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An experimental group in Beijing [Yueyang Zhai et al., Phys. Rev. A 87, 063638 (2013)] introduced the
method of the standing-wave pulse sequence for efficiently preparing ultracold bosonic atoms into a specific
excited band in a one-dimensional optical lattice. Here, we report on a theoretical extension of their work to
the problem of one-dimensional bichromatic superlattices in order to understand a wave packet shaping process
in higher bands. Varying the lattice parameters leads to the so-called Dirac point where a pair of excited bands
crosses. This paper thus discusses simultaneously efficient excitation of the wave packet to the proximity of the
Dirac point and its subsequent dynamics in the force field of a parabolic trap. We numerically explore optimal
pulse-sequence parameters and find an optimized sequence which excites more than 99% of the atoms in an ideal
situation to the first and second excited bands within 100 μs. Our main finding is that the system permitting the
Dirac point possesses a region of parameters where the excited energy bands become nearly parabolic, conducive
to a robust wave packet with high coherence and isochronicity. We also provide an appropriate data set for future
experimentation, including effects of the atom-atom interaction by way of the mean-field nonlinear term.
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I. INTRODUCTION

Ultracold atoms and molecules in optical lattices have
been eagerly investigated over the last 20 years. These quan-
tum systems are suitable for simulating various Hamiltonian
systems in the lattice, e.g., the Bose- and Fermi-Hubbard
models [1]. Recent experiments demonstrated their high con-
trollability and accessibility via Mott-superfluid transitions,
quantum effects induced by artificial gauge fields, and so
forth [2,3]. In recent years, unconventional phenomena in
higher bands, e.g., topological effects, chiral superfluidity, and
so forth, have attracted much attention with a view to devel-
oping new quantum technologies [4]. One of the intriguing
topics is coherent wave packet preparation of a target state
with high fidelity, e.g., the narrowing of the velocity spreading
of the wave packet [5] and the rapid ground state loading onto
the lattice [6], namely, techniques required for initializing
quantum simulations. The present paper concerns manipula-
tions of ultracold atomic wave packets, especially preparing
higher band components with high fidelity in a highly tun-
able bichromatic one-dimensional lattice. Such techniques are
desired for investigating low-dimensional quantum properties
subject to a designed band structure.

The bichromatic lattices were experimentally realized in
early 2000 [7], and there ensued examination of such phe-
nomena as the Landau-Zener tunneling [8], Bloch oscilla-
tions [9], and Stückelberg interferometry of ultracold matter
waves [10]. As for the energy bands, D. Witthaut et al. [11]
theoretically suggested that the first and second excited bands
would cross if experimental parameters were properly set so
that the dynamics near the crossing could be mapped onto
the Dirac equation, hence the coinage of the “Dirac point.”

This theoretical proposal was experimentally examined by T.
Salger et al. [12]; they demonstrated the Landau-Zener tran-
sition at the Dirac point, also known as the Klein tunneling,
subject to the optical dipole trapping and the gravitational po-
tential. To this day, many groups have studied the bichromatic
lattice system in terms of quasirelativistic properties [13],
topological properties [14], and also in association with the
time-wise lattice system [15], etc. Recently, Reid et al.
reported a theoretical study on the manipulation of ultra-
cold atoms in the bichromatic lattice using the Landau-Zener
transition caused by a linear external potential [16]. Unfor-
tunately, the theory falls short of achieving maximal coher-
ence for shaping the wave packet, being based on the Bloch
oscillation.

