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Strings of ultracold molecules in a synthetic dimension
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We consider ultracold polar molecules trapped in a unit-filled one-dimensional chain in real space created with
an optical lattice or a tweezer array and illuminated by microwaves that resonantly drive transitions within a chain
of rotational states. We describe the system by a two-dimensional lattice model, with the first dimension being
a lattice in real space and the second dimension being a lattice in a synthetic direction composed of rotational
states. We calculate this system’s ground-state phase diagram. We show that as the dipole interaction strength
is increased, the molecules undergo a phase transition from a two-dimensional gas to a phase in which the
molecules bind together and form a string that resembles a one-dimensional object living in the two-dimensional
(i.e., one real and one synthetic dimensional) space. We demonstrate this with two complementary techniques:
numerical calculations using matrix product state techniques and an analytic solution in the limit of infinitely
strong dipole interaction. Our calculations reveal that the string phase at infinite interaction is effectively
described by emergent particles living on the string and that this leads to a rich spectrum with excitations missed
in earlier mean-field treatments.
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I. INTRODUCTION

Ultracold polar molecules have been predicted to show
strongly correlated phases [1–17] arising from the rich struc-
ture of their internal quantum states [18,19] and strong dipole
interactions between them. Motivated by this, researchers
have created degenerate [20] or nearly degenerate gases
[21–26] of various ground-state polar molecules such as KRb,
NaRb, NaK, and RbCs. They have observed the effect of
the dipole interactions on the dynamics of the molecules’
rotational states [27,28].

A recent paper [29] by some of the present authors
proposed that one can utilize the rotational states of polar
molecules to realize a fully controllable synthetic lattice
with a large number of sites. The synthetic lattice sites are
the molecule’s rotational states, and synthetic tunnelings are
driven by resonant microwaves. The synthetic lattice in this
setting can potentially have over a hundred sites, and the
tunneling elements and the energy landscape can be fully con-
trolled via the microwave fields. It was argued that realizing a
synthetic lattice this way can have potential advantages over
other experimental realizations (such as Refs. [30–40]), most
notably in the synthetic lattice size that can be realized, as well
as potentially lower susceptibility to magnetic field noise.

Further, Ref. [29] argued that molecules trapped in a
lattice along one synthetic and d = 1 or 2 real directions
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exhibit strongly correlated many-body phases. Specifically,
they argued using mean-field theory that sufficiently strong
dipole interactions between molecules cause the molecules
to undergo a phase transition from a (d + 1)-dimensional
gaslike phase into a phase where the molecules bind into a
d-dimensional object, remarkably undergoing a collapse in
the synthetic dimension. For d = 1, the bound phase is an
effective one-dimensional (1D) object fluctuating in a two-
dimensional (2D) space, and thus is a “quantum string.” Sim-
ilarly for d = 2, the bound phase is a “quantum membrane.”

However, the mean-field theory in Ref. [29] left many
questions unanswered. Foremost among them is the validity
of the mean-field theory. This question is especially acute for
d = 1 with strong interactions, given the known limitations of
mean field theory. Reference [29] also left open the nature of
the excitations of the ground state.

In this paper, we calculate the ground state of ultracold
polar molecules in one real and one synthetic dimension,
first numerically using matrix product state (MPS) methods
[41,42] and then analytically in the limit of strong dipole
interactions. We show numerical evidence that the system has
two string phases and an unbound phase, consistent with the
mean field theory of Ref. [29]. We show that in the limit
of infinitely strong dipole interactions, the ground states and
low-energy excitation spectrum map to those of a hardcore
boson model. We analytically calculate the ground-state wave
function in this limit and show that the system spontaneously
forms strings that are two or three synthetic sites wide.

While our results confirm the basic mean-field picture
of two string phases and a gaslike phase, they also reveal
additional effects missed by the mean field theory. The
most notable is the existence of exponentially many width-3
strings in the limit of infinitely strong dipole interactions.
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FIG. 1. (a) Schematic illustration of the system, consisting of a
1D real-space unit-filled periodic array of polar molecules, with sev-
eral microwaves illuminating them. A small dc electric (or magnetic)
field maybe required to detune away undesired molecular transitions.
(b) The physical processes in the system. The synthetic tunneling
t > 0 is driven by microwaves. The dipole interaction between
molecules takes the form of a correlated tunneling process with
strength V . The origin of all these processes is explained in Ref. [29].
(c) The main result of this work: The many-body ground state is a
“quantum string” bound state of molecules for V/t � 0 and V/t � 2,
and an unbound molecular gas otherwise.

The mean-field theory predicts only the width-2 strings. Our
results also imply an intricate excitation spectrum, including
the fluctuations within width-2 strings as well as between
the width-2 and width-3 strings, all of which were absent
in the mean-field theory. Though these are zero-energy excita-
tions due to the degeneracy in the infinitely strong interaction
limit, they presumably become gapless excitation modes at
finite dipolar interaction strength. There could be a concern
that these numerous low-energy excitations may make the
ground state sensitive to perturbations. To explore this, we
numerically calculate the ground state in the presence of
modified interactions which are predicted to gap some of the
gapless excitations and show that the string ground states
indeed constitute a stable phase.

This article is organized as follows. In Sec. II, we de-
scribe the setup. In Sec. III, we numerically explore the
phase diagram using MPS methods, defining and calculating
a correlation that characterizes the string and gas phases. In
Sec. IV, we analytically derive the ground-state wave function
in the limit of infinitely strong dipole interactions, show that
they have a finite synthetic width, and expose the richness of
the excitation spectrum at this point. In Sec. V, we calculate
the ground states in the presence of modified interactions and
show that the ground-state strings are robust and seem to be
stabilized by certain kinds of interactions. In Sec. VI, we
summarize our findings.

