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Bosons condensed in two modes with flavor-changing interaction
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A quantum model is considered for N bosons condensed in two orthogonal single-particle modes with tunable
energy separation in the presence of flavor-changing contact interaction, which can be readily solved by direct
diagonalization. Despite its elementary character, this model possesses chiral quantum phases with finite orbital
angular momentum arising as the result of spontaneous breaking of time-reversal symmetry. The phase diagram
is explored on a mean-field and full quantum level. Thermal and quantum fluctuations are characterized with
respect to regions of universal scaling behavior. The nonequilibrium dynamics shows a sharp transition between
a self-trapping and a pair-tunneling regime. A recently realized experimental implementation is discussed with
bosonic atoms condensed in the two inequivalent energy minima X± of the second band of a bipartite two-
dimensional optical lattice.
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I. INTRODUCTION

The understanding of quantum many-body systems noto-
riously holds exquisite challenges, as pointedly captured by
Phil Anderson’s famous punch line “More is Different” [1].
In fact, it is still one of the most fascinating intellectual and
technically relevant endeavors to explore how collections of
seemingly simple elementary constituents, under the reign
of physical principles such as degeneracies, interactions, and
symmetries, collude to bring about the often intriguing collec-
tive phenomena of condensed matter, such as phase transitions
or spontaneous symmetry breaking. This is all the more true
when we consider the dynamics of such systems, particularly
if we deviate far from thermal equilibrium. The vast complex-
ity of natural many-body systems often leads us to seek ab ini-
tio tractable minimal quantum-mechanical models which can
capture a few isolated phenomena of interest while excluding
the superimposed jungle of secondary structure that would
impede a clear understanding. Such model systems often find
their experimental counterpart in ultracold quantum gases and
more specifically, atomic Bose-Einstein condensates (BECs)
[2–4], if bosonic particles are of interest, as in these notes.

The restriction to only a few or even to only two single-
particle modes significantly simplifies things but still leaves
room to capture relevant physics such as that of Josephsen
dynamics [2,5–8]. Well-known simple interacting many-body
Hamiltonians with only two single-particle modes are the
Nozières model [9] H (1) = g

2 n1n2, with particle numbers ni =
a†

i ai, annihilation operators ai, i ∈ {1, 2} for states |1〉 , |2〉 and
an either repulsive (g > 0) or attractive (g < 0) interaction, or
the two-site bosonic Hubbard model of N bosons tunneling in
a double well given by H (2) = −t (a†

1a2 + a†
2a1) + U

2 [n1(n1 −
1) + n2(n2 − 1)], comprising a tunneling term with typically
positive tunneling strength t and an on-site collision term
with collision energy per particle U [10–13]. Despite their
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simplicity, these models, depending on the external
parameters, show different fragmented ground states [12]
and nonlinear dynamics that can give rise to a suppression of
tunneling referred to as self-trapping [5,6,14]. Experimental
implementations of nonlinear two-mode dynamics, including
self-trapping, have been reported with superfluid helium [15],
atomic BECs [16–18], or condensates of exciton-polaritons
[19].

In this article a bosonic two-mode model is considered
with a more general interaction consisting of the following
three parts: a term proportional to n1n2 as in the Nozières
model, an on-site term n1(n1 − 1) + n2(n2 − 1) as in the two-
site bosonic Hubbard model, and, most importantly, a flavor-
changing interaction a†

1a†
1a2a2 + a†

2a†
2a1a1, which describes

two atoms colliding in one of the modes with the result
that both particles are transferred to the other mode. Such
flavor-changing interactions typically arise in scenarios where
orbital degrees of freedom provide degeneracies. For example,
the two modes could be px and py orbitals in the first excited
state of a two-dimensional (2D) harmonic oscillator. The
flavor-changing character of the interaction mimics a pair-
tunneling term between the two single-particle modes [20–27]
and as such, it should act to induce coherence between these
modes, in contrast to flavor-conserving interactions, which
tend to yield fragmentation [12]. In fact, at sufficiently low
temperature, one finds that the ground state is close to a
macroscopically populated superposition of the two single-
particle modes with a phase difference of either π/2 or −π/2,
formed by spontaneous breaking of time-reversal symmetry.
This ground state maximizes the square of orbital angular
momentum. Its emergence is discussed for finite temperature
in terms of a fully quantum-mechanical framework close to
the thermodynamic limit by diagonalizing the Hamiltonian for
particle numbers on the order of 104. This lets one account
for quantum fluctuations in particular, for which one finds
universal scaling behavior along certain paths in the phase
diagram. The interaction-induced pairwise exchange of par-
ticles between the two modes has the interesting consequence
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that unconventional correlations and entanglement can occur
at low temperatures. The nonequilibrium dynamics shows a
sharp transition between a self-trapping regime, where the
atoms initially prepared in a single mode remain in that mode,
and a pair-tunneling regime, in which the atoms perform
Josephson oscillations. A possible experimental implemen-
tation is considered with bosonic atoms condensed in the
two inequivalent energy minima X± of the second band of a
bipartite 2D optical lattice. Note that previous discussions of
the ground state at zero temperature are found, for example,
in Refs. [21,24,25].

II. MODEL

The general Hamiltonian for bosons subject to binary con-
tact interaction H = ∫

d3r(ψ†H0ψ + g
2ψ†ψ†ψψ ) is consid-

ered, with the single-particle Hamiltonian H0 and the collision
parameter g > 0. The bosonic field operator ψ (r) is decom-
posed with respect to a basis set of single-particle modes |αn〉
according to ψ (r) = ∑

n αn(r) an, where αn(r) ≡ 〈r| αn〉, |r〉
denotes the position basis, the normalization

∫
d3r αnα

∗
m =

δnm holds, and an denote bosonic annihilation operators sat-
isfying the commutation relations [an, a†

m] = δnm. It is eas-
ily verified that [ψ (r), ψ†(r′)] = ∑

n αn(r)α∗
n (r′) = 〈r| r′〉 =

δ(r − r′). Now, assume that two of the single-particle modes,
namely, α1(r) and α2(r), are exclusively populated and not
coupled to any others and that these two modes are eigen-
modes of the single-particle Hamiltonian H0, thus fulfilling
the relations H0αi = εiαi, i ∈ {1, 2} with energy eigenvalues
εi = (−1)i 1

2ε. This leads to the Hamiltonian

H = ε

2
(n2 − n1) + g

2
[ρ0,1 n1(n1 − 1) + ρ0,2 n2(n2 − 1)]

+ 2gρ1n1n2 + g

2
(ρ∗

2 a†
1a†

1a2a2 + ρ2 a†
2a†

2a1a1), (1)

with the collision integrals ρ0,1 ≡ ∫
d3r|α1|4, ρ0,2 ≡∫

d3r|α2|4, ρ1 ≡ ∫
d3r|α1|2|α2|2, and ρ2 ≡ ∫

d3rα∗
1α

∗
1α2α2.