Coherent population transfer onto a specific band is a
prerequisite for achieving coherent quantum control over a
wide range of Hilbert space. The Aarhus group [17] and
the Hamburg group [18] succeeded in conducting coherent
manipulation by using an amplitude modulation of the optical
lattice. This technique conserves energy and quasiomentum
during an interband transition, thus it is suitable for the
coherent wave packet shaping [19–21] and the band spec-
troscopy [22] although the transfer rate is rather low. On the
other hand, an experimental group in Beijing demonstrated in
2013 [23] that a similar technique called the “standing-wave
pulse sequence” was extremely efficient. This straightforward
technique is discussed in an early experimental paper and is
also known as bang-bang (on-off) control [24]. It repeatedly
turns the optical lattice on and off and applies time-wise
pulses of impulse to a confined Bose-Einstein condensation
(BEC) with appropriate time intervals. In their first exper-
imental paper, they demonstrated transfer from the ground

2469-9926/2019/99(1)/013621(13) 013621-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.013621&domain=pdf&date_stamp=2019-01-24
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.87.063638
https://doi.org/10.1103/PhysRevA.99.013621


TOMOTAKE YAMAKOSHI AND SHINICHI WATANABE PHYSICAL REVIEW A 99, 013621 (2019)

state to the second excited band (D band) with 99% fidelity.
And they also achieved a 50%–50% superposition of the
ground band (S band) and the second excited band. After this
demonstration of the preparation process, this technique was
applied to promote the wave packet into the fourth excited
band (G band) to study the dynamics of ultracold atoms in
the combination of an optical lattice and a harmonic trap [25].
Very recently, they demonstrated that the pulse sequence is
also valid in two-dimensional (2D) and 3D systems [26]
and performed a Ramsey interferometer using S and D
bands [27].

In this paper, we study the coherent population trans-
fer by the “standing-wave pulse sequence” method in the
bichromatic optical lattice (OL). Because the Bloch states
have an unconventional structure due to the Dirac points,
the transition selection rule indeed becomes modified by the
added OL of lattice periodicity λ/4 where λ is the laser
wavelength. First, we theoretically study the Bloch bands
and the transfer selection rule simply in the presence of the
bichromatic OL or the monochromatic OL, but without any
trap. We numerically simulate the preparation process with
the time-dependent Schrödinger equation (TDSE) [28] in a
condition realistic enough for subsequent simulation of the
experiment [23] with the wave packet. We shall show that with
the given condition, the population transfer of up to 90% to
the first and second excited bands is attainable within 100 μs.
The preparation time being too short for environmental noises
to cause dephasing, the standing-wave pulse sequence method
may as well be considered as highly reliable for setting up the
desired wave packet.

We think it appropriate to present specific observables,
keeping future experiments in mind. To this end, we show
the momentum distributions that could be observed by band
mapping [29] after following the postexcitation dynamics
for a short while. We show that in the presence of the
Dirac point, the energy dispersion curves of the first and
second excited bands become nearly parabolic for realistic
experimental parameters, thus the wave packet excited to the
neighborhood of the Dirac point proves surprisingly robust
and nearly isochronic. We analyze the wave packet dynamics
by mapping it onto a semiclassical Hamiltonian [19–21].

Generally, the atom-atom interaction via the s-wave scat-
tering is non-negligible, causing dephasing of the wave
packet. In the treatment of ultracold atomic systems, the
interaction is often represented by a nonlinear term in the
framework of the mean-field approximation [30]. In addition
to the dephasing, the strong nonlinear term modulates the
band structure and Bloch waves [31], thus altering the wave
packet dynamics in the OL. In order to examine this point
in the context of this paper, we solve the time-dependent
Gross-Pitaevskii equation [30] numerically with the nonlinear
term inclusive thus providing information regarding realistic
experimental parameters.

The paper is organized as follows. Section II outlines
the theoretical model system. Section III analyzes numerical
results of the excitation process and the subsequent dynamics
caused by the external harmonic confinement. The effects
of the nonlinear term will also be discussed. Section IV
concludes the paper. Technical details are supplemented in the
Appendixes.

II. MATHEMATICAL DEFINITION AND BASIC FEATURES
OF THE SYSTEM

According to the experimental papers [23,25,29,32], ultra-
cold atoms are initially loaded onto a 3D harmonic trap. Then,
the 1D OL is turned on to shape the relative amplitudes of
the Bloch states (on-duty cycle), and then it is turned off to
induce relative phase shifts between bands (off-duty cycle).
The net effect is the desired interband transition. These steps
are repeated until the wave function �(t ) reaches the target
state �target.