II. SETUP

We consider a unit-filled periodic array of molecules
trapped in a 1D real space chain, created using a deep optical
lattice or a tweezer array [43–56]. This setup, first introduced
in Ref. [29], is illustrated in Fig. 1(a). We consider the
molecules to be in their lowest electronic and vibrational state

and a single hyperfine state, and denote their rotational states
as |n, m〉 with rotational angular momentum nh̄ and azimuthal
angular momentum mh̄ about the z axis. The molecules are
illuminated with microwaves that resonantly drive transitions
between a subset of the rotational states in the full rotational
spectrum. This subset can be visualized as a synthetic lattice,
and the rotational state transitions as synthetic tunnelings.
The specific rotational states that make the synthetic lattice
can be controlled by tuning the microwave polarizations and
frequencies appropriately, and adding a small dc electric or
magnetic field to detune away transitions to other rotational
states. For example, a 1D synthetic lattice with lattice sites
as the rotational states |n, 0〉 can be created by shining �-
polarized microwaves and applying an electric field along ẑ.
In this paper, we consider a 1D synthetic lattice and label
the synthetic sites (say, |n, 0〉) by the index n running up to
Nint − 1, with Nint being the synthetic lattice size. This is an
extension of the setup considered in Refs. [2,13,27,28] with
Nint = 2; however, in those works, it was more convenient to
describe the molecular states as spin-1/2 instead of a synthetic
lattice with two sites.

The Hamiltonian for the molecular array, in the frame
rotating at the microwaves’ frequencies, is

Ĥ = − t
Nreal−1∑

j=0

Nint−1∑
n=1

ĉ†
n−1, j ĉn j + V

∑
n〈i j〉

ĉ†
n−1,i ĉniĉ

†
n j ĉn−1, j

+ H.c., (1)

where ĉn j (ĉ†
n j) annihilates (creates) a molecule on real site j

and synthetic site n. Nreal and Nint are the real and synthetic
lattice sizes. We emphasize that Nint can potentially be a
hundred or even larger, making polar molecules attractive
candidates to realize a synthetic lattice.

Figure 1(b) illustrates the physical processes in the sys-
tem. The synthetic tunneling t is driven by microwaves. We
consider the microwaves to be tuned such that the synthetic
tunnelings are uniform and choose a gauge such that t > 0.
Dipole interactions cause a pair of molecules to resonantly
swap between adjacent synthetic sites, with a strength V . The
sign of V can be adjusted via the orientation of the molecular
chain relative to the quantization axis, or appropriately choos-
ing the synthetic lattice sites in the rotational spectrum. For
example, if the synthetic lattice sites are the |n, 0〉 states, then
V > 0 if the molecular chain is on the x-y plane, and V < 0
if the chain is along ẑ. We assume that the real space lattice
is sufficiently deep that real space tunnelings are negligible,
and together with unit filling, this imposes the constraint∑

n ĉ†
n j ĉn j = 1 ∀ j.

We neglect the effects of the long-range nature of the dipole
interactions, considering only nearest-neighbor interactions in
real space. We do not expect this to significantly alter the
physics in a system with one real dimension. The strength of
the swap process depends on n, but this dependence is weak
and nearly independent of n for large n, so it can be eliminated
by working with sufficiently excited rotational states. We have
explicitly checked within mean field theory that neither the
long-range dipolar interactions nor the dependence of V on
n affect the physics substantially. Instead, they only shift the
phase boundaries.
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A. Special cases

The ground states of Ĥ can be calculated analytically at
least for three cases: (i) V = 0, (ii) Nreal = 2 and Nint → ∞,
and (iii) t = 0. We briefly review these cases here for context.

The solution for (i), V = 0 (for arbitrary Nreal and Nint), is
trivial: The wave function of each molecule decouples from
the other, and the many-body ground state is a product of
single-particle ground states.

The exact ground state for (ii), Nreal = 2 and large Nint,
was given in Ref. [29], and provides much insight into the
many-body physics. Summarizing, two molecules form a
bound state with an even relative wave function for V/t < 0,
form a bound state with an odd relative wave function for
V/t > 2, and are in an unbound state for 0 < V/t < 2. As
we will see numerically in Sec. III, this picture also extends
to many molecules, which form an unbound 2D gaslike state
for 0 � V/t � 2 and a 1D stringlike many-body bound state
otherwise.

The exact solution for (iii), t = 0, has a rich structure, and
we will analytically derive it in this limit in Sec. IV. Earlier
works [57] have numerically studied the solution in this limit
in another system of linear rotors arranged in a 1D chain.
Summarizing the results of Sec. IV, we analytically obtain
the ground-state wave function and the low-energy excitations
by identifying the low-energy sectors of the Hamiltonian and
mapping these sectors to a spin-1/2 hardcore boson model
which we solve. We find that the resulting many-body ground
state spontaneously collapses to two or three synthetic sites
and is therefore a tightly bound quantum string with a finite
width in the synthetic dimension. The system has an intricate
excitation spectrum, with gapless excitations for particle and
spin fluctuations of the hardcore Bose gas, as well as gapless
excitations that fluctuate the string in the synthetic direction.
Remarkably, the latter excitations are gapless even though
they are associated with breaking a discrete, rather than con-
tinuous, translational symmetry in the synthetic direction.

B. Comparison to earlier works

Although Ĥ resembles an interacting 2D lattice Hamilto-
nian, its physics differs significantly from the physics of other
lattice models such as the Hubbard model, mainly due to two
important aspects: (i) The dipole interactions are off-diagonal
and (ii) the allowed Hilbert space is restricted to exactly one
molecule per real lattice site, which is essentially equivalent to
imposing an infinitely strong and highly nonlocal interaction.