Note that because αi are orthogonal, one may approximate
ρ3 ≡ ∫

d3r|α1|2α∗
1α2 ≈ 0 and ρ4 ≡ ∫

d3r|α2|2α∗
1α2 ≈ 0.

Such processes would correspond to collisions of two
particles in one of the modes, leading to a transfer of only
one of those particles to the other mode. Energy momentum
conservation often entirely prevents such processes. In the
concrete experimental implementation, discussed below,
this approximation is very well fulfilled. In the following,
it is assumed that both modes are associated with the same
on-site collision energy per particle, i.e., ρ0 ≡ ρ0,1 = ρ0,2.
This implies ρ1 � ρ0 as an immediate consequence of
(|α1|2 − |α2|2)2 � 0. The Hamiltonian H obviously includes
the Nozières model H (1) but also the two-site Hubbard model
H (2). The latter is seen by rewriting H (2) with respect to the
eigenbasis of its tunneling term. The following discussion
is further simplified by assuming time-reversal symmetry
of H0 and hence real mode functions αi(r), such that
ρ1 = ρ2. Furthermore, the collision parameters g0 ≡ gρ0 and
g1 ≡ gρ1 = gρ2 are employed. According to the constraints
for ρ0 and for ρ1 found above, one has g1/g0 ∈ [0, 1]. With
these simplifications one may write the Hamiltonian in Eq. (1)

in terms of the operator L ≡ 1
N i(a1a†

2 − a†
1a2), which may be

interpreted as an orbital angular momentum per particle in
units of h̄ [28,29]. This leads to

H = ε

2
(n2 − n1) + g0

2
[n1(n1 − 1) + n2(n2 − 1)]

+ g1

2
(N + 2n1n2) − g1

2
N2 L2 . (2)

Note that the angular momentum term is negative if g1 > 0,
such that the system should have a tendency to maximize L2

in order to minimize its energy.

III. STRUCTURE OF ENERGY EIGENSTATES

In order to study its eigenvalues, H is straightforwardly
diagonalized in the Fock basis |ν〉 ≡ |N − ν, ν〉 with ν ∈
{0, ..., N}, which consists of the states with exactly N − ν

atoms in mode α1 and ν atoms in α2. Our numerical code lets
us employ values of N exceeding several times 104, i.e., suf-
ficiently large to match with experimental implementations,
as discussed later. In Fig. 1(a) the eigenvalues En, n ∈ {0, N}
of H (indexed in ascending order) are shown as g1/g0 is
tuned across the interval [0,1] for fixed g0 and ε = 0. The
normalized energy εn ≡ En/W0 is plotted, accounting for the
fact that the relevant energy span of the eigenenergies scales
with the on-site collision energy associated with each mode
W0 ≡ g0N (N − 1)/2. In (b) g1/g0 = 0.5 is chosen, while ε is
tuned across the interval [−1, 1] × g0N . For optimal visibility,
a relatively small value N = 20 is used. In (a) and (b), for
fixed g1 and ε, the values of εn cover the same regions on
the y axes, regardless of the choice of g0 or N , although
at an increased density of states if N is increased. In (a) a
pronounced resonance of the density of states becomes visible
at an energy that linearly increases from 1/2 to 1 as g1/g0 is
tuned from 0 to 1/3 and then remains at 1 for 1/3 < g1/g0 <

1. This resonance plays an important role for the dynamical
properties of the system, as is discussed below. For ε = 0
and odd N there are (N + 1)/2 doubly degenerate eigen-
states. Also, for even N , the energies close to the upper and
lower boundary of the energy spectrum tend to approximately
arrange in nearly degenerate pairs with energy separations
decreasing exponentially fast with N (see also the discussion
below Eq. (4) in Ref. [21]). This is seen in Fig. 1(c), where
the logarithm of the energy difference between the two lowest
eigenstates in units of W0 is plotted versus N (blue disks for
even N , red disks for odd N). The noisy floor, found for all
odd N and those even N exceeding about 140, represents the
machine precision of the calculation. In the green trace, one
also sees that the width of the eigenenergy spectrum divided
by W0 rapidly approaches a constant near unity for large N .
For all traces of (c), g1/g0 = 0.9 and ε = 0.

IV. GROUND STATE AT FINITE TEMPERATURE

A set of particularly useful states, playing a significant
role in the discussion of the ground state of H , are the two-
mode coherent states or, more briefly, phase states |φ, θ〉 ≡

1√
N

[cos(θ )a†
1 + sin(θ )eiφa†

2]N |vac〉, with |vac〉 denoting the

013623-2



BOSONS CONDENSED IN TWO MODES WITH FLAVOR- … PHYSICAL REVIEW A 99, 013623 (2019)

0 50 100 150
N

200

0.90

0.95

1.00

1.05

-15

-10

-5

0
(c)

0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0

0.0

g1/g0

N=20, =0

(a)

-1.0

-1

0

1

2

3

4

-0.6 -0.2 0.2 0.6 1.0
-2

(b)

/(Ng0)

