the contact governs the long tail of
the momentum distribution. Therefore, a smaller contact at
higher temperature means that as we increase T the number
of particles with large momenta decreases compared with the
ground state. This phenomenon can be seen more clearly in
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FIG. 2. The top row shows the energy density normalized by E (∞) = n3π 2/3 (black solid line) as a function of the dimensionless
coupling strength γ for several values of the boson fraction. Also plotted are the strong- and weak-coupling approximations given by Eq. (16)
(violet dash-dotted line), Eq. (17) (green long-dashed line), and Eq. (18) (blue short-dashed line). The insets contain the relative errors
|E − EW,W I |/max[E, EW,W I ] of the weak-coupling expansions which show that (18) is an improved approximation. The density is fixed at
n = 1/2. The bottom row shows the normalized total contact s = C/(πn)4 as a function of the coupling strength derived from the expressions
for the energy and approximations using Eq. (15). The insets contain the relative errors of the contacts derived from the two weak-coupling
expansions.

Fig. 4, where we present the dependence of the contact on the
reduced temperature for moderate and strong coupling. For
γ = 2 the contact is a monotonically increasing function of

FIG. 3. Dependence of the dimensionless contact on the coupling
strength γ for several values of the reduced temperature (τ = T/n2,
with n = 1/2) and different boson fractions. Compared with the
ground state, the contact develops a local maximum for small values
of α, which is more pronounced at low but finite temperatures.

the temperature for all values of the boson fraction; however,
at strong coupling the contact develops a pronounced mini-
mum, the only exception being the case of α = 1. This mo-
mentum reconstruction at low temperatures is a feature of 1D
multicomponent systems being present also in the case of the
two-component Fermi [77] and Bose [92] gas and serves as a
signature of the transition from the Tomonaga-Luttinger liquid

FIG. 4. Dependence of the dimensionless contact on the reduced
temperature for γ = 2 and γ = 200. At strong coupling the contact
presents a pronounced minimum for all values of the boson fraction
except α = 1.
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phase to the spin-incoherent regime. In 1D two-component
systems there are two relevant temperature scales [98]: the
Fermi temperature TF = π2n2, which characterizes the charge
degrees of freedom, and T0 = EF /γ , which estimates the
bandwidth of the spin excitations (in our case a spin excitation
is represented by the removal of a fermion and the addition
of a boson in the system). In the strong-coupling limit we
have 0 � T0 ≡ EF /γ � EF and for T ∈ (T0, TF ) the charge
degrees of freedom are effectively frozen while the spin
degrees of freedom are highly excited. This regime is called
spin incoherent [99–103] and its properties are significantly
different from the more well known Tomonaga-Luttinger
liquid phase. In the BFM the minima of the contact at the
transition indicate that the momentum distribution becomes
narrower, but it is also easy to see that this is also accompanied
by significant changes at low momenta. In the TLL regime
the Bose-Bose field correlator presents algebraic decay with
〈�†

B(x)�B(0)〉 ∼ 1/|x|−1/2Kb , with Kb = 1/[(α − 1)2 − 1] de-
rived by Frahm and Palacios [11] and numerically confirmed
in [25]. Therefore, the bosonic momentum distribution will
have a singularity at k = 0 of the type nB(k) ∼ 1/|k|−1+1/2Kb .
However, in the spin-incoherent regime the correlators are
exponentially decaying, which means that the momentum
distribution at zero becomes finite. This shows that there
is a significant momentum reconstruction at both low and
high momenta at the transition between the TLL and spin-
incoherent regime.

V. BOUNDARIES OF THE QUANTUM CRITICAL REGIONS

In the vicinities of the quantum critical points (QCPs) the
thermodynamics of the system is universal and is determined
by the universality class of the quantum phase transition. If
we keep the magnetic field fixed and consider the chemical
potential as the driving parameter, in the quantum critical
region the pressure can be written as [104]

p(μ, H, T ) ∼ pr (μ, H ) + T d/z+1PH

(
μ − μc(H )

T 1/νz

)
, (19)

with pr the regular part of the pressure, d the dimension, PH a
universal function, and μc(H ) the quantum critical point. The
universality class of the transition is determined by the corre-
lation length exponent ν and the dynamical critical exponent
z. All the other thermodynamic quantities can be derived from
(19). For example, the density and compressibility, which are
defined by n = ∂ p/∂μ and κ = ∂2φ/∂μ2, are

n(μ, H, T ) ∼ ∂ pr

∂μ
(μ, H ) + T d/z+1−1/νzP ′

H

(
μ − μc(H )

T 1/νz

)
,

κ (μ, H, T ) ∼ ∂2 pr

∂μ2
(μ, H ) + T d/z+1−2/νzP ′′

H

(
μ − μc(H )

T 1/νz

)
.

We can determine the universality class of the transition by
choosing certain values for z and ν and plotting the scaled
pressure (p − pr )T −d/z−1 for several values of temperature
[104]. If we have chosen the exponents correctly, all the curves
will intersect at the value of the QCP μc(H ). If we plot the
scaled pressures as a function of [μ − μc(H )]/T 1/νz, all the
curves should collapse to the universal curve PH .