The strings in our system in fact resemble bound states
or chains that were explored in some earlier works [58–61].
However, our system is much more suited to prepare and ob-
serve such bound states, and the constraints required are less
stringent. To create bound states of molecules, Refs. [58,59]
consider particles trapped individually in 1D tubes or 2D
sheets that extend in real space, analogous to the 1D synthetic
lattice in our system. However, experimentally achieving the
constraint proposed in these works—that only one particle be
present in each real space tube or sheet—is challenging. In
contrast, the same constraint arises naturally in our system
by imposing a deep real space lattice and achieving unit
filling in the lattice sites. The constraint in Refs. [58,59]
can be relaxed, for example, as in Refs. [60,61], where they

consider polarized molecular gases trapped in identical stacks,
which form chains driven by dipole interactions. However,
these systems will suffer from molecular collisions that lead
to loss from reactions [28,62–66] or complicated collisional
processes [67–72]. In contrast, our system avoids such pro-
cesses by design, again resulting from only one molecule
present per real lattice site. Moreover, the temperature re-
quirements for Refs. [58–61] are quite stringent, likely requir-
ing much lower temperatures than have been experimentally
achieved, while our system does not suffer from such stringent
requirements because our molecular gas is frozen in the real
space lattice, and it is straightforward to initialize the system
with effectively zero entropy in the synthetic dimension. It
remains an open challenge to transform easily prepared zero-
entropy states into the many-body ground state, but we expect
that experiments should be able to reach sufficiently cold
states (with low entropy density) by an adiabatic transforma-
tion.

Our system also has significant advantages in probing the
strings over the systems considered in Refs. [58–61], because
straightforward spectroscopic techniques yield single-site res-
olution in the synthetic lattice.

III. MATRIX PRODUCT STATE SOLUTION
FOR THE MANY-BODY GROUND STATE

We calculate the many-body ground state of Ĥ at arbitrary
V/t using the MPS technique [73–75], implemented in the
open source code OPENMPS [42]. We achieve a local energy
variance (〈Ĥ2〉 − 〈Ĥ〉2)/Nreal < 10−14 in the ground state,
using an adaptively chosen bond dimension whose maximum
value reaches 546. We then characterize this ground state as
being extended in the synthetic dimension (i.e., in the gas
phase), or having a finite width (i.e., in the string phase), by
calculating the normalized separation, σ i j/Nint . Here, σ i j is
the synthetic distance between two molecules at real positions
i and j:

σ i j =
Nint−1∑
m,n=0

|m − n|〈ĉ†
miĉmiĉ

†
n j ĉn j〉. (2)

In the string phases, σ i j is finite, so σ i j/Nint = 0 in the
thermodynamic limit, while in the unbound phase, σ i j ∝ Nint ,
so σ i j/Nint is finite.

Figure 2 demonstrates the existence of two string phases
and an unbound gas phase. Figure 2(a) plots σ 34/Nint versus
V/t for 7 � Nint � 10 in a chain with Nreal = 6 molecules.
σ 34/Nint is large when 0 � V/t � 2, indicating that the sys-
tem is in a gas phase. σ 34/Nint is smaller for V/t � 2 and
V/t � 0, indicating a string phase. Remarkably, all the curves
at different Nint intersect at V/t ∼ 0.2 and V/t ∼ 2, clearly
indicating the transition from the string to the gas phase near
these points. The normalized separation approaches O(1/Nint )
as V/t → ±∞.

We investigate finite-size effects along both the real
and synthetic directions. To investigate finite-size effects
in the synthetic dimension, we observe that σ 34/Nint varies
nearly linearly with 1/Nint, and therefore extrapolate the
results to Nint → ∞ by doing a linear fit to the data for
7 � Nint � 10 [see inset in Fig. 2(a)]. The extrapolated results
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FIG. 2. (a) The normalized synthetic separation, σ 34/Nint , vs V/t
for different Nint in a 1D real-space array of Nreal = 6 molecules.
When V/t � 0 or V/t � 2, σ 34/Nint is small, and the system is
therefore in the string phase. The system is in an unbound phase
otherwise. The curves intersect at V/t ∼ 0.2 and V/t ∼ 2, indicating
that the string-gas phase transitions occur near these points. The
inset shows the linear fit to the curve σ 34/Nint vs 1

Nint
used to obtain

the extrapolated value of σ

Nint
at Nint → ∞. The error bars indicate

one standard deviation for the fit value. (b) σ 34 is only weakly
dependent on system size Nreal. Blue circles, yellow squares, and
green diamonds show σ 34/Nint vs 1/Nreal for V/t = 3.3, 2, and 1.25
and Nint = 6.

are plotted in Fig. 2(a) (inverted violet triangles) and show that
σ 34/Nint extrapolates to nearly zero in the regions V/t � 2
and V/t � −2, indicating a string phase in these regions.
Remnant nonzero σ 34/Nint for −2 � V/t � 0 is likely due to
finite-size errors. For 0 � V/t � 2, the extrapolated σ 34/N
is finite, indicating a delocalized gaseous phase. Further,
the intersection of the curves at V/t ∼ 0.2 and V/t ∼ 2
is a strong indication that the system is undergoing phase
transitions here or nearby. To investigate finite-size effects in
the real dimension, we calculate σ 34/Nint versus 1/Nreal for
6 � Nreal � 10 and fixed Nint = 6. Figure 2(b) plots σ 34/Nint

versus 1/Nreal for different V/t , showing that finite-size effects
in the real space lattice are negligible.

While we are able to identify the string-gas phase transition
by looking at σ 34/Nrot, it would be illuminating to eluci-
date the phases and transitions by calculating or measuring
other quantities as well. For example, finding that σ i j/Nrot

approaches zero for |i − j| 
 1 will provide a stronger con-
firmation of the presence of the string phase. While we are
limited to |i − j| = 1 in our numerics due to small system
size, our finite-size extrapolations are consistent with this
picture. Other correlations between the synthetic positions of
molecules on real sites i and j, or measuring the synthetic
position of all the molecule in the presence of a field which
biases one synthetic site of one molecule, may also be used

to characterize the string phase. In addition to these methods,
the string-gas phase transition may be identified by looking
for singularities in the entanglement entropy [76–79] or the
fidelity susceptibility [80–83].