N=20, g1/g0=0.5

FIG. 1. The eigenenergies εn, n ∈ {0, ..., N} of H for N = 20 are
plotted vs g1/g0 for ε = 0 in (a) and vs ε/(Ng0) for g1/g0 = 0.5
in (b). The thick red dashed lines highlight the ground-state energy
ε0. (c) Plots of log10(ε1 − ε0 ) (red disks for odd N , blue disks for
even N) and εN − ε0 (green trace) vs particle number for ε = 0 and
g1/g0 = 0.9. All plots do not depend on the value of g0.

vacuum [12]. Their projections onto the Fock basis read

〈ν|φ, θ〉 = cosN−ν (θ ) sinν (θ )

√(
N

ν

)
eiνφ . (3)

By virtue of their construction, these states possess a well-
defined relative phase φ between the two single-particle
modes αi, i = 1, 2, in the sense that the two subsamples
of particles belonging to αi exhibit maximal mutual co-
herence. The angle θ determines the mean particle num-
bers in the two modes αi as 〈φ, θ | n1 |φ, θ〉 = N cos2(θ ) and
〈φ, θ | n2 |φ, θ〉 = N sin2(θ ). For the case of equal mean par-
ticle numbers in both modes, i.e., θ = π/4, the short no-
tation |φ〉 ≡ |φ, π/4〉 is used. In the following discussion,

primarily the phase states |±π/2〉 and their superposition with
arbitrary relative phase ei2πz, i.e., the cat states |cat (z)〉 ≡
(|π/2〉 + ei2πz |−π/2〉)/

√
2, are of interest. Their Fock basis

coefficients are

〈ν| ± π/2〉 = (±i)ν√
2N

√(
N

ν

)
,

〈ν|cat (z)〉 = iν (1 + (−1)νeiπz )√
2N+1

√(
N

ν

)
. (4)

The physical properties of these states can be characterized
in terms of the angular momentum operator L. A
straightforward calculation yields the expectation values
Tr(L |±π/2〉 〈±π/2|) = ±1, Tr(L2 |±π/2〉 〈±π/2|) =
1, and for the incoherent superposition of phase
states Tr(L 1

2 [|π/2〉 〈π/2| + |−π/2〉 〈−π/2|]) = 0 and
Tr(L2 1

2 [|π/2〉 〈π/2| + |−π/2〉 〈−π/2|]) = 1. Similarly, for
the cat state |cat (z)〉 one gets Tr(L |cat (z)〉 〈cat (z)|) = 0 and
Tr(L2 |cat (z)〉 〈cat (z)|) = 1. Equipped with these remarks,
one may explore the finite-temperature ground state of H . To
this end, the density operator

ρth ≡ 1

Z

N∑
n=0

e− En
kBT |En〉 〈En| , Z ≡

N∑
n=0

e− En
kBT (5)

is used to calculate the populations in the Fock ba-
sis 〈ν| ρth |ν〉, and the projections Tr(ρth |πz〉 〈πz|) and
Tr(ρth |cat (z)〉 〈cat (z)|) with respect to the phase state |φ〉 =
|πz〉 and the cat state |cat (z)〉 for z tuned across the in-
terval [−1, 1]. Here, ε = 0 and g1 = 2

3 g0 is chosen, which
falls within the range accessible in experiments, as discussed
below. The results are shown in Fig. 2 for four different
temperatures. In the uppermost row the temperature is set to
be practically zero (kBT = 10−13Ng0). Since an even particle
number N = 50 is chosen, according to Fig. 1(c) the lowest
energy eigenstate |E0〉 is truly nondegenerate, separated from
the first excited energy eigenstate by a tiny energy gap, which
exponentially decreases with N but exceeds kBT . Hence, only
|E0〉 notably contributes to ρth. As seen in Fig. 2(a1), this
leads to a characteristic form of the populations 〈ν| ρth |ν〉,
where the atoms group in pairs, with zero populations for
odd particle numbers, which according to Eq. (4) is an in-
dication that ρth is close to the cat state |cat (z = 0)〉. This
is confirmed by Fig. 2(a2) (red trace), which shows the
projection Tr(ρth |cat (z)〉 〈cat (z)|) onto the cat state |cat (z)〉.
The plot shows that a fidelity of nearly unity is reached
for z = 0. Accordingly, the projection Tr(ρth |πz〉 〈πz| onto
the phase state |πz〉 in the blue trace of Fig. 2(a2) shows
two peaks at ±π/2, where values near 0.5 are attained. For
odd particle numbers N , a pure ground state is not to be
expected even at zero temperature, since the lowest energy
eigenstate then exhibits perfect twofold degeneracy. Even for
low values of N at least a 2D manifold of states with equal
energies contribute to ρth, and hence the ground state incurred
by the system is typically a mixed state for arbitrarily low
temperatures.

Returning to even N , for higher but still extremely low
temperatures (kBT = 3 × 10−12Ng0) one can see how the
cat state vanishes in favor of a mixed state. In Fig. 2(b)
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FIG. 2. For ε = 0 and g1 = 2
3 g0, (a1–d1) show the populations 〈ν| ρth |ν〉 for increasing temperature. The corresponding projections

〈cat (z)| ρth |cat (z)〉 (red traces) and 〈πz| ρth |πz〉 (blue traces) are plotted in (a2–d2). In all plots N = 50.

the staggered part of the populations is decreased, while the
projection onto the cat state |cat (z)〉 assumes a maximal value
0.65 at z = 0, although the overlap with the phases states
|±π/2〉 remains the same. For even larger temperatures in
the range 10−11 < kBT/Ng0 < 10−1 one finds practically the
same results over 10 decades shown in Fig. 2(c). In this regime
the width of the population distribution (c1) is determined
by quantum fluctuations, the projection onto |cat (z)〉 (c2) is
practically 1/2 for any value of z, while the projections onto
|±π/2〉 (c2) remain as in (a2) and (b2). This shows that ρth ≈
1
2 (|π/2〉 〈π/2)| + |−π/2〉 〈−π/2)|) in good approximation is
given by the incoherent mixture of the phase states |±π/2〉.