Here, we consider the dynamics of interacting bosonic
atoms in the bichromatic OL by solving the Gross-Pitaevskii
equation [30]. Some notation and techniques used in this
paper are available in our numerical studies presented in
Refs. [19,20]. The 1D version of the system is described by
the time-dependent Hamiltonian

H = − h̄2

2ma

∂2

∂x′2 + α(t ){V1 sin2(krx′) + V2 sin2(2krx′)}

+ 1

2
maω

2
0x′2 + g1DN |�(x′)|2,

where V1 is the height of the optical lattice with the period
of λ/2, V2 is with the period of λ/4, α(t ) equals 1 during
an on-duty cycle, otherwise it is 0, ω0 is the frequency of
the harmonic trap, N is the number of total atoms, and g1D

parametrizes the effective atom-atom interaction contracted
from 3D to one degree of freedom. We use recoil energy Er =
h̄2k2

r /2ma as the unit of energy, recoil momentum kr = 2π/λ

as the unit of (quasi)momentum, lattice constant λ/2 as the
unit of length, and rescaled time t = Ert ′/h̄ as the unit of
time. Here h̄, λ, and ma correspond to the Planck constant,
laser wave length of the optical lattice, and atomic mass,
respectively. Rescaling the Hamiltonian, we get

H = − ∂2

∂x2
+ α(t ){s1 sin2(x) + s2 sin2(2x)}

+ νx2 + g|�(x)|2, (1)

where x, s1, s2, and g denote x = krx′, s1 = V1/Er, s2 =
V2/Er , and g = g1DN/Er respectively. According to Ref. [33],

g1D = 4h̄2a
maa2

⊥
(1 − 1.4603 a

a⊥
)−1, where a, a⊥ =

√
2h̄

maω⊥
, and ω⊥

are the s-wave scattering length, effective transverse scattering
length, and effective transverse trapping frequency, respec-
tively. The atom treated here is 87Rb whose s-wave scattering
length is a = 4.6 × 10−9 m. Typically, the effective transverse
frequency ω⊥ = 2π × 10 − 2π × 1000 Hz and the number
of atoms is 104–106, therefore g ranges from 10−5 to 1. The
other parameters are the same as in Ref. [23]. We note that
g could be made to vary from exact 0 to infinity by the
Feshbach resonance [34]. However, we limit ourselves to a
weakly interacting regime in this paper. We also note that the
relative phase between the optical lattice of period λ/2 and
that of λ/4 can be controlled experimentally; however, in this
paper, we only consider the case of the relative phase equal to
0 for simplicity.

The unperturbed Bloch states {φn
q (x)} formed by

the bichromatic OL part of H , namely, HB = − ∂2

∂x2 +
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FIG. 1. (a) Ground (purple dashed), first (green solid), and second (light-blue long-dashed) excited band energies as a function of s2 with
q = 0 and s1 = 10. The results are given by solving the recurrent equation of the bichromatic system [Eq. (3)]. The first and second excited
bands cross at s2 = (s1/4)2 = 6.25. (b) Third (purple dashed) and fourth (green solid) excited band energies as in (a). In addition to the crossing
at s2 = (s1/4)2, they cross at s2 = (s1/12)2. (c) Lattice height s2 dependence of the band structure around the crossing of the first and second
excited bands. As shown in (a), the crossing or the Dirac point [11,12] happens when s2 = 6.25.