IV. EXACT ANALYTIC SOLUTION AT t/V = 0

In this section, we will analytically demonstrate that the
ground states at t/V = 0 are strings and show that the strings
can be either two or three synthetic sites wide. We will accom-
plish this by deriving an exact analytic solution for the ground-
state wave function in this limit. The strings with width 3
were absent from the mean field theory [29]. As earlier, we
work in the rotating frame, where all the synthetic sites are
degenerate in energy. The ground-state solution is obtained
by recognizing that Ĥ breaks into independent sectors, and
that Ĥ maps to a hopping model for hardcore bosons in each
sector that contains a ground state. In this map, the ground
states correspond to condensates of the hardcore bosons. We
will also shed light on the correlations and excitations in the
ground state. There are O(Nint × (2Nreal/2)) degenerate ground
states, a signature of the richness of the system, which is also
absent in the mean field theory.

When t/V = 0, the subspace consisting of all the
molecules only on the (n − 1)-th, nth, and (n + 1)-th synthetic
sites is closed under the action of Ĥ , for arbitrary n. Clearly,
any eigenstate in this subspace has a finite width in the
synthetic dimension and therefore is a string. Our approach
in this section will be to first to find the ground state in this
subspace and then to argue that any states outside of this
subspace cost energy relative to this ground state. Thus, the
ground state in this subspace is the absolute ground state.

In this subspace, we map the molecular states to spin-1/2
hardcore boson states. Specifically, we map ĉ†

n, j |vac〉 to the

bosonic vacuum |∅〉 j , map ĉ†
n+1, j |vac〉 to |↑〉 j = b̂†

↑ j |∅〉 j , and

ĉ†
n−1, j |vac〉 to |↓〉 j = b̂†

↓ j |∅〉 j , as illustrated in Fig. 3. The
unit filling of the molecules in the real space lattice implies
that two bosons cannot be on the same site j, and therefore
these bosons can be thought to have hardcore repulsion. The
Hamiltonian Ĥ projected into the subspace with only the
synthetic sites n − 1, n, and n + 1 can be rewritten in the
boson Hilbert space as

Ĥn = V
Nreal−1∑

j=1

∑
μ=↑,↓

b̂†
μ, j b̂μ, j−1 + H.c., (3)

with (b̂†
↑ j )

2 = (b̂†
↓ j )

2 = b̂†
↑ j b̂

†
↓ j = 0.

n V
V V Vmap

n+1

n-1

“   ” “   ”

FIG. 3. Schematic illustration of mapping the molecular system
to hardcore bosons when t/V = 0. ĉ†

n, j |vac〉 maps to |φ〉 j , and

ĉ†
n+1, j |vac〉 and ĉ†

n−1, j |vac〉 map to b̂†
↑ j |φ〉 j and b̂†

↓ j |φ〉 j . A dipole-
induced exchange of rotational states maps to tunneling of bosons.
We consider only nearest-neighbor dipole interactions, although
dipole interactions are longer ranged.
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A. Ground states

The ground states of Ĥn can be found by first mapping the
spin-1/2 hardcore bosons to spinless bosons and then doing a
Jordan-Wigner transformation (to review this technique, see
Refs. [84,85]). All eigenstates with M spin-1/2 bosons are
labeled by 2M quantum numbers: μ1 . . . μM for their spins
and k1 . . . kM for the momenta of the Jordan-Wigner fermions.
The Hamiltonian only has matrix elements between states
with the same ordering of boson spins in real space, leading
to each eigenstate having a fixed real-space ordering of spins,
because the dipole interaction cannot swap the real space
positions of adjacent molecules on the synthetic sites n − 1
and n + 1. In the subspace with a given ordering of spins, the
matrix elements of the Hamiltonian are identical to that of a
hopping model for spinless hardcore bosons,

ˆ̃Hn = V
Nreal−1∑

j=1

ˆ̃b†
j
ˆ̃b j−1 + H.c., (4)

which then maps to a fermionic Hamiltonian after a Jordan-
Wigner transformation:

ˆ̃Hn = V
Nreal−1∑

j=1

f̂ †
j f̂ j−1 + H.c., (5)

First, we solve ˆ̃Hn for even Nreal. The fermionic band struc-
ture has M = Nreal/2 states with negative energy. Therefore,
the many-body ground state of Eqs. (4) and (5) is the half-
filled Fermi sea, given by

|G〉 =
(

2

Nreal + 1

)M/2 ∑
1�x1<...<xM�Nreal

× A(k1 . . . kM , x1 . . . xM ) f̂ †
x1

. . . f̂ †
xM

|∅〉, (6)

where

A(k1 . . . kM, x1 . . . xM ) =

∣∣∣∣∣∣∣
sin k1x1 . . . sin k1xM

...
. . .

...
sin kMx1 . . . sin kMxM

∣∣∣∣∣∣∣
(7)

is the Slater determinant. The momenta in Eq. (6) are

kn = nπ

Nreal + 1
+ Mπ

Nreal + 1
�(V ), (8)

where � is the unit step function. Rewriting Eq. (6) in terms
of the spinless hardcore bosons, we obtain

|G〉 =
(

2

Nreal + 1

)M/2 ∑
1�x1<...<xM�Nreal

× A(k1 . . . kM , x1 . . . xM )ˆ̃b†
x1

. . . ˆ̃b†
xM

|∅〉, (9)

where we have omitted the Jordan-Wigner strings attached to
the bosons, as they evaluate to 1 because the sum runs over a
fixed ordering of the bosons’ positions x1 < . . . < xM .

Finally, the ground states for Eq. (3) can be obtained by

replacing ˆ̃bxi in Eq. (9) with b̂μi,xi :

|Gμ1...μM 〉 =
(

2

Nreal + 1

)M/2 ∑
1�x1<...<xM�Nreal

× A(k1 . . . kM , x1 . . . xM )b̂†
μ1,x1

. . . b̂†
μM ,xM

|∅〉.
(10)

The ground states for odd Nreal have the same form as
Eq. (10), except that the number of bosons is M = (Nreal ±
1)/2 instead of Nreal/2.

The states in Eq. (10) with all spins as |↑〉 or all the spins
as |↓〉 are strings that are two synthetic sites wide, while all
other spin combinations are strings that are three synthetic
sites wide. The total number of width-2 ground states for even
Nreal is Nint − 1, since we can pick different values of n. The
degeneracy for odd Nreal is 2(Nint − 1), since the ground states
can have (Nreal − 1)/2 or (Nreal + 1)/2 bosons. The total num-
ber of width-3 ground states is (Nint − 2)(2Nreal/2 − 2) for even
Nreal, where the exponential factor is due to the different com-
binations of spins in real space. The number of width-3 ground
states is (Nint − 2)(2(Nreal−1)/2 + 2(Nreal+1)/2 − 4) for odd Nreal.