As the temperature is further increased by just a factor of 10
(kBT = Ng0), thermal noise becomes dominant and the situa-
tion changes again according to Fig. 2(d). Now the population
distribution (d1) notably broadens and the projections onto
the states |cat (z)〉 and |±π/2〉 notably decrease. In all plots
of the population distributions the values of Tr(L2ρth) are
indicated. Even for the largest temperature shown, where the
overlap with the phase states |±π/2〉 is significantly reduced,
the angular momentum per particle, attaining the value 0.866,
remains close to unity. Although the thermal state in the case
of Fig. 2(d) has a notably broader distribution of populations
in the Fock basis (d1) as compared to that in (c1), in terms
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(N/2) of 〈ν| ρth |ν〉 (a),
〈cat (0)| ρth |cat (0)〉 [red solid trace in (b)], and 〈π/2| ρth |π/2〉
[blue dashed trace in (b)] are plotted vs log10(kBT/Ng0) over 15
decades.

of its phase properties it is still similar to an incoherent
superposition of the phase states |±π/2〉.

The temperature dependence of the thermal ground state
is summarized in Fig. 3, where the standard deviation �ν of
〈ν| ρth |ν〉 as well as 〈cat (0)| ρth |cat (0)〉 and 〈π/2| ρth |π/2〉
are plotted versus log10(T/Ng0) over 15 decades. In (a) be-
tween −12 and −1 one sees constant �ν = √

N/2, which
represents Poissonian quantum noise for N/2 particles in each
mode. Above log10(T/Ng0) = −1 thermal noise begins to
dominate such that �ν rapidly grows. In (b) it is seen that
between −13 and −12 the system state has nearly unity
overlap with the cat state |cat (0)〉. Between −12 and −11 the
cat state rapidly decays such that between −11 and −1 the
system state is well described by an incoherent superposition
of |±π/2〉. Above −1, the phase states |±π/2〉 begin to de-
cohere and the systems become thermal. This decoherence of
the phase states is also seen in 〈π/2| ρth |π/2〉 in (c). A central
message behind these observations is that with increasing N ,
the ground state rapidly acquires a twofold degeneracy, and
the system state even for extremely low or, if N is odd, even
for zero temperature becomes an incoherent mixture of phase
states. A mean-field description of this scenario would require
the concept of spontaneous symmetry breaking. Each of these
phase states itself is a maximally coherent (quasiclassical)
state, which only decoheres at a many orders of magnitudes
higher temperature than that required for splitting up the cat
state for even N into an incoherent superposition of phase
states. Up to relatively high temperatures on the order of
kBT = Ng0, the ground state is an incoherent mixture of
two states with orbital angular momenta close to ±1 per
particle. Note also the discussions for zero temperature in
Refs. [21,24,25].

V. GROUND-STATE PHASE DIAGRAM

A. Zero temperature

The quantities considered in this section, in order to
characterize different phases, are the expectation value d ≡
1
N 〈D〉 and the fluctuations �d ≡ 1

N �D, where D ≡ a†
1a1 −

a†
2a2 denotes the population difference of the single-particle

modes and �D ≡ 〈(D − 〈D〉)2〉1/2. For the ground state, these
quantities are calculated as functions of ε and the collision
parameters g0 and g1, and the full quantum result for d is
compared to a mean-field calculation.

Let us begin with the mean-field calculation by replacing
the matter field operator ψ in the general Hamiltonian at the
beginning of Sec. II by a complex wave function, which is
written as the most general superposition of the two basis
modes ψ = √

N[cos(θ )α1 + sin(θ )eiφα2]. For this scenario,
the mean-field value of d is given by dm = 1

N (|〈α1 |ψ〉 |2 −
|〈α2 |ψ〉 |2) = cos(2θ ). Setting ρ1 = ρ2 and ρ3 = ρ4 = 0 as in
the context of Eq. (1), one obtains

H[θ, φ] = N 1
2 [sin2(θ ) − cos2(θ )] ε

+ 1
2 gρ0N2[cos4(θ ) + sin4(θ )]

+ gρ1N2[1 + 2 cos2(φ)] sin2(θ ) cos2(θ ) . (6)

Our task here is to find the minimum of H[θ, φ] with
respect to θ and φ. Only the last term depends on φ

and is obviously minimized by setting φ = ±π/2 for ar-
bitrary values of θ and a repulsive collision parame-
ter g > 0. Hence, H[θ,±π/2] = −N 1

2ε cos(2θ ) + 1
4 (g1 −

g0)N2 sin2(θ ) + 1
4 N2g0, which is minimized with respect to θ

if ε = cos(2θ )(g0 − g1)N . Noting that cos(2θ ) is necessarily
constrained to the interval [−1, 1], the simple relation

dm = ε

(g0 − g1)N
χ[−1,1]

(
ε

(g0 − g1)N

)

+
[

1 − χ[−1,1]

(
ε

(g0 − g1)N

)]
sgn

(
ε

(g0 − g1)N

)
(7)

is obtained, where χ[−1,1] denotes the indicator function for
the interval [−1, 1]. The mean-field result dm is plotted as a
function of ε/Ng0 and 1 − g1/g0 in Fig. 4(a). Three distinct
regions are identified (denoted I, II, and III). Where dm takes
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FIG. 4. (a) Mean-field calculation of the difference of the pop-
ulations of the single-particle modes dm as a function of ε/Ng0

and 1 − g1/g0. The dashed blue lines indicate second-order phase
boundaries, where time-reversal symmetry is spontaneously broken.
(b) Corresponding square of the mean angular momentum.
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FIG. 5. Full quantum calculation of dγ (a) and �γ d (b) plotted
against ε/Ng0 and 1 − g0/g1 for N = 100.

the values −1 or +1, only one of the modes αi is populated,
while in between these regions both modes are superimposed
with a relative phase randomly taking one of the values
±π/2. The three regions are separated by phase boundaries,
indicated by dashed blue lines, where time-reversal symme-
try is spontaneously broken. Note that dm can be expressed
in terms of the mean-field value Lm of the previously de-
fined angular momentum. With a1 and a2 replaced by their
mean values

√
N cos(θ ) and i

√
N sin(θ ), respectively, one

gets Lm = 2 sin(θ ) cos(θ ) = sin(2θ ) and thus L2
m = 1 − d2

m.
Similar to dm, this quantity, which is plotted in Fig. 4(b), may
serve as an order parameter discriminating the chiral phase II
from the time-reversal symmetric phases I and III. Analogous
mean-field results have been published for a specific imple-
mentation of the general model considered here, where the
two single-particle modes are chosen to be Bloch functions of
two degenerate high-symmetry points in the second band of a
2D optical lattice [28–33]. This example will also be briefly
discussed in Sec. VII. More recently, related mean-field phase
diagrams for a double-well scenario with pair tunneling have
been discussed in Refs. [26,27].