A problem of considerable importance, both theoretically
and experimentally, is the determination of the boundaries of
the critical regions (CRs). The properties of the system in the
CR are fundamentally different from the ones of other low-
temperature phases and are characterized by the strong cou-
pling of quantum and thermal fluctuations. In [92,105–107]
it was argued that the grand canonical specific heat cV =
−T ∂2φ/∂T 2 can be used to determine the boundaries of the
QC regions with great precision. This is due to the fact that the
grand-canonical specific heat is related to both the energy and
number of particles fluctuations via kBT 2cv = 〈δ(E − μN )2〉,
which means that the QC boundaries can be identified with
the local maxima of this quantity. Another important quantity
which can be used to identify the low-temperature phases is
the compressibility Wilson ratio [92,108,109] defined by

Rκ
W = π2k2

B

3
T

κ

cV
, (20)

with κ the compressibility. Because kBT κ = 〈δN2〉, the Wil-
son ratio will be almost constant in the low-temperature
phases and will present anomalous enhancement in the QC
regions and will scale like [108]

Rκ
W ∼ QH

(
μ − μc(H )

T 1/νz

)
+ w0T 1/2FH

(
μ − μc(H )

T 1/νz

)
.

(21)

Here QH and FH are two universal functions, w0 is a constant,
and the second term on the right-hand side appears only if pr

is nonzero.
The quantum critical points and the phase diagram at zero

temperature were determined in [31].1 The number of QCPs
depends on the sign of the magnetic field. For H > 0 we
have only a QPT from the vacuum to a single-component
TLL with critical point μc = −H . In Fig. 5(a) we present
results for the dependence of the grand-canonical specific
heat on temperature and chemical potential for H = 0.25 and
coupling strength c = 1. The specific heat presents two lines
of local maxima fanning out from the QCP which separate the
vacuum (classical gas) and the TLL phase from the QC region.
The Wilson ratio, depicted in Fig. 5(b), is zero in the classical
gas phase, presents a local maximum in the QC region, and
is slowly increasing in the TLL phase. In this case pr ∼ 0
and Rκ

W obeys the scaling relation (19) with only the first
term on the right-hand side. The scaling and collapse of the
curves to the universal function QH are realized for z = 2 and
ν = 1/2 and are presented in Figs. 5(c) and 5(d). The value
of the critical exponents would seem to indicate that this QPT
is in the universality class of free fermions. However, it was
argued in [92] that in fact this QPT belongs to the universality
class of spin-degenerate impenetrable particle gas with the
universal thermodynamics described by Takahashi’s formula

1It should be noted that the definitions of the chemical potential and
effective magnetic field employed by us are different from the ones
used in [31], which will be denoted by the Y GZG subscript. We have
μ = μY GZC and H = −HY GZC/2.
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FIG. 5. (a) A 3D plot of the grand-canonical specific heat for
c = 1 and H = 0.25 as a function of the chemical potential and
temperature (μ̃ = μ/c2 and t = T/c2). The lines of local maxima
fanning out from the QCP, μ̃c = −H/c2, are the boundaries of the
QC region. (b) A 3D plot of the Wilson ratio. The white dashed
lines are the boundaries of the critical region. Here CG represents the
vacuum (classical gas) phase and TLLB is the Tomonaga-Luttinger
liquid phase of single-component bosons. (c) Plot of the Wilson
ratio as a function of the chemical potential for three values of
temperature. All the curves intersect at the QCP (dashed vertical
line). The critical exponents are z = 2 and ν = 1/2. (d) When plotted
as a function of [μ̃ − μ̃c(H )]/t all the curves collapse to the universal
function QH [see Eq. (21)].

[66] [x = (μ + |H |)/T and y = H/T ]

p = T 3/2

2π

∫ +∞

−∞
ln[1 + (1 + e−2|y|)e−k2+x]dk, (22)

in contrast with the free fermionic case for which (x′ = μ/T ),

pFF = T 3/2

2π

∫
ln[(1 + e−k2+x′+y)(1 + e−k2+x′−y)]dk. (23)

In the case of fixed negative magnetic field there are
two QPTs. The first QCP is μ(1)

c = −|H |, where the system
has a phase transition from the vacuum to a TLL phase of
single-component fermions. The value of the second QCP is
determined by [μ̃(2)

c = (μ(2)
c − H )/c2] [31]

−2H

c2
= 1

2π

[(
1 + 4μ̃(2)

c

)
arctan

(
4μ̃(2)

c

)1/2 − (
4μ̃(2)

c

)1/2]
,

(24)

where we have a QPT from the single-component fermionic
TLL to a two-component TLL composed of fermions and
bosons. The boundaries of the two QC regions for c = 0.05
and H = −0.1 identified with the maxima of the specific
heat are shown in Figs. 6(a) and 6(b). In the case of single-
component systems with QPT belonging to the free fermionic
universality class, Maeda et al. [110] derived a universal
relation which determines the boundary between the QC and

FIG. 6. (a) A 3D plot of the grand-canonical specific heat for c =
0.05 and H = −0.1 (μ̃ = μ/c2 and t = T/c2). In this case we have
two sets of lines of local maxima which determine the boundaries of
the QC regions emerging from the quantum critical points situated
at μ̃(1)

c = −|H |/c2 and μ̃(2)
c ∼ 0.114/c2. (b) A 3D plot of the Wilson

ratio. The white dashed lines represent the boundaries of the critical
regions QC1 and QC2. Here CG, TLLF , and TLLBF stand for the
classical gas phase, the TLL phase of single-component fermions,
and the TLL phase of bosons and fermions, respectively. (c) Scaled
pressure (p̃ = p/c3) as a function of the chemical potential for three
temperatures in the vicinity of the first QCP. For z = 2 and ν = 1/2
all the curves intersect at μ̃(1)

c = −|H |/c2. (d) Scaled pressure in the
vicinity of the second QCP. For z = 2 and ν = 1/2 all the curves
intersect at μ̃(2)

c ∼ 0.114/c2.