{s1 sin2(x) + s2 sin2(2x)} may be expanded as

φn
q (x) = eiqx

∑
K

CB(n, q, K )e2iKx, (2)

where q is the quasimomentum, n ∈ N is the band index,
K ∈ Z is the reciprocal vector index so that the coefficient
CB(n, q, K ) obtains by solving the recurrent formula

(q + 2K )2CB(n, q, K ) − s2CB(n, q, K − 2)/4

−s1CB(n, q, K − 1)/4 − s1CB(n, q, K + 1)/4

− s2CB(n, q, K + 2)/4

= (
En

q − s1/2 − s2/2
)
CB(n, q, K ), (3)

namely, the central equation (see, for instance, the section on
the energy bands in [35]) where En

q represents the eigenenergy
of the Bloch state. In this paper, we use n = 0 as an index of
the ground band.

Once the coefficients are obtained by diagonalization
within an appropriately truncated K space, it immediately
allows us to calculate the wave function at the comple-
tion of the on-duty cycle or the off-duty cycle. To be ex-
plicit, �(τ1) = ∑

n,q e−iEn
q τ1〈φn

q | �(t = 0)〉 or �(τ1 + τ ′
1) =∑

K e−4iK2τ ′
1〈e2iKx | �(τ1)〉, where �(t = 0) is the initial con-

dition [24]. This method applies repeatedly to any length
of pulse sequence. The time durations τ1 and τ ′

1 could be
numerically optimized. In this paper, we used brute force to
search optimal values of τ1 and τ ′

1 with a 0.1-μs step size in
each of them (0 � τ1, τ ′

1 � 40 μs).
Before presenting the numerical results, we note that parity

plays an important role in excitation processes for atoms in
a monochromatic optical lattice as noted in the experimental
papers [23,25]. Here we assume that the initial condition
is a zero momentum state which is appropriate for weak
parabolic trap system. This assumption allows us to con-
sider the dynamics at q = 0 only. In this case, the parity
of the initial state is symmetric in K space, 〈φn

q | �(0)〉 =
0 when the φn

q is antisymmetric so that the on-duty cycle
does not change the parity. Thus the excitation to the anti-
symmetric states is prohibited. For the monochromatic OL,
the Bloch states at q = 0 with even (odd) n are symmetric
(antisymmetric), therefore a phase-modulated pulse sequence

is needed to populate odd bands [25]. More detailed discus-
sions with a toy model for the excitation process are given in
Appendix A.

This intuitive explanation is certainly valid for the case of
the bichromatic OL as well. Here we discuss the parity selec-
tion rule briefly while further details of the energy structure
are discussed in Appendix C from the viewpoint of Bloch’s
theorem, somewhat differently from the previous study [11].
Figure 1 shows the energy structure as a function of s2 for
q = 0 with s1 fixed to 10. The energy difference between the
first and second excited bands decreases as s2 is increased
until s2 = (s1/4)2 where it vanishes. Meanwhile, the selection
rule is modified due to the symmetry of the Bloch states.
The parity of the first and second excited bands interchanges
across this crossing (see Fig. 2), which prevents the wave
packet from reaching the second excited band from below by
this manipulation.
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FIG. 2. Bloch coefficient CB(n, q, K ) as a function of K as in
Figs. 11(a) and 11(b) of Appendix A. Purple squares show the results
of s2 = 5 and green circles those of s2 = 8. Panels (a)–(d) correspond
to the ground through the third excited bands. Note s2 = 5 of
(b) corresponds to s2 = 8 of (c) up to sign, and likewise for s2 = 8 of
(b) and s2 = 5 of (c).
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III. NUMERICAL RESULTS

The experimental work of [23] employed a set of nu-
merically optimized laser pulse parameters to attain a large
target population. The present work extends this approach to
the bichromatic OL system. Moreover, it takes into account
effects of the nonlinear term incurred by the atom-atom inter-
action as well as the acceleration due to the harmonic trap po-
tential. All the numerical results below are obtained by solving
the time-dependent Schrödinger equation (TDSE), namely,
i d

dt �(t ) = H�(t ) with the Hamiltonian in Eq. (1). In general,
fidelity is evaluated as F (t ) = |〈�target|�(t )〉|2 from the solu-
tion �(t ). However, we evaluate in this paper, as a more infor-
mative index, the band population Bn(t ) = ∑

q |〈φn
q |�(t )〉|2

which can be evaluated by the experimental band mapping
technique. In solving the TDSE, we fix s1 ≡ 10 throughout the
rest of the paper, and focus on the range s2 = 5–8 containing
s2 = 6.25 at which the crossing of interest occurs.