The only ground states of Ĥ at t/V = 0 are those given
in Eq. (10), which are all width-2 or width-3 strings. All
states occupying four or more distinct states in the synthetic
dimension have a strictly higher energy than these ground
states. A rigorous proof of this statement is given in Appendix
A. Summarizing the proof, suppose an eigenstate contains
a molecule on the synthetic site n + 2 in a background
of molecules on synthetic sites n − 1, n, and n + 1. Note
that the molecule on n + 2 cannot resonantly swap synthetic
positions with other molecules on n − 1. Construct a new
eigenstate with all molecules on n + 2 replaced by molecules
on the site n; in this new eigenstate, which has width 3, the ear-
lier disallowed swap process is now allowed. Therefore, this
new eigenstate (with width 3) must have a lower energy (than
the original state with width 4), and thus a width-4 state cannot
be the ground state. As a result, the only many-body ground
states at t/V = 0 are strings with synthetic width 2 or 3.

B. Ground-state correlations

Next, we calculate σ i j for the ground states. We do this by
first writing σ i j [Eq. (2)] in terms of the hardcore bosons. The
only terms in the wave function [Eq. (10)] that contribute to
σ i j have a |↑〉 boson at i and |∅〉 at j, or |↓〉 at i and |∅〉 at
j, or |↑〉 at i and |↓〉 at j, or vice versa. Formally, this can be
written as

σ i j
μ1...μM

= 〈Gμ1...μM |b̂†
↑ib̂↑i(1 − b̂†

↑ j b̂↑ j − b̂†
↓ j b̂↓ j )

+ b̂†
↓ib̂↓i(1 − b̂†

↑ j b̂↑ j − b̂†
↓ j b̂↓ j ) + 2b̂†

↑ib̂↑ib̂
†
↓ j b̂↓ j

+ (i ↔ j)|Gμ1...μM 〉. (11)

After some cancellations, and using the fact that the real-space
density 〈∑μ=↑,↓ b̂†

μib̂μi〉 = 1
2 + O(1/Nreal ), Eq. (11) simpli-

fies to

σ i j
μ1...μM

= 1 − 2
∑

μ=↑,↓
〈Gμ1...μM |b̂†

μib̂μib̂
†
μ j b̂μ j |Gμ1...μM 〉. (12)

Any further simplification requires us to know the boson spins
in the ground state.

For the simplest case, which is a width-2 string with all
spins as |↑〉 (or all spins as |↓〉),

σ
i j
↑...↑ = 1 − 2〈G↑...↑|b̂†

↑ib̂↑ib̂
†
↑ j b̂↑ j |G↑...↑〉

= 1 − 2〈G| f̂ †
i f̂i f̂ †

j f̂ j |G〉. (13)
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The latter expression can be evaluated using Wick’s theorem
when Nreal is large, and yields

σ
i j
↑...↑ = 1

2
+ 2 sin2[π

2 (i − j)]

π2(i − j)2
. (14)

For an arbitrary width-3 string, we can obtain bounds
for σ i j when i and j are sufficiently separated and Nreal is
large. In this limit, the densities of the bosons at i and j are
independent and translationally invariant, resulting in σ i j �
1 − 2

∑
μ〈b̂†

μb̂μ〉2. Using the relation
∑

μ〈b̂†
μb̂μ〉 ≈ 1/2, we

can rewrite σ i j for large i − j as

lim
i− j→∞

σ i j = 1 − 2

[
〈b̂†

↑b̂↑〉2 +
(

1

2
− 〈b̂†

↑b̂↑〉
)2

]

= 3

4
− 4

(
〈b̂†

↑b̂↑〉 − 1

4

)2

. (15)

Further, since 0 � 〈b̂†
↑b̂↑〉 � 1/2, we can bound σ i j as

1

2
< lim

i− j→∞
σ i j <

3

4
. (16)

C. Excitations

The ground states at t/V = 0 have several striking features:
They have a finite width (of 2 or 3), spontaneously collapse in
the synthetic direction, and have an exponential degeneracy.
As a result, the system has an intricate excitation spectrum,
with at least three kinds of gapless excitations.

The first kind of excitations arise because the ground states
break the discrete translational symmetry in the synthetic
direction by spontaneously picking a value of n. As a result,
the system with the string localized at the synthetic sites
n − 1, n, and n + 1 has excitations that have molecules on
synthetic sites n′ > n + 1 or n′ < n − 1. Remarkably, these
excitations are gapless (as shown in Appendix B), even though
the symmetry broken here is discrete rather than continuous.
These excitations give rise to tension in the string.

The second and third kinds of excitations are gapless
particle and hole excitations associated with adding a hardcore
boson to or removing a boson from the ground state. In the
language of Jordan-Wigner fermions, these excitations add a
fermion to or remove one from the Fermi surface, and they are
gapless because the Fermi energy is zero. As an example, the
excited state with one additional boson is given by

|ψ〉 =
(

2

Nreal + 1

)(M+1)/2 ∑
1�x1<...<xM+1�Nreal

× A(k1 . . . kM+1, x1 . . . xM+1)b̂†
μ1,x1

. . . b̂†
μM+1,xM+1

|∅〉,
(17)

where all but one momentum are less than (greater than) π/2
for V < 0 (V > 0). The additional boson has a momentum
greater than (less than) π/2 for V < 0 (V > 0) and could have
either spin μ =↑ or ↓.

The presence of gapless excitations suggests that the string
phase may be sensitive to perturbations. Furthermore, the
gapless excitations are associated with a discrete symme-
try breaking (rather than a continuous symmetry breaking),

making their appearance somewhat mysterious. One possibil-
ity is that the model is tuned to a critical point. However, we
show in the next section that the system does not seem to be
critical, by demonstrating that the strings and the gas phase
are robust when the interactions are modified.