Next, restricting ourselves to the case of even N , the
expectation value dγ ≡ 1

N 〈D〉γ and the standard deviation
�γ d ≡ 1

N �γ D are determined for the nondegenerate zero-
temperature ground state |γ 〉 = ∑N

ν=0 γν |N − ν, ν〉 of the
Hamiltonian H in Eq. (1), which leads to

dγ = 1 − 2

N
ν̄γ , ν̄γ ≡

N∑
ν=0

|γν |2ν , (8)

�γ d = 2

N

√√√√ N∑
ν=0

|γν |2(ν − ν̄γ )2 . (9)

The amplitudes γν are obtained by direct diagonalization of
H in the Fock basis. In Fig. 5, dγ (a) and �γ d (b) are plotted
against ε/Ng0 and 1 − g0/g1 for N = 100. The graph in (a)
shows remarkable agreement with the mean-field results of
Fig. 4. Only at the phase boundaries (dashed lines in Fig. 4)
does the finite size of N in the full quantum description
smooth out the kinks seen in the mean-field diagram. As N
approaches infinity, the kinks of the mean-field diagram are
reproduced. The fluctuations plotted in Fig. 5(b) reproduce
the structure of the phase diagram in (a). In regions I and III,
nearly all particles populate a single mode with very small
fluctuations. In the central region II, both modes are populated
with the result of notable fluctuations. At the point ε/Ng0 =

(b)
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0.3

/ Ng0

(a)
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III
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+ 0.2
+ 0.4
+ 0.6

-1.0
-0.6
-0.2
0.2
0.6
1.0
1.4

0.0

0.2

0.4

0.6
0.7

0.1

0.3

0.5

0.0 0.2 0.4 0.6 0.8 1.0
1 - g1/g0

(c)

/ Ng0

FIG. 6. Quantum calculations of dth (a) and �thd (b) for 1 −
g1/g0 = 2/3 and N = 100 plotted against ε/Ng0. In (c) �thd is
plotted vs 1 − g1/g0 for ε = 0. In each panel, graphs are shown
for four temperatures kBT/Ng0 ∈ {0.1, 0.3, 1, 3} in ascending order.
In (a), for optimal visibility, the uppermost three graphs are shifted
upwards vertically by values 0.1, 0.2, 0.3. The horizontal dashed
gray lines in (b) and (c) mark Poissonian noise for N = 100.

1 − g1/g0 = 0 there is a pronounced peak of the fluctuations
with �γ d (0, 0) = 1/

√
2, i.e., �γ D scales with N , showing

strongly super-Poissonian behavior. At this point g1 = g0,
i.e., the total interaction in Eq. (1) becomes 1

2 g0 N2(1 − L2).
Hence, since L2 ≈ 1 in region II, the total interaction vanishes.
This resembles the behavior of a noninteracting BEC at the
critical temperature. As 1 − g1/g0 grows, the fluctuations
decrease, approaching zero for 1 − g1/g0 = 1. It is interesting
to note that for 1 − g1/g0 = 2

3 one finds �γ d = 1/
√

N , i.e.,
Poissonian fluctuations. This case, for example, naturally
occurs in a specific implementation of the general model by
using the px and py orbitals of a 2D harmonic oscillator as
single-particle modes.

B. Finite temperature

The phase diagram in Fig. 5 is readily extended to account
for finite temperatures by calculating

dth = 1 − 2

N
ν̄th, ν̄th ≡

N∑
ν=0

〈ν| ρth |ν〉 ν , (10)

�thd = 2

N

√√√√ N∑
ν=0

〈ν| ρth |ν〉 (ν − ν̄th)2 , (11)

with ρth according to Eq. (5). In Figs. 6(a) and 6(b), sec-
tions through the plots in Figs. 5(a) and 5(b) are shown at
1 − g1/g0 = 2/3 for four different temperatures kBT/Ng0 ∈
{0.1, 0.3, 1, 3}. Note in (a) that the kinks recognized in the
lowermost (red) graph with the lowest shown temperature
kBT/Ng0 = 0.1 soften as the temperature is increased. As
seen in (b), at kBT/Ng0 = 0.1, quantum fluctuations domi-
nate, which for ε = 0 reach a maximum �thd = 1/

√
N (i.e.,

0.1 for N = 100), which corresponds to Poissonian noise. In
Fig. 6(c) the fluctuations for ε = 0 are plotted versus 1 −
g1/g0, showing the pronounced maximum at 1 − g1/g0 = 0,
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FIG. 7. (a) Repeats the phase diagram in Fig. 5 as a contour plot
with the three phases I, II, and III in order to illustrate three paths
labeled 1, 2, 3 that are examined in (b), (c), and (d). The dashed lines
in (b), (c), and (d) emphasize power-law behavior labeled with the
corresponding critical exponent. In all plots, N = 200.

which was already found for the zero-temperature ground
state in Fig. 5(b). Here, regardless of the temperature, �thd =
1/

√
2 and hence �thD scales linearly with N , i.e., the fluctua-

tions acquire the same strongly super-Poissonian character for
all temperatures.