A. Excitation by OL pulse sequence

Let us consider excitation of the initial wave packet. First,
we ignore the harmonic trap and the atom-atom interaction
for simplicity. The initial state is in the zero momentum state,
i.e., q = 0 as discussed earlier. Even under this simplification,
the issue of finding the optimized pulse sequence is nontrivial,
being intrinsically a multiple-minimum problem since the ex-
citation rate depends sensitively on the pulse duration. Stated
differently, population of the target band sweeps through
numerous local optima as the pulse parameters are varied
smoothly, but finding the absolute maximum is difficult. See
Appendixes A and B for details.

The second optical lattice of the bichromatic OL plays the
role of interchanging the Bloch coefficients (up to sign) across
the Dirac point as noted in Fig. 2. This implies that a pulse
sequence cannot excite the atoms to the first excited band
while s2 < s2

1/16, but the tendency changes abruptly across
the critical value s2 = 6.25, that is, the process fails to excite
them to the second excited band once s2 exceeds 6.25 (recall
the parity interchange in Sec. II).

Table I shows sets of optimal parameters for several values
of s2 while s1 is fixed to 10. It clearly demonstrates the
interchange at s2 = 6.25 as described above. In all the cases

TABLE I. Band population at several values of s2 for given cycle
parameters in the bichromatic OL with lattice height s1 fixed to 10.

s2 τ1 τ ′
1 τ2 τ ′

2 B1(τtotal ) B2(τtotal )

5 3.8 4.9 23.1 28.9 0.000 0.999
6 21.4 30.8 8.4 9.8 0.000 0.999
6.25 21.6 30.5 8.7 10.0 0.479 0.520
7 21.4 30.0 8.7 11.2 0.998 0.000
8 13.0 22.9 2.5 30.4 0.995 0.001

presented, the applied sequences succeed in preparing almost
100% of the atoms into either of the two excited bands.

Turning to the trap ignored thus far, we note that in the
Beijing experiment an atomic BEC is set up in a 3D harmonic
trap first. The initial wave packet then has a Gaussian distri-
bution of finite width in momentum space. To see the effect of
the trap, we plot in Fig. 3 the population transfer rate R0(q)
calculated without a trap as a function of quasimomentum
using the cycle parameters shown in Table I. The shape of
the excited wave packet at the pulse sequence’s end could
then be estimated by this transfer rate R0(q) times the ini-
tial quasimomentum distribution ρ(q) integrated over q, i.e.,∫

R0(q)ρ(q) dq. The rate R0(q) being close to 1 around q = 0
(Fig. 3), the initial wave packet localized at q = 0 would
indeed be ideal for selective momentum transfer. In Table II,
we show the first and second excited band population at the
pulse end with ν = 1.0 × 10−5 (2π × 20 Hz) and ν = 1.2 ×
10−4 (2π × 70 Hz). These representative data suggest that the
harmonic trap is non-negligible and delocalizes the excited
wave packet in momentum space, reducing the transfer rate
R0(q) in comparison to the trapless case. For instance, in
Table II as we look at the n = 2 component, the transfer rate is
91% at ν = 1.0 × 10−5 whereas it is 81% at ν = 1.2 × 10−4

[Figs. 3(a) and 3(c)]. Thus, the pulse sequence with a tight
harmonic trap may not be advisable for selective momentum
transfer.