V. DEPENDENCE OF THE PHASE DIAGRAM
ON THE FORM OF INTERACTIONS

We modify the interactions to a form that we expect will
gap some of the gapless excitations and thus should ensure
the system is in a stable phase. Specifically, we numerically
calculate the phase diagram for the Hamiltonian

Ĥ ′ = Ĥ +
∑

n j

W ĉ†
n j ĉn j ĉ

†
n, j+1ĉn, j+1. (18)

We find that that the properties found previously are changed
little by this modification, showing that the string ground
states constitute a stable phase. The additional interactions
in Eq. (18) typically arise when the rotational states are
dressed by external fields and may already be present in
many experiments as a result of ambient electric or magnetic
fields, although generically, such fields will give rise to some
additional terms as well as result in n-dependent W .

For W < 0, we expect the molecules to be bound tighter
in the synthetic direction, and the ground-state strings to only
have width 2. This is clear at least for t/V = 0 and perturba-
tively small negative W . In this limit, width-2 strings lower
their energy more than any strings that are wider. Therefore,
at t/V = 0, the ground states have only width 2, and the
ground-state degeneracy is Nint − 1. The exponential degen-
eracy is lifted, and the system will be stable to perturbations.
We expect a similar tightening of the strings (i.e., narrower
ground states) for t/V �= 0 and stronger attractive W as well.
Analogously, for W > 0, we expect the ground states to be
wider.

We demonstrate the above perturbative argument to be
generally true using a numerical solution obtained from the
MPS method. Figure 4(a) plots σ 34/Nint versus V/t at W =
−|V | for an array of Nreal = 6 molecules and several values of
Nint . Figure 4(b) plots the same quantity at W = |V |. Similar
to Fig. 2, the system is in the string phase when V/t � 0 and
V/t � 2, and the unbound phase otherwise. At t/V = 0, we
verified numerically that the only ground states for W < 0
have synthetic width 2, and the energy gap to width-3 strings
increases proportional to |W |.

Figure 4(c) demonstrates our argument that the string width
monotonically increases with W , by plotting σ 34/Nint at the
extrapolated Nint → ∞ for three different values of W . The
string-gas phase transitions get sharper as W decreases, and
the gas phase appears in a narrower window. The sharp string-
gas transition at V/t ∼ 2,W = −|V | indicates that it is pos-
sibly a first-order transition, while the string-gas transition at
V/t ∼ 0 might be of second order, although these observations
must be interpreted cautiously as we are dealing with only
Nreal = 6 molecules.

013624-6



STRINGS OF ULTRACOLD MOLECULES IN A SYNTHETIC … PHYSICAL REVIEW A 99, 013624 (2019)

FIG. 4. The normalized synthetic separation, σ 34/Nint in a 1D
real-space array of Nreal = 6 molecules and different values of Nint ,
when (a) W = −|V | and (b) W = |V |. The extrapolated values at
Nint → ∞ are obtained by doing a linear fit to σ 34/Nint vs 1/Nint as
in Fig. 2, and the error bars indicate one standard deviation for the
fit values. (c) The separation increases monotonically with W . Yel-
low squares, W = −|V |; blue circles, W = 0; and green diamonds,
W = |V |.

VI. SUMMARY

We calculated the many-body ground state of a real space
one-dimensional array of polar molecules illuminated by sev-
eral microwaves that drive synthetic tunnelings between sites

on a lattice created by rotational states. We found numerical
and analytical evidence of an intriguing phase of matter where
all the molecules bind together in the synthetic direction,
forming a string with rich properties, consistent with earlier
mean-field predictions. However, in addition to the mean field
predictions, we showed that in the limit of strong dipole
interactions, the system has exponentially many degenerate
ground states with synthetic width 2 or 3, each of which
can be mapped to a condensate of spin-1/2 hardcore bosons
on a real-space lattice. We gave analytical expressions for
these ground states and shed light on ground-state correlations
and the excitation spectrum. The excitation spectrum is rich,
with a number of physically distinct gapless excitations—
fluctuations of the spin-1/2 hardcore gas living on the string
and excitations to states that are four synthetic sites wide. We
showed that the strings constitute a robust phase and seem to
be further stabilized by modified interactions.

The confluence of the numerical evidence, analytical solu-
tion at a point, and understanding of the phase in the presence
of perturbations, as well as consistency of the phase diagram
in our numerical results and earlier mean field theory, all
point strongly to the presence of a string phase. Besides the
numerical and analytical evidence presented here, we have
also discussed other methods to confirm the presence of the
string phase as well as identify the string-gas phase transition,
such as finding singularities in the entanglement entropy
[76–79] or the fidelity susceptibility [80–83].

Our exact numerical and analytic solutions open avenues to
more thoroughly understand polar molecules with a synthetic
dimension than earlier mean-field treatments, especially the
nature of the string-gas phase transition, and the low-energy
effective theory that describes the strings. Our analytic solu-
tions hint at an unusual low-energy theory in which gapless
excitations arise from breaking a discrete symmetry rather
than a continuous one. A thorough exploration of the low-
energy theory will shed light on the stability of the string
phase and the fate of the gapless excitations in the presence
of dipole interactions with finite strength and long range in
real space.

All the physics studied in this work is immediately ac-
cessible in experiments on ultracold polar molecules, and
all the physics emerges naturally with no fine-tuning. The
energy scales, set by the dipole interactions, are large, and the
experimental lifetimes are long due to the absence of double
occupancies in the real space lattice. It will be fascinating
to perform experiments to observe the quantum strings and
answer the questions still left open by this work, specifically
the stability of the strings, the nature of the excitations, and
the nature of the phase transitions.
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APPENDIX A: PROOF THAT THE GROUND STATES OF
WIDTH-4 STRINGS HAVE HIGHER ENERGY THAN

WIDTH-3 STRINGS

At the end of Sec. IV, we claimed that all ground states
of the Hamiltonian Ĥ are of width 2 or 3, whose analytic
expressions are given in Eq. (10), and all strings of width 4 or
wider have higher energies. The current appendix is devoted
to present a rigorous proof for the latter point.