In order to characterize the nature of the phase bound-
aries between phases I, II, and III and the critical point at
(ε, 1 − g1/g0) = (0, 0), double-log plots of �thd are shown
in Fig. 7 for different temperatures along three different paths
[indicated 1,2,3 in the phase diagram in (a)]. In (b) the critical
point at the origin is approached from the chiral phase II
along the vertical 1 − g1/g0 axis (path 1). The five shown
graphs are for the temperatures kBT/Ng0 ∈ {0, 0.25, 0.5, 1, 2}
in ascending order. The black dashed lines indicate regions
of power-law behavior with critical exponents −1/4 for the
zero-temperature case and −1/2 approximately describing
the finite-temperature cases. Analogous plots are shown in
(c) and (d) for the paths indicated 2 and 3 in (a). In these
plots the phase boundary between the phases II and III is
explored at the two values 1 − g1/g0 = 2/3 (c) and 1 −
g1/g0 = 0 (d). Again, the dashed lines indicate regions of
power-law behavior labeled with the corresponding critical
exponents. For example, in (d), where the critical point at
the origin is approached from phase III along the ε axis, the
critical exponent for the zero-temperature case switches from
−1 to −1/2.

C. Angular momentum and entanglement entropy

It is interesting to characterize the possible phases in terms
of their angular momentum. As the flavor-changing interac-
tion can be viewed as a pair-tunneling process, the expectation
value of L2 can be interpreted as a pair superfluid order
parameter. This can be concretized in terms of the Onsager
criterion [34] by defining the pair order parameter as the
difference of the eigenvalues of the pair density matrix 〈p†

ν pμ〉
with ν, μ ∈ 1, 2 and pμ ≡ aμaμ. Note that the analogously
defined single-particle order parameter associated with the

-1
10
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0.5

/ Ng0
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0.6

0.0

(b)

-1 -0.5 0 0.5 1
/ Ng0

0.0

0.1

0.2

0.3(a)

-1 -0.5 0 0.5 1
/ Ng0

0.0
0.2
0.4
0.6
0.8
1.0

(d)

-1 -0.5 0 0.5 1
/ Ng0

0.0

0.5

1.0

I

II

III

(c)

FIG. 8. Expectation value 〈L2〉th (a) and associated fluctuations
�th(L2) (b) of L2 for thermal states with temperatures kBT/Ng0 ∈
{0, 0.3, 1, 3} in ascending order (dashed red, green, blue, black),
plotted vs ε for fixed 1 − g1/g0 = 0.5. (c) The entanglement entropy
S [cf. Eq. (12)] of the zero-temperature ground state is plotted in
units of ln(N ) vs ε and 1 − g1/g0. (d) The entanglement entropy S is
shown for thermal states with temperatures kBT/Ng0 ∈ {0, 0.3, 1, 3}
and fixed 1 − g1/g0 = 0.5. For all graphs N = 200.

single-particle density matrix 〈a†
νaμ〉 vanishes for ε = 0 (cf.

[21,25]) in accordance with the vanishing of the expectation
value of L. In Fig. 8 the expectation value 〈L2〉th (a) and the

associated standard deviation �th(L2) =
√

〈L4〉th − 〈L2〉2
th (b)

are plotted as ε is tuned across the phase boundaries from
phase I to III for 1 − g1/g0 = 0.5. The shown graphs are for
thermal states with temperatures kBT/Ng0 ∈ {0, 0.3, 1, 3}. At
ε = 0, the angular momentum is maximized, in accordance
to the mean-field result in Fig. 4(b), becoming unity for the
case of zero temperature. Remarkably, the fluctuations of
L2 attain a minimum at ε = 0, which for low temperatures
rapidly approaches zero as N is increased, although according
to Fig. 6(b) the fluctuations �thd of the relative population
difference dth meanwhile take a maximum.

Another instructive quantity is the entanglement entropy
of the ground state at zero or finite temperature with respect
to the subspaces associated with each of the single-particle
modes αi, i ∈ {1, 2}. This quantity determines the increase of
one’s ignorance due to bipartite entanglement if one of the
single-particle modes is traced out. For the thermal state in
Eq. (5), the general expression for the entanglement entropy
is S ≡ − Tr(1)[ρ (1)

th ln[ρ (1)
th ]], with ρ

(1)
th ≡ Tr(2)[ρth] and Tr(i)

denoting the trace with respect to the subsystems associated
with modes αi. One readily obtains

S = −
N∑

ν=0

〈ν| ρth |ν〉 ln(〈ν| ρth |ν〉) , (12)

using the populations 〈ν| ρth |ν〉 plotted in Fig. 2. In Fig. 8(c),
S is plotted in units of its maximally possible value ln(N ) ver-
sus ε and 1 − g1/g0 for zero temperature. In Fig. 8(d), graphs
for thermal states with temperatures kBT/Ng0 ∈ {0, 0.3, 1, 3}
are shown for 1 − g1/g0 = 0.5. For zero temperature, i.e.,
when the ground state is practically a pure state that has zero
entropy, the large entanglement entropy, seen in the chiral
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FIG. 9. Self-trapping and pair-tunneling dynamics for the case of degenerate modes (ε = 0). The rows labeled (a–f) correspond to the
choices of g1 indicated. Each row from left to right shows dψ (t ), F[dψ (t )], �ψ (t )d , and F[�ψ (t )d], with F[x(t )] denoting the Fourier spectrum
of x(t ). The time axes are scaled according to τ = t/t0, t0 ≡ 2π h̄

g1
.

phase (region II), is completely due to the presence of massive
entanglement between the single-particle mode subspaces.
For larger temperatures, a large part of the entanglement
entropy reflects the nonzero entropy of the thermal state ρth.