TLL regions. For H 
 T this relation is also valid for the first
QPT of the BFM due to the fact that in this regime Takahashi’s
formula (22) is equivalent to the pressure of single-component
free fermions. We stress that the identification of CR bound-
aries using the maxima of the specific heat has the advantage
of identifying both boundaries in addition to being valid also
for multicomponent systems.

The Wilson ratio presents anomalous enhancement in both
critical regions. For single-component systems TLL theory
predicts that Rκ

W = K [106,111], with K the TLL parameter
relation which was experimentally verified in the Lieb-Liniger
model [106]. This identity is also valid for the Bose-Fermi
mixture in the TLL regime of the first QPT for H 
 T .

The critical exponents of both QPTs are z = 2 and ν =
1/2, as shown in Figs. 6(c) and 6(d), where the curves for the
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scaled pressure at different temperatures intersect at μ(1)
c =

−|H | for the first QPT and at μ(2)
c = 0.114 118 . . . for the

second QPT. While the first transition is in the spin-degenerate
universality class characterized by Eq. (22), it is surprising
that the second QPT has the same critical exponents as the free
fermionic universality class [112]. We point out that the true
universal thermodynamics (22) in the vicinity of the critical
point (μ, H ) = (0, 0) is different from the free spinor fermion
thermodynamics (23). In the case of the first transition, (22)
and (23) agree, for H 
 T . For the second critical line it is
possible that the universal thermodynamics is described by a
scaling function different from (22) or (23).

Finally, we like to point out certain similarities of the
zero-temperature phase diagram of the Bose-Fermi (BF) sys-
tem to those of the pure Bose-Bose (BB) and Fermi-Fermi
(FF) systems with otherwise the same mass and interaction
parameters. For H � 0 the BF phase diagram is identical to
that of the BB system with a vacuum phase for μ < μc and a
completely polarized bosonic phase for μ > μc. Viewed from
H > 0, the line μ > 0, H = 0 is a transition line into a mixed
phase. The location of this line is given by the single-particle
properties of the new admixed particle; the line does not
depend on its statistics.

For H < 0 the BF phase diagram is identical to that of
the FF system with a vacuum phase for μ < μ(1)

c , a com-
pletely polarized fermionic phase for μ(1)

c < μ < μ(2)
c , and a

mixed fermionic-bosonic phase for μ(2)
c < μ. The critical line

μ(2)
c = μ(2)

c (H ) satisfies (24) for the BF and the FF case, as
can be derived from the low-temperature limit of the TBA
equations for the BF case [31] as well as for the FF case
[113]. When approaching this line from the polarized phase,
its location is again given by the single-particle properties of

the new admixed particle and the line does not depend on its
nature.

VI. THE BOSE-FERMI MIXTURE AS THE CONTINUUM
LIMIT OF THE PERK-SCHULTZ SPIN CHAIN

The derivation of the BFM’s thermodynamic description,
(5) and (6), consists of three steps. First, we show that the
Perk-Schultz spin chain [114–119] is a lattice embedding
of our continuum model. The thermodynamics of the spin
chain is then investigated with the quantum transfer-matrix
technique [69–74], which relates the free energy of the model
to the largest eigenvalue of the QTM and involves only a finite
number of NLIEs. Finally, the result for the BFM is obtained
by taking the continuum limit in the lattice result. This method
was first employed in the case of the Lieb-Liniger model [120]
and then used to derive efficient, that is, involving only a finite
number of NLIEs, thermodynamic descriptions for the 2CBG
[75,76] and the 2CFG [77]. Because the ratios of the largest to
the next-largest eigenvalues of the QTM give the correlation
lengths of various Green’s function, the same algorithm can
be used to investigate the asymptotic behavior of correlators
in integrable continuum models [121,122].

As in the case of the 2CBG and 2CFG, the lattice embed-
ding of the Bose-Fermi mixture is the critical q = 3 Perk-
Schultz spin chain [114–119], the only difference being the
grading, which in this case is (− + −) (see also [76,77]).
Here, by a lattice embedding we understand a lattice model
whose spectrum and BAEs transform under a suitable scaling
limit in the spectrum and BAEs of the continuum model. The
Hamiltonian for an arbitrary grading (ε1, ε2, ε3) (εi ∈ {±1})
is

HPS = Jε1

L∑
j=1

⎛
⎜⎝cos γ

3∑
a=1

εa e( j)
aa e( j+1)

aa +
3∑

a,b=1
a =b

e( j)
ab e( j+1)

ba + i sin γ

3∑
a,b=1
a =b

sgn(a − b)e( j)
aa e( j+1)

bb

⎞
⎟⎠ −

L∑
j=1

3∑
a=1

hae( j)
aa , (25)

with L the number of lattice sites, J > 0 the coupling strength, and h1, h2, h3 chemical potentials. Also, in (25) γ ∈ [0, π ] is
the anisotropy (not to be confused with the dimensionless coupling constant of the continuum model) and e( j)

ab = I⊗ j−1
3 ⊗ eab ⊗

I⊗L− j
3 , with eab and I3 the canonical basis and the unit matrix in the space of 3×3 matrices. For the (− + −) grading the energy

spectrum is

EPS =
M∑

j=1

e0
(
v

(1)
j

) + M1(h2 − h3) + E0, E0 = JL cos γ − h1L, e0(v) = J sin2 γ

sin(v − γ ) sin v
, (26)

with {v(1)
s }M

s=1 and {v(2)
l }M1

l=1 satisfying the BAEs

(
(−1)

sin
(
v(1)

s − γ
)

sin v
(1)
s

)L

= (−1)M−1
M1∏
p=1

sin
(
v(1)

s − v(2)
p − γ

)
sin

(
v

(1)
s − v

(2)
p

) , s = 1, . . . , M, (27a)