The proof involves a series of steps, mapping the original
problem of a string of width 4 or greater onto a more tractable
problem that will look like the width-3 problem but with
certain types of bosons spatially confined. Before giving the
proof, we will sketch the argument in a specific case. The
proof will then generalize this argument and fill in the details.

We obtain some insight into our proof by first taking the
concrete example of a width-4 string. Let us denote the state∏

j ĉ†
n j j |vac〉 as |n1n2 . . . nNreal〉, and refer to a molecule with

coordinate ( j, n j ) as a type-n j particle on real site j. Consider,
for example, the width-4 string sector which includes the
representative state |{n}〉 = |333222111000〉. The rest of the
states in this sector can be obtained by repeatedly applying
Ĥ to |{n}〉, the states that result from Ĥ |{n}〉, and so on.
Our argument will first show (Theorem 1) that all the type-
3 particles (i.e., particles located on the n = 3 site of the
synthetic lattice) are restricted to a certain region of real space
that is not accessible by any type-0 particle. Then we will
show that it is possible to do finite steps of flipping such that
after these flippings a type-3 particle is moved next to a type
0, though they cannot pass through each other (Theorem 2).
As a consequence, it turns out that this width-4 string maps to
a width-3 string with one modification that raises its energy
(Theorem 3). Specifically, particles of types 0 and 2 can both
be viewed as the vacuum state, while particles of types 1 and
3 can be viewed as spin-up and spin-down hardcore bosons
living on this vacuum, analogous to the solution of the width-3
string in the main text. However, the particles of type 3 now
are confined in space, leading to a finite-energy cost.

In the following, we will generalize the above argument to
an arbitrary sector S of width-4 string states |n1, n2, . . . , nN 〉
with n j ∈ {0, 1, 2, 3}, which are connected to each other by
matrix elements of the interaction. We begin with a few
definitions and theorems.

Definition A.1. The region of confinement (RoC) of parti-
cles of type n (in the sector S represented by |n1, n2, . . . , nN 〉),
denoted by RS (n), is defined to be the region where type-n
particles can possibly go after finite steps of flipping, i.e., the
set of all possible positions of type-n particles in this sector:

RS (n) = ∪|n1,n2,...,nN 〉∈S{i|ni = n}.

For example, for the sector with a representative state
|333222111000〉, we have R(3) = {i|1 � i � 6} (since the
real sites initially occupied by type 1 and type 0 cannot be
occupied by type 3, as type 3 cannot flip with type 1 or 0)
and R(0) = {i|7 � i � 12}. The important observation is that
the RoC of type-0 particles does not overlap with the RoC
of type-3 particles. This can be generalized to the following
theorem:

Theorem 1. RS (0) ∩ RS (3) = ∅.

FIG. 5. Envelope of a width-4 string (top) compared to that of a
width-3 string (bottom). The black boxes represent one configuration
of molecules in the width-4 string, specifically |333222111000〉
in the top panel, and the gray boxes indicate the other types of
particles that can be present in the corresponding real site in different
configurations of this width-4 string sector. In this way, RS (n0) is the
intersection of the envelope with the line n = n0, as shown in figure
for n0 = 0, 3.

Before giving the proof, let us first comment on the in-
dication of this theorem. For an arbitrary string state, define
the envelope of this string to be the region where it can
fluctuate [e.g., the gray region in Fig. 5], that is, the union
of all string configurations within the same sector. The above
theorem indicates that the maximal width for the envelope of
an arbitrary string configuration is 3 [the width of a string
envelope is defined as the maximum number of allowed
particle types (allowed synthetic states) at a real site j for
all 1 � j � Nreal]. Therefore, all width-3 strings trivially have
a rectangular width-3 envelope, while width-4 strings have
distorted envelopes. The extra energy needed to distort the
envelope gives rise to an effective string tension.

Proof. Assume the opposite, that RS (3) and RS (0) overlap
at some site j. Then by definition we can find two different
configurations in sector S with a type-0 particle and a type-3
particle occupying site j, respectively, as shown in Fig. 6.
Since a type-0 particle cannot flip through a type-3 particle,
the type-3 must always stand to the left of the type-0 in a given
configuration. Examining Fig. 6, from the first configuration
to the second configuration, there must be at least a particle
(e.g., of type y) that is removed from box B and then added
to box A. However, in order to travel from box B in the
first configuration to box A in the second configuration, this

FIG. 6. Proof of Theorem 1. Here we show two different config-
urations in the sector S, one with a type-0 particle on real site j (top),
the other with a type-3 particle on real site j (bottom). In both cases,
we denote the spatial region to the left of site j as “box A” and the
region to the right of site j as “box B.”
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FIG. 7. Proof of Theorem 2. Top: relative positions of C3, G,C0.
Middle: nj on site j is the leftmost particle on the right of site i that
is not a type 1. Bottom: the case nj = 3, and j /∈ G, j /∈ C0.

type-y particle must flip with both the type-0 particle and the
type-3 particle (the two black squares shown in figure). Yet no
particle of any type can actually do this, a contradiction.

Theorem 2. There exists at least one point i where RS (0)
and RS (3) touch each other, i.e., such that i ∈ RS (0), i + 1 ∈
RS (3) or i ∈ RS (3), i + 1 ∈ RS (0).

Proof. Assume the opposite, that RS (0) and RS (3) do not
touch anywhere. Let C3 ⊆ RS (3),C0 ⊆ RS (0) be two maximal
connected pieces of RS (3) and RS (0), respectively [maximal
means that C0 is not a proper subset of any connected piece
of RS (0), and similarly for C3; see Fig. 7 for an example].
Without loss of generality, suppose that C3 is the rightmost
connected piece of RS (3) that is on the left of C0, as shown
in Fig. 7. In this way, there must be a gap region G �= ∅
between C3 and C0 where neither type-3 nor type-0 particles
are allowed.