VI. SELF-TRAPPING

The Hamiltonian of Eq. (1) shows rich nonlinear dynamics.
A notable phenomenon also found in the two-site Hubbard
model is self-trapping [5,6,14,16,17], i.e., an interaction-
induced suppression of tunneling, where for our model tunnel-
ing refers to pair-tunneling resulting via flavor-changing in-
teraction. An initial state |ψ (0)〉 = |N, 0〉 at t = 0 is assumed
with all N atoms piled up in mode α1. For later times

|ψ (t )〉 =
N∑

n=0

|En〉 〈En| ψ (0)〉 e− i
h̄ Ent (13)

is determined and the time evolution and the associ-
ated Fourier spectra of the expectation value dψ (t ) =
1
N 〈ψ (t )| D |ψ (t )〉 and the corresponding fluctuations �ψ (t )d
are calculated, where D denotes the operator of the difference
between the populations in the single-particle modes defined
at the beginning of Sec. V. For simplicity, the discussion
is limited to the case of degenerate modes, i.e., ε = 0. The
results are plotted versus time in units of t0 ≡ 2π h̄

g1
in Fig. 9

for N = 200 and different values of g1 indicated in the figure
for the rows (a–f). For values 0 � g1/g0 < 1/3, all atoms
practically remain in the mode α1, i.e., self-trapping prevails.
This is shown in row (a) for g1/g0 = 0.95 × 1/3, a value
quite close to the critical value g1/g0 = 1/3. From left to
right, dψ (t ), F[dψ (t )], �ψ (t )d , and F[�ψ (t )d] are shown, with
F[x(t )] denoting the Fourier spectrum of x(t ). The critical
case g1/g0 = 1/3 is shown in row (b). Self-trapping is now
replaced by a rapid decay of dψ (t ) to zero with sharp revivals
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appearing at multiples of t0/4, where all atoms alternately
pile up in one of the modes αi. At these incidences naturally
�ψ (t )d reduces to zero, while for all other times a value of√

2 is attained, i.e., on the order of dψ (t ) itself, thus indicating
strongly super-Poissonian fluctuations. The sharp resonances
in dψ (t ) and �ψ (t )d are reflected in the associated Fourier spec-
tra through evenly spaced combs of harmonic frequencies. At
an only slightly larger value g1/g0 = 1.05 × 1/3 in (c) these
frequencies decohere, thus giving rise to a seemingly irregular
but nevertheless deterministic time evolution. The situation
remains similar over a wide range of ratios g1/g0 [cf. (d)
and (e)] until in (f), the maximal possible value g1/g0 = 1
is reached, where the dynamics is analog to case (b) with
the only difference being a threefold shorter timescale t0. The
transition from the self-trapping regime to the pair-tunneling
regime at the critical ratio g1/g0 = 1/3 sharpens with increas-
ing particle number N such that for N → ∞ a nonequilibrium
phase transition occurs [35], while for the ground state no
notable change arises here, as seen in Figs. 4–7.

To understand the peculiarity of the transition point one
may revisit the structure of the eigenvalues in Fig. 1(a). One
recognizes a resonance in the density of states that linearly
increases from εn = 1/2 to εn = 1 as g1/g0 is tuned from zero
to 1

3 . At this point a kink is observed, i.e., for g1/g0 in the
interval [ 1

3 , 1] the energy of this resonance remains constant.
This is more quantitatively seen in Fig. 10, where the density
of states for N = 4000 particles is plotted for g1 = 0.9 × 1

3 g0,
g1 = 1

3 g0, and g1 = 1.1 × 1
3 g0, i.e., on both sides and exactly

at the transition point. At the transition point the resonance of
the density of states falls together with the upper edge of the
energy spectrum. For g1 < 1

3 g0 the initial state |ψ (0)〉, with
all atoms prepared in the same mode, energetically lies at the
upper edge of the energy spectrum, well above the resonance
of the density of states, such that only a few eigenvectors are
available that |ψ (0)〉 can be composed of. More specifically,
|ψ (0)〉 is itself quite close to an eigenvector and therefore
cannot significantly evolve in time—hence, the phenomenon
of self-trapping. If g1 > 1

3 g0, the initial state |ψ (0)〉 falls on
the resonance of the density of states, i.e., many eigenstates

0.6 0.8 1.0
0

1

2

3

4

Energy En/W0

g1 = 1.0 x 1/3 g0
g1 = 0.9 x 1/3 g0

g1 = 1.1 x 1/3 g0

FIG. 10. The density of states is plotted for three indicated values
of g1/g0 with N = 4000 and ε = 0.

FIG. 11. (a) Sketch of the lattice geometry with deep A sites
and shallow B sites. The unit cell is shown by the gray rectangle.
(b) The second Bloch band of the lattice in (a) is plotted across
the first Brillouin zone with the two inequivalent energy minima at
X± highlighted. Blue denotes low and white denotes high energy.
The optical wavelength for generating the lattice is denoted λ and
k = 2π/λ.

are available to contribute to its composition, which enables
the dramatic change of its dynamical properties.

VII. EXPERIMENTAL IMPLEMENTATION

This section begins with a brief introduction of an exper-
imental platform that approximately implements the model
Hamiltonian of Eq. (1). More detailed descriptions are found
in Refs. [31,33]. The centerpiece of the experimental real-
ization is a two-dimensional bipartite square optical lattice
with the third dimension confined by a harmonic potential
(with 40 Hz vibrational frequency), providing shallow and
deep potential wells arranged as the black and white fields
of a checkerboard, as sketched in Fig. 11(a). The second
band of this lattice possesses two inequivalent local minima
at two high-symmetry points (denoted X+ and X−) located
at the edge between the first and second Brillouin zones, as
illustrated in Fig. 11(b). The experimental setup allows one
to tune the potential energy difference ε of the X± points in
quasi-momentum space and the relative energy difference �V
between the deep and shallow wells in configuration space.
As detailed in Refs. [31,33], a long-lived BEC of rubidium
atoms can be formed in the second band sharing both potential
condensation points X±. The Bloch functions ψ± associated
with X± take the role of the two single-particle mode functions
at the basis of the model Hamiltonian of Eq. (1). A numerical
band calculation allows one to determine the band structure
ψ± and the integrals ρi, i ∈ {0, 1, 2, 3}, defined below Eq. (1),
for arbitrary values of ε and �V . The Bloch functions are
composed of local s orbitals in the shallow wells and local
px and py orbitals in the deep wells. Tuning of �V allows one
to tune the fractions of atoms residing in the shallow and deep
wells νs and νp, respectively, where νs and νp are normalized
to satisfy νs + νp = 1. The collision parameters gi = gρi can
be numerically determined as functions of νp.