M∏
j=1

sin
(
v

(2)
l − v

(1)
j + γ

)
sin

(
v

(2)
l − v

(1)
j

) = (−1)M1−1, l = 1, . . . , M1. (27b)
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First, we will show how we can obtain (3) from (27). We consider v(1)
s → iδk(1)

s /ε + γ /2 and v(2)
s → iδk(2)

s /ε + π/2 with
ε → 0 and lattice constant δ → O(ε2). Under this transformation Eqs. (27) become(

(−1)
sinh

(
δk(1)

s

/
ε − iγ

/
2
)

sinh
(
δk(1)

s
/
ε + iγ

/
2
)
)L

= (−1)M−1
M1∏
p=1

cosh
(
δk(1)

s

/
ε − δk(2)

p

/
ε − iγ

/
2
)

cosh
(
δk(1)

s
/
ε − δk(2)

p
/
ε + iγ

/
2
) , s = 1, . . . , M,

M∏
j=1

cosh
(
δk(2)

l

/
ε − δk(1)

j

/
ε − iγ

/
2
)

cosh
(
δk(2)

l

/
ε − δk(1)

j

/
ε + iγ

/
2
) = (−1)M1−1, l = 1, . . . , M1.

In the second step we perform γ → π − ε, with the result(
cosh

(
δk(1)

s + iε
/

2
)

cosh
(
δk(1)

s − iε
/

2
)
)L

= (−1)M+M1−1
M1∏
p=1

sinh
(
δk(1)

s

/
ε − δk(2)

p

/
ε + iε

/
2
)

sinh
(
δk(1)

s
/
ε − δk(2)

p
/
ε − iε

/
2
) , s = 1, . . . , M, (28a)

M∏
j=1

sinh
(
δk(2)

l

/
ε − δk(1)

j

/
ε + iε

/
2
)

sinh
(
δk(2)

l

/
ε − δk(1)

j

/
ε − iε

/
2
) = (−1)M+M1−1, l = 1, . . . , M1. (28b)

Taking the limit L → ∞ such that Lδ = LBF , introducing c =
ε2/δ, and using

cosh
(
δk(1)

s + iε
/

2
)

cosh
(
δk(1)

s − iε
/

2
) ∼ 1 + iδk(1)

s

/
2

1 − iδk(1)
s

/
2
,

we see that Eqs. (28) transform into the BAEs of the mixture
(3) for M1 + M − 1 even and identifying M1 = MB. Under the
same set of transformations we have

EPS − E0 =
M∑

j=1

[
Jδ2

(
k(1)

j

)2 − Jε2 − Jε4/4 + h1 − h2
]

+ (h2 − h3)M1 + O(ε6).

However, we are interested in the thermodynamic behav-
ior and therefore we can also scale the temperature in the
models in order to have β(EPS − E0) → β̄EBF , with EBF

given by (2). If we consider J = 1, β = β̄/δ2, h1 → O(ε2)
such that (Jε2 − h1)/δ2 is finite, and h2, h3 → O(ε4), we ob-
tain β(EPS − E0) → β̄EBF , with μF = Jε2 + Jε4/4 − h1 +
h2)/δ2 and μB − μF = (h3 − h2)/δ2. The scaling limit pre-
sented in this section is the same as the one used in the 2CBG
and 2CFG cases (see Table I of [76]) and shows that the
thermodynamic behavior of the mixture at all temperatures
can be derived from the low-temperature thermodynamics of
the lattice model.

VII. DERIVATION OF THE THERMODYNAMICS
FOR THE PERK-SCHULTZ SPIN CHAIN

The free energy of the Perk-Schultz spin chain can
be obtained from the largest eigenvalue of the QTM as
f (h1, h2, h3, β ) = − ln �0(0)/β. For a given Trotter number,
denoted by N , the largest eigenvalue of the QTM lies in the
(N/2, N/2) sector (see Appendix A of [76] or [124–127]) and
can be written as

�0(v) = λ1(v) + λ2(v) + λ3(v), (29)

with

λ j (v) = φ−(v)φ+(v)
q j−1(v − iε̃ jγ )

q j−1(v)

q j (v + iε̃ jγ )

q j (v)
eβh̃ j ,

(30)

where (ε̃1, ε̃2, ε̃3) = (− − +), (h̃1, h̃2, h̃3) = (h3, h1, h2), and

φ±(v) =
(

sinh(v ± iu)

sin γ

)N/2

, u = J sin γ β/N. (31)

The q j (v) functions are defined as

q j (v) =

⎧⎪⎨
⎪⎩

φ−(v), j = 0∏N/2
k=1 sinh

(
v − v

( j)
k

)
, j = 1, 2

φ+(v), j = 3,

(32)

with {v(1)
k }N/2

k=1 and {v(2)
k }N/2

k=1 parameters which are called
Bethe roots and satisfy the quantum transfer-matrix BAEs
(discussed below). If we introduce two auxiliary functions

a1 = λ1(v)

λ2(v)
= φ−(v + iγ )

φ−(v)

q1(v − iγ )

q1(v + iγ )

q2(v)

q2(v − iγ )
eβ(h3−h1 ),

(33a)

a2 = λ3(v)

λ2(v)
= φ+(v + iγ )

φ+(v)

q1(v)

q1(v + iγ )
eβ(h2−h1 ), (33b)

the BAEs of the quantum transfer matrix can be written as
( j = 1, 2) a j (v

( j)
k ) = −1, k = 1, . . . , N/2.