Consider a configuration where a type-3 particle occupies
the site i, the rightmost site of RS (3). Then the particle on
site i + 1 cannot be a type 2; otherwise, the type 3 on site i
can be flipped to site i + 1. So there must be a type-1 particle
on site i + 1. Consider, then, the leftmost particle nj on the
right of site i that is not a type 1, and suppose it stands on site
j. By definition, n j �= 1. The question is what n j might be. It
cannot be type 2 (blue square in Fig. 7); otherwise, we can flip
n j = 2 to site i + 1 and then flip with the type 3 on site i so
that the type 3 occupies site i + 1, a contradiction. If nj = 0,
then we can flip n j to site i + 1; this contradicts the fact that
i + 1 /∈ RS (3). The remaining possibility is n j = 3, and j /∈
G, j /∈ C3 ( j ∈ C3 would contradict Theorem 1), as shown in
the third configuration in Fig. 7. This case contradicts the fact
that C0 ⊆ RS (0) in that there is no way for any type 0 to enter
the region C0, as type 0 from outside cannot pass through the
two type 3s shown in the figure, and the region between i and
j is filed with type-1 particles. This completes the proof.

Our next step is to map an arbitrary sector S of width-4
string to a system of nearest-neighbor tunneling hardcore
bosons where a subset of bosons are confined to a certain
spatial region. We start with the Hamiltonian for the width-4
string (acting on the sector S)

ĤS = Ê01 + Ê12 + Ê23, (A1)

where Ê01 is the nearest-neighbor exchange interaction be-
tween type-0 and type-1 particles and similarly for Ê12, Ê23.
Consider a modified Hamiltonian

Ĥ ′
S = Ê01 + Ê12 + Ê23 + RS (0) + RS (3) + Ê03, (A2)

where the term RS (0) gives infinite energy to configurations
where a type 0 is outside RS (0) [i.e., the term RS (0) restricts
all type-0 particles to be inside RS (0)], and similarly for
RS (3), and we added an exchange interaction Ê03 between
type 0 and type 3. From the definition of RS (0) and RS (3),
the addition of these two terms does not change the matrix
elements of the Hamiltonian in the sector S. Furthermore,
according to theorem 1, RS (0) ∩ RS (3) = ∅, in the sector S
where all type-0 particles are confined in RS (0) and all type-3
particles are confined in RS (3), Ê03 has zero matrix element
between any two states in the sector S. Therefore, in the sector
S the new Hamiltonian Ĥ ′

S has the same matrix elements with
ĤS: Ĥ ′

S
∼= ĤS . The string described by the Hamiltonian Ĥ ′

S
can be mapped to a system of two types (1,3) of hardcore
bosons tunneling in two types of vacuum (0,2), where type-3
bosons are confined in RS (3) and type-0 vacua are confined
in RS (0). Confinement on vacuum sites is not natural to deal
with; therefore our last step is to get rid of RS (0): We define

Ĥ ′′
S = Ê01 + Ê12 + Ê23 + RS (3) + Ê03. (A3)

Theorem 3. Ĥ ′′
S

∼= Ĥ ′
S .

That is, as long as all type-3 particles are confined in RS (3),
even if we are allowed to flip type 0 and type 3 by the Ê03 term,
all type 0s would be automatically confined in RS (0).

Proof. Let us start with an arbitrary representative state
|S0〉 of sector S. Assume the opposite, that after a finite
sequence of flipping with Ê01, Ê12, Ê23, Ê03 [with all type-3
particles confined in RS (3)], |S0〉 is transformed to |Sn〉 where
at least one type-0 particle leaves RS (0). In this sequence, Ê03

must be used at least once; otherwise, it would contradict the
definition of RS (0). Consider the very first step when type 0
and type 3 are flipped (say, at step r, |Sr−1〉 → |Sr〉). Then,
before this flipping, all type 0s must be inside RS (0) [by
definition of RS (0)]. Since a type 0 and a type 3 are flipped
at step r, in the state |Sr−1〉 this type 0 and type 3 must be
nearest neighbors, and they must be inside RS (0) and RS (3),
respectively, so that the flipping occurs exactly at the touching
point between RS (0) and RS (3). But in this way, this flipping
would move the type 3 out of RS (3), which is forbidden in Ĥ ′′

S ,
a contradiction.

Without the confinement term RS (3), the Hamiltonian Ĥ ′′
S

can be mapped to a system of two types of hardcore bosons
(types 1 and 3) tunneling in a sea of two types of vacuums
(types 0 and 2). Therefore, we have proved that the original
Hamiltonian ĤS of width-4 strings can be mapped to Ĥ ′′

S ,
describing a system of nearest-neighbor tunneling hardcore
bosons (of types 1 and 3) with confinement on type-3 bosons.
Compared to width-3 or width-2 strings in their ground state,
width-4 strings have a higher energy due to the additional
confinement.
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APPENDIX B: THE EXCITATION ENERGY TO WIDER
STRINGS IS EXPONENTIALLY SMALL IN SYSTEM SIZE

We finally give some arguments showing that the excitation
energy from width-2 or width-3 ground state to the width-4
ground state decreases exponentially with system size �E ∝
exp(−Nreal ). For simplicity, suppose Nreal = 2M, and consider
the lowest energy state of a width-4 string sector with one
type-0, one type-3, (M − 1) type-1, and (M − 1) type-2 par-
ticles, with a representative state |011 . . . 122 . . . 23〉. Without

the confinement term RS (3) in Eq. (A3), the system is equiv-
alent to a width-2 string state with M hardcore bosons, so the
ground-state wave function is a superposition of

(2M
M

)
terms.

Going back to the width-4 string, the confinement RS (3)
only forbids one component of the wave function represented
by |11 . . . 13022 . . . 2〉, and the dimension of the sector S is(2M

M

) − 1. So compared to the width-2 string ground state, the
modification to the width-4 string ground-state wave function
and energy is proportional to 1/

(2M
M

)
, an exponentially small

number in system size.
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G. Juzeliūnas, and M. Lewenstein, Phys. Rev. Lett. 112, 043001
(2014).
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