By approximating the Bloch functions in terms of local s
and p orbitals, simple analytical expressions of the collision
parameters gi as functions of νp can be obtained. With the
primitive vectors x̂ and ŷ from Fig. 11(a) and the lattice
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constant a ≡ λ√
2

one may write

ψ±(x, y, z)

= sz(z)√
M

∑
n,m

((−1)[(n+m)±(n−m)]/2√νs sn,m(x, y)

+ (−1)[(n+m)±(m−n)]/2√νp p±
n,m(x, y)) , (14)

where the sum extends over M unit cells with

sn,m(x, y) ≡ s(x − na, y − ma),

p±
n,m(x, y) ≡ p±

(
x −

[
n − 1

2

]
a, y −

[
m − 1

2

]
a

)
,

and s(x, y) and p±(x, y) denoting the real-valued Wan-
nier functions associated with s and p± orbitals, re-
spectively, where p± ≡ p 1

2 [(x+y)±(x−y)]. Here, sz(z) denotes
the ground-state wave function of the harmonic os-
cillator trap potential with respect to the z direction
with the radius σz ≡ (

∫
dz|sz(z)|4)−1 and the normal-

ization relations 1 = ∫
dxdy|s(x, y)|2 = ∫

dxdy|p±(x, y)|2 =∫
dz|sz(z)|2. With the approximation that orbitals in different

lattice sites have negligible overlap one obtains the collision
overlap integrals

ρ0 = 1

Mσz

(
ν2

s

∫
dxdy|s(x, y)|4

+ ν2
p

∫
dxdy|p±(x, y)|4

)
,

ρ1 = ρ2 = 1

Mσz

(
ν2

s

∫
dxdy|s(x, y)|4

+ ν2
p

∫
dxdy|p+(x, y)|2|p−(x, y)|2

)
,

ρ3 = ρ4 = 0. (15)

Finally, by applying a harmonic approximation for the lattice
wells, s(x, y) = s1D(x)s1D(y), px(x, y) = p1D(x)s1D(y), and
py(x, y) = s1D(x)p1D(y), with s1D(x) = σ−1/2π−1/4e−x2/2σ 2

and p1D(x) = σ−3/2π−1/4
√

2 x e−x2/2σ 2
, one arrives at the

simple expressions g0 = g00[(1 − νp)2 + 3
4ν2

p] and g1 =
g00[(1 − νp)2 + 1

4ν2
p] with g00 ≡ g/(2πMσ 2σz ), which yields

g0 − g1 = g00 ν2
p/2. Note that νp is defined within the

interval [0,1] such that 1 − g1/g0 lies in the interval
[0, 2/3].

With these preparations one can apply the general results
for the model in Eq. (1) to the present example. Previous
work in Refs. [31,33] has made use of the mean-field results
in Fig. 4. Here, with the help of the full quantum model,
one may complement these considerations including fluc-
tuations. In Fig. 12, experimental data for the fluctuations
�thd (black squares) are plotted versus νp and compared to
calculations (red disks) using the quantum model described
above. The calculations are performed for ε = 0, N = 104

particles, kBT = Ng00 × {0.3, 1, 3}, and g00 = 10−5Erec. This
corresponds to the temperatures {3, 10, 30} nK. The data are
obtained by conducting the following experimental protocol
(cf. Refs. [31,33]): first, ε = 0 is realized via precisely adjust-
ing the intensities of all lattice beams. A BEC is loaded into

0.4 0.60.20

0.1

0.2

0.3

0.4
Experiment

kBT = 3 Ng00

0.8

kBT = 1 Ng00
kBT = 0.3 Ng00

FIG. 12. The colored disks connected by solid lines show
the fluctuations �thd vs νp calculated for ε = 0, N = 104 parti-
cles, and g00 = 10−5Erec. The temperatures are in ascending order
kBT = Ng00 × {0.3, 1, 3}. The black squares show experimental data
recorded with about N ≈ 4 × 104 at a temperature roughly estimated
to be a few tens of nanokelvin.

the ground state of the lowest Bloch band. By rapidly ramping
the chemical potential difference �V between A and B sites
of the lattice [cf. Fig. 11(a)], the atoms are transferred into the
second band. The chosen final value of �V determines the
value of νp. The atoms are then given several ten milliseconds
time to condense with a significant condensate fraction pop-
ulating the X± points. A momentum spectrum is obtained by
a time-of-flight method, and the number of atoms in each of
the two lowest-order Bragg resonances, corresponding to each
condensation point, is recorded. To obtain reasonable statistics
in the determination of �thd , for each data point several
hundred momentum spectra are recorded and evaluated. The
temperature can only be roughly estimated to be on the order
of a few tens of nanokelvin from that of the initial condensate
in the lowest band. The particle number in the experiments
is approximately N = 4 × 104. According to Fig. 12, the ob-
served fluctuations show the best agreement with the calcula-
tions for a temperature close to 10 nK. Increasing values of νp

are associated with growing populations in the local p orbitals
of the deep wells, which increases band relaxation losses
via binary collisions, where both atoms decay to the lower-
lying s orbital. The associated heating of the remaining atoms
should be responsible for the observed slight increase of the
observed fluctuations for large νp, which is not captured by the
calculations.

VIII. CONCLUSION

In conclusion, a quantum model of bosons condensed in
two orthogonal single-particle modes with flavor-changing
contact interaction leads to a rich collective phenomenology.
Most remarkably, in a wide parameter range the interaction
induces coherence between the two modes, in contrast to
flavor-conserving variants of contact interaction, which typi-
cally lead to fragmentation. This coherence is associated with
spontaneously broken time-reversal symmetry and a nonzero
magnitude of angular momentum. The fluctuations in the
relative populations of both modes along certain paths in the
phase diagram show universal scaling. The nonequilibrium
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dynamics shows a sharp transition between a self-trapping and
a pair-tunneling regime. The model captures central aspects of
the physics of atoms condensed in the two inequivalent band
minima of the second Bloch band of a bipartite optical square
lattice. The physics of double wells with interaction-induced
pair tunneling and the collision physics in near-degenerate px

and py orbitals turns out to be intimately related.
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