A. Integral equations for the auxiliary functions

First, we will derive a set of NLIEs for the auxiliary
functions (33). Both of the functions are periodic of period
iπ . The equation a1(v) = −1 has 3N/2 solutions, of which
N/2 are the so-called Bethe roots {v(1)

j }N/2
j=1, and N solutions,

which are called holes and are denoted by {v′(1)
j }N

j=1. However,
the second equation a2(v) = −1 has only N solutions, of
which N/2 are the Bethe roots {v(2)

j }N
j=1 and the other N/2

are the second set of holes denoted by {v′(2)
j }N/2

j=1. A typical
distribution of Bethe roots and holes characterizing the largest

013628-9
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FIG. 7. Distribution of Bethe roots (� and •) and holes (� and ◦)
for the largest eigenvalue of the QTM and γ ∈ (0, π/2). The contour
C contains all the Bethe roots and the poles of order N/2 at ±iu. The
lower edge of the contour C ′ coincides with the upper edge of C but
it has opposite orientation.

eigenvalue of the QTM for γ ∈ (0, π/2) is shown in Fig. 7.
For any value of the Trotter number N the strip |Imv| < γ/2
contains all the Bethe roots and the poles of order N/2 at ±iu.
Introducing the rectangular contour C centered at the origin,
which extends to infinity and is depicted in Fig. 7, we can
define for v outside of C ( j = 1, 2),

f j (v) = 1

2π i

∫
C

d

dv
[ln sinh(v − w)] ln[1 + a j (w)]dw

= 1

2π i

∫
C

ln sinh(v − w)
a′

j (w)

1 + a j (w)
dw. (34)

The last relation was derived using integration by parts and the
fact that the winding number of ln[1 + a j (w)] is zero due to
the fact that the number of zeros and order of the poles inside
the contour are the same. Then we can show that (see [123] or
[76,77])

f1(v) = ln q1(v) − ln φ−(v) − N

2
ln sin γ , (35a)

f1(v) = ln q2(v) − ln φ+(v) − N

2
ln sin γ . (35b)

Taking the logarithm of the auxiliary functions (33) and using
the previous result (35), we obtain

ln a1(v) = β(h3 − h1) + ln

[
φ+(v)

φ−(v)

φ−(v − iγ )

φ+(v − iγ )

]

+ f1(v − iγ ) − f1(v + iγ ) + f2(v) − f2(v − iγ ),

ln a2(v) = β(h2 − h1) + ln

[
φ−(v)

φ+(v)

φ+(v + iγ )

φ−(v + iγ )

]

+ f1(v) − f1(v + iγ ).

Now we can take the Trotter limit limN→∞
ln[φ+(v)/φ−(v)] = iJβ sin γ coth v, with the result

ln a1(v) = β(h3 − h1) − β
J sinh2 iγ

sinh v sinh(v − iγ )

+
∫
C

K̄0(v − w) ln[1 + a1(w)]dw

−
∫
C

K̄2(v − w) ln[1 + a2(w)]dw, (37a)

ln a2(v) = β(h2 − h1) − β
J sinh2 iγ

sinh v sinh(v + iγ )

+
∫
C

K̄1(v − w) ln[1 + a1(w)]dw, (37b)

where

K̄0(v) = 1

2π i

sinh 2iγ

sinh(v + iγ ) sinh(v − iγ )
, (38)

K̄1(v) = 1

2π i

sinh iγ

sinh(v) sinh(v + iγ )
, (39)

K̄2(v) = 1

2π i

sinh iγ

sinh(v) sinh(v − iγ )
. (40)

Equations (37) were derived assuming γ ∈ (0, π/2) and v is
outside the contour. For v inside the contour we need to add
a ln[1 + a2(v)] term on the right-hand side of Eq. (37a) and
a ln[1 + a1(v)] term on the right-hand side of Eq. (37b). For
γ ∈ (π/2, π ) the same equations remain valid if we replace
C with a similar rectangular contour with horizontal edges
situated at ±i(π − γ − ε)/2.

B. Integral expression for the largest eigenvalue

The largest eigenvalue of the QTM is analytic in a strip
around the real axis, therefore it will be sufficient to derive an
integral expression for ln �0(v0) with v0 close to the real axis
and then take the limit v0 → 0 to obtain the free energy. For
our purposes we choose v0 = iu, for which λ3(v0) = 0 and (c
is a constant)

�0(v0) = λ1(v0) + λ2(v0) = c
φ+(v0)q(h)

1 (v0)

q2(v0)
, (41)

where we have used the identity (A1) and q(h)
i (v) are defined

in the Appendix.
Consider v inside the contour C. Then, inside the contour

C ′ depicted in Fig. 7, the function 1 + a1(v) has N zeros
identified with the holes {v′(1)

j }N
j=1, N/2 poles located at

{v(1)
j − iγ }N/2

j=1, and N/2 poles located at {v(2)
j + iγ }N/2

j=1 (some
of the holes and poles are modulo iπ ). This means that around
C ′ the function ln[1 + a1(v)] has zero winding number. Using
the identity (A6) in the form [d (v) = d ln sinh v/dv]∫

C
d (v − w)

a′
j (w)

1 + a j (w)
dw = −

∫
C ′

d (v − w)
a′

j (w)

1 + a j (w)
dw,
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the right-hand side can be computed as (35), with the result

1

2π i

∫
C

d (v − w)
a′

1(w)

1 + a1(w)
dw =

N/2∑
j=1

d
(
v − v

(1)
j + iγ

) +
N/2∑
j=1

d
(
v − v

(2)
j − iγ

) −
N∑

j=1

d
(
v − v′(1)

j

)
. (42)

After integration by parts with respect to w and then integration with respect to v we find

1

2π i

∫
C

d (v − w) ln[1 + a1(w)]dw = − ln q(h)
1 (v) + ln q1(v + iγ ) + ln q2(v − iγ ) + c. (43)

In a similar fashion, using the fact that inside C ′ the function 1 + a2(v) has N/2 zeros at the holes {v′(2)
j }N/2

j=1 and N/2 poles

located at{v(1)
j − iγ }N/2

j=1 (some modulo iπ ), we find

1

2π i

∫
C

d (v − w) ln[1 + a2(w)]dw = − ln q(h)
2 (v) + ln q1(v + iγ ) + c. (44)

For v inside C, v ± iγ is outside of the contour. Therefore, from (35) we have

1

2π i

∫
C

d (v − w) ln[1 + a1(w)]dw = ln q1(v + iγ ) − ln φ−(v + iγ ) − N

2
sin γ , (45a)

1

2π i

∫
C

d (v − w) ln[1 + a2(w)]dw = ln q2(v − iγ ) − ln φ+(v − iγ ) − N

2
sin γ . (45b)

Subtracting Eq. (43) from Eq. (45a) and Eq. (44) from Eq. (45b), we obtain∫
C

K̄1(v − w) ln[1 + a1(w)]dw = − ln q(h)
1 (v) + ln q2(v − iγ ) + ln φ−(v + iγ ) + c, (46a)

−
∫
C

K̄2(v − w) ln[1 + a2(w)]dw = − ln q(h)
2 (v) + ln q1(v + iγ ) − ln q2(v − iγ ) + ln φ+(v − iγ ) + c. (46b)

The importance of this result becomes apparent by noticing that the expression of the largest eigenvalue (41) can be rewritten
using (A5) as

ln �0(v0) = ln q(h)
1 (v0) + ln q(h)

2 (v0) − ln q1(v0 + iγ ) − ln[1 + a2(v0)] + c

and then using (46) as

ln �0(v0) = −
∫
C

K̄1(v0 − w) ln[1 + a1(w)]dw +
∫
C

K̄2(v0 − w) ln[1 + a2(w)]dw

− ln[1 + a2(v0)] + ln[φ+(v0 − iγ )φ−(v0 + iγ )] + c. (47)

The constant of integration can be computed by noticing that Eq. (47) is in fact valid for all v in a narrow strip around the real axis
with ln[λ1(v) + λ2(v)] replacing the left-hand side. Considering the limit v → ∞ and using limv→∞[λ1(v) + λ2(v)]/φ+(v −
iγ )φ−(v + iγ ) = eβh1 + eβh3 , we find

c = βh1 + c′, (48)

with c′ = 2 ln[(1 + eβ(h3−h1 ) )(1 + eβ(h2−h1 ) )]. Finally, by taking the Trotter limit N → ∞ and using limN→∞ ln[φ+(v0 −
iγ )φ−(v0 + iγ )] = −J cos γ β, we obtain

ln �0(0) = c − Jβ cos γ −
∫
C

K̄2(w) ln[1 + a1(w)]dw +
∫
C

K̄1(w) ln[1 + a2(w)]dw − ln[1 + a2(0)]. (49)

This result was derived for γ ∈ (0, π/2), but it remains valid
also for γ ∈ (π/2, π ) if C is replaced by a rectangular contour
with the horizontal edges situated at ±i(π − γ − ε)/2.

C. Continuum limit

The continuum limit (see Sec. VI) of the integral equations
(37) and integral expression for the largest eigenvalue (49) is
the same as the one performed for the 2CBG and is presented

in detail in [76]. In the scaling limit we obtain Eq. (5) for
the grand-canonical potential of the continuum model with the
auxiliary functions satisfying the NLIEs (6).

VIII. CONCLUSION

In this paper we have derived an alternative thermody-
namic description for the Bose-Fermi mixture in the QTM
framework and performed a detailed analysis of the contact at
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zero and finite temperatures. In the strong-coupling regime the
contact develops a pronounced local minimum as a function
of the temperature which is accompanied by a significant mo-
mentum reconstruction at both low and large momenta. This
momentum reconstruction can be experimentally detected and
provides an identification of the transition from the TLL to
the spin-incoherent regime. In addition, we have also shown
that the boundaries of the QC regions can be well mapped by
the maxima of the grand-canonical specific heat. Our results
also hint at the possibility of deriving efficient thermodynamic
descriptions for integrable κ component (κ > 2), systems
with contact interactions involving only κ integral equations.
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APPENDIX: SOME USEFUL IDENTITIES

In this Appendix we prove certain identities which are
needed in the derivation of the integral expression of the
largest QTM eigenvalue. First, we will prove that

λ1(v) + λ2(v) = c
φ+(v)q(h)

1 (v)

q2(v)
, (A1)

with c a constant and q(h)
1 (v) defined by

q(h)
1 =

N∏
i=1

sinh
(
v − v′(1)

i

)
. (A2)

From the definition of the λ j (v) functions we obtain

λ1(v) + λ2(v) = φ+(v)p1(v)

q1(v)q2(v)
,

with p1(v) = [φ−(v + iγ )q1(v − iγ )q2(v)eβh3+φ−(v)q1(v +
iγ )q2(v − iγ )eβh1 . The equation p1(v) = 0 [which is

equivalent to a1(v) = −1] has 3N/2 solutions which are
the N/2 Bethe roots {v(1)

j }N/2
j=1 and the N holes {v′(1)

j }N
j=1. Also

p1(v + iπ ) = (−1)3N/2 p(v) and limv→∞ p1(v)/ sinh3N/2 v =
const, which shows that p1(v) = c q1(v)q(h)

1 (v). This
concludes the proof of (A1).

A similar identity is

λ2(v) + λ3(v) = c
φ−(v)q2(v − iγ )q(h)

2 (v)

q1(v)
, (A3)

with

q(h)
2 =

N/2∏
i=1

sinh
(
v − v′(2)

i

)
. (A4)

Again, from the definition we have

λ2(v) + λ3(v) = φ−(v)q2(v − iγ )p2(v)

q1(v)q2(v)
,

with p2(v) = [φ+(v)q1(v + iγ )eβh1 + q1(v)φ+(v + iγ )eβh2 ].
The equation p2(v) = 0 [equivalent to a2(v) = −1] has N

solutions which are the N/2 Bethe roots {v(2)
j }N/2

j=1 and the

N/2 holes {v′(2)
j }N/2

j=1. In addition, we have p2(v + iπ ) =
(−1)N p2(v) and limv→∞ p2(v)/ sinhN v = const, which
shows that p2(v) can be written as p2(v) = cq2(v)q(h)

2 (v),
concluding the proof of (A3). Also, we have ln[1 + a2(v)] =
ln[p2(v)/φ+(v)q1(v + iγ )], which is equivalent to

− ln φ+(v) + ln q2(v) − ln q1(v + iγ )

+ ln q(h)
2 (v) − ln[1 + a2(v)] + const = 0. (A5)

In Sec. VII B we will also use [d (v) = d
dv

ln sinh v]∫
C+C ′

d (v − w)
a′

j (w)

1 + a j (w)
dw = 0, (A6)

with the contours depicted in Fig. 7. The proof is similar to the
one described in [76,77] for the 2CBG and 2CFG cases and is
left to the reader.
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[122] O. I. Pâţu and A Klümper, Correlation lengths of the repulsive
one-dimensional Bose gas, Phys. Rev. A 88, 033623 (2013).

[123] E. T. Whittaker and G. N. Watson, A Course of Modern Analy-
sis (Cambridge University Press, Cambridge, 1927), Sec. 6.3.

[124] F. Göhmann, Algebraic Bethe ansatz for the gl(1|2) general-
ized model and Lieb-Wu equations, Nucl. Phys. B 620, 501
(2002).

[125] F. Göhmann and A. Seel, Algebraic Bethe ansatz for the
gl(1|2) generalized model: II. The three gradings, J. Phys. A:
Math. Gen. 37, 2843 (2004).

[126] D. Arnaudon, N. Crampe, A. Doikou, L. Frappat, and E.
Ragoucy, Spectrum and Bethe ansatz equations for the
Uq(gl (N )) closed and open spin chains in any representation,
Ann. Inst. Henri Poincare 7, 1217 (2006).

[127] S. Belliard and E. Ragoucy, The nested Bethe ansatz for
‘all’ closed spin chains, J. Phys. A: Math. Theor. 41, 295202
(2008).

013628-15

https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1016/j.aop.2011.05.010
https://doi.org/10.1103/PhysRevA.96.063612
https://doi.org/10.1103/PhysRevA.96.063612
https://doi.org/10.1103/PhysRevA.96.063612
https://doi.org/10.1103/PhysRevA.96.063612
https://doi.org/10.1103/PhysRevLett.120.243402
https://doi.org/10.1103/PhysRevLett.120.243402
https://doi.org/10.1103/PhysRevLett.120.243402
https://doi.org/10.1103/PhysRevLett.120.243402
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1103/PhysRev.130.1605
https://doi.org/10.1143/PTP.53.386
https://doi.org/10.1143/PTP.53.386
https://doi.org/10.1143/PTP.53.386
https://doi.org/10.1143/PTP.53.386
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8113/49/29/294001
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.1088/1751-8121/aa5e00
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.21468/SciPostPhys.3.1.003
https://doi.org/10.1103/PhysRevA.71.033610
https://doi.org/10.1103/PhysRevA.71.033610
https://doi.org/10.1103/PhysRevA.71.033610
https://doi.org/10.1103/PhysRevA.71.033610
https://doi.org/10.1016/0550-3213(87)90329-4
https://doi.org/10.1016/0550-3213(87)90329-4
https://doi.org/10.1016/0550-3213(87)90329-4
https://doi.org/10.1016/0550-3213(87)90329-4
https://doi.org/10.1088/0305-4470/24/7/025
https://doi.org/10.1088/0305-4470/24/7/025
https://doi.org/10.1088/0305-4470/24/7/025
https://doi.org/10.1088/0305-4470/24/7/025
https://doi.org/10.1103/PhysRevLett.92.176401
https://doi.org/10.1103/PhysRevLett.92.176401
https://doi.org/10.1103/PhysRevLett.92.176401
https://doi.org/10.1103/PhysRevLett.92.176401
https://doi.org/10.1103/PhysRevLett.93.226401
https://doi.org/10.1103/PhysRevLett.93.226401
https://doi.org/10.1103/PhysRevLett.93.226401
https://doi.org/10.1103/PhysRevLett.93.226401
https://doi.org/10.1103/RevModPhys.79.801
https://doi.org/10.1103/RevModPhys.79.801
https://doi.org/10.1103/RevModPhys.79.801
https://doi.org/10.1103/RevModPhys.79.801
https://doi.org/10.1103/PhysRevLett.105.245702
https://doi.org/10.1103/PhysRevLett.105.245702
https://doi.org/10.1103/PhysRevLett.105.245702
https://doi.org/10.1103/PhysRevLett.105.245702
https://doi.org/10.1103/PhysRevB.96.220401
https://doi.org/10.1103/PhysRevB.96.220401
https://doi.org/10.1103/PhysRevB.96.220401
https://doi.org/10.1103/PhysRevB.96.220401
https://doi.org/10.1103/PhysRevLett.119.165701
https://doi.org/10.1103/PhysRevLett.119.165701
https://doi.org/10.1103/PhysRevLett.119.165701
https://doi.org/10.1103/PhysRevLett.119.165701
https://doi.org/10.1126/sciadv.aao3773
https://doi.org/10.1126/sciadv.aao3773
https://doi.org/10.1126/sciadv.aao3773
https://doi.org/10.1126/sciadv.aao3773
https://doi.org/10.1103/PhysRevB.94.195129
https://doi.org/10.1103/PhysRevB.94.195129
https://doi.org/10.1103/PhysRevB.94.195129
https://doi.org/10.1103/PhysRevB.94.195129
https://doi.org/10.1103/PhysRevLett.111.130401
https://doi.org/10.1103/PhysRevLett.111.130401
https://doi.org/10.1103/PhysRevLett.111.130401
https://doi.org/10.1103/PhysRevLett.111.130401
https://doi.org/10.1103/PhysRevLett.99.057205
https://doi.org/10.1103/PhysRevLett.99.057205
https://doi.org/10.1103/PhysRevLett.99.057205
https://doi.org/10.1103/PhysRevLett.99.057205
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevLett.108.097201
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.50.258
https://doi.org/10.1103/PhysRevB.85.085414
https://doi.org/10.1103/PhysRevB.85.085414
https://doi.org/10.1103/PhysRevB.85.085414
https://doi.org/10.1103/PhysRevB.85.085414
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1016/0378-4371(83)90083-3
https://doi.org/10.1016/0378-4371(83)90083-3
https://doi.org/10.1016/0378-4371(83)90083-3
https://doi.org/10.1016/0378-4371(83)90083-3
https://doi.org/10.1016/0550-3213(82)90087-6
https://doi.org/10.1016/0550-3213(82)90087-6
https://doi.org/10.1016/0550-3213(82)90087-6
https://doi.org/10.1016/0550-3213(82)90087-6
https://doi.org/10.1142/S0217751X89000959
https://doi.org/10.1142/S0217751X89000959
https://doi.org/10.1142/S0217751X89000959
https://doi.org/10.1142/S0217751X89000959
https://doi.org/10.1103/PhysRevLett.67.489
https://doi.org/10.1103/PhysRevLett.67.489
https://doi.org/10.1103/PhysRevLett.67.489
https://doi.org/10.1103/PhysRevLett.67.489
https://doi.org/10.1016/0550-3213(92)90426-C
https://doi.org/10.1016/0550-3213(92)90426-C
https://doi.org/10.1016/0550-3213(92)90426-C
https://doi.org/10.1016/0550-3213(92)90426-C
https://doi.org/10.1088/1742-5468/2007/08/P08030
https://doi.org/10.1088/1742-5468/2007/08/P08030
https://doi.org/10.1088/1742-5468/2007/08/P08030
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1088/1742-5468/2011/11/P11017
https://doi.org/10.1103/PhysRevA.88.033623
https://doi.org/10.1103/PhysRevA.88.033623
https://doi.org/10.1103/PhysRevA.88.033623
https://doi.org/10.1103/PhysRevA.88.033623
https://doi.org/10.1016/S0550-3213(01)00497-7
https://doi.org/10.1016/S0550-3213(01)00497-7
https://doi.org/10.1016/S0550-3213(01)00497-7
https://doi.org/10.1016/S0550-3213(01)00497-7
https://doi.org/10.1088/0305-4470/37/8/001
https://doi.org/10.1088/0305-4470/37/8/001
https://doi.org/10.1088/0305-4470/37/8/001
https://doi.org/10.1088/0305-4470/37/8/001
https://doi.org/10.1007/s00023-006-0280-x
https://doi.org/10.1007/s00023-006-0280-x
https://doi.org/10.1007/s00023-006-0280-x
https://doi.org/10.1007/s00023-006-0280-x
https://doi.org/10.1088/1751-8113/41/29/295202
https://doi.org/10.1088/1751-8113/41/29/295202
https://doi.org/10.1088/1751-8113/41/29/295202
https://doi.org/10.1088/1751-8113/41/29/295202