Interestingly, Fig. 3 shows that the transfer rate becomes
rather flat, i.e., less q dependent as s2 exceeds 6.25. Indeed
as shown in Table II, the reduction rate is 0.808/0.912 =
0.886 for the second excited band with s2 = 5, and
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FIG. 3. Population transfer rate as a function of quasimomentum with the cycle parameters shown in Table I. (a), (b), and (c) correspond to
s2 = 5, 6.25, and 8. Purple solid, green long dashed, and light-blue short dashed lines show ground, first, and second excited bands, respectively.
In (a), the distributions have a sharp peak (kink) for second (first). As the lattice height s2 increases toward (c), the peak and the kink in (a) flip
over, making the distribution seemingly less q dependent. See text for more detail.
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TABLE II. First and second excited band populations at the end
of the pulse sequence with s1 = 10.

s2 = 5 s2 = 6.25 s2 = 8

ν n = 1 n = 2 n = 1 n = 2 n = 1 n = 2

1.0 × 10−5 0.084 0.912 0.550 0.443 0.953 0.037
1.2 × 10−4 0.186 0.808 0.585 0.400 0.897 0.088

0.897/0.953 = 0.941 for the first excited band with s2 = 8. In
contrast to its importance in shaping the initial wave packet,
the harmonic trap is much less significant during excitation
since the duration of 100 μs is much shorter than the period
of motion in the trap which is about several milliseconds.

B. Postexcitation dynamics with the harmonic trap

Experimentally, the dynamics in quasimomentum space is
studied by applying the band mapping technique [17,18,29] to
excited components. In this technique, the atoms are released
adiabatically after a given holding time during which both the
OL and harmonic potential are kept on, and then their mo-
menta are measured by the time-of-flight method (see Fig. 1
of Ref. [29]). We replicate the experimental situation of the
Hamburg group [18–20] in our 1D calculations and examine
the dynamics of the excited wave packet in quasimomentum
space, quantum mechanically as well as semiclassically.

First, let us analyze the dynamics from the semiclassical
viewpoint; the wave packet obeys

Hcl = En
q + νx2, (4)

under the single-band approximation. This semiclassical
Hamiltonian allows us to calculate the outermost location of
the excited wave packet xmax and the critical time τc needed
for the wave packet to reach the edge q0 of the excited band,
where q0 = 0 for even-indexed bands and 1 for odd-indexed
ones. Here we assume that the excited wave packet is initially
located at (xi, qi ) = (0, ν1/4/

√
2), where the representative

value of qi corresponds to the variance of the ground-state
wave function in momentum space, and that the shape does
not change during the pulse sequence. This leads to the

following semiclassical expressions: xmax = ±
√

En
qi

−En
q0

ν
and

τc = 1
2
√

ν

∫ qi

q0
(
√

En
qi

− En
q )−1dq.

This single-band approximation breaks down when the
Dirac point appears as in Fig. 1(c). The motion of the wave
packet in the region covering the Dirac point is best analyzed
with the aid of the extended zone representation suitable
for the λ/4 OL. To a good approximation, the band energy
dispersion is given by the tight-binding model [35], namely,
E (qext ) = A − ∑∞

m=1 2Jm cos(mπqext/2) for the first (|qext| �
1) and second (1 � |qext| � 2) excited bands, where A and Jm

are the energy offset and the mth order hopping constant, re-
spectively. The energy dispersion could be expanded into Tay-
lor series with respect to qext as E (qext ) = A − 2

∑∞
m=1 Jm +

π2q2
ext

4

∑∞
m=1 m2Jm − π4q4

ext
192

∑∞
m=1 m4Jm + · · · . In the limit of

s1 
 1 while holding s2 = (s1/4)2, the tight-binding energy
dispersion reduces to a single cosine function. In contrast,
it goes to a superposition of cosine terms in the limit of
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48
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and (b) sextic to quadratic R6 = π4

5760

∑∞
m=1 m6Jm∑∞
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. In the limit of s1 

1, |R4| goes to 0.206 and |R6| goes to 0.017, which are rather small.

s1 � 1 [35]. As shown in Fig. 4, there is a region between
these two limits where the dispersion approaches a parabolic
function due to the destructive interference of cosine terms.
In the case of s1 = 10, this effect suppresses the higher-order
terms so that the classical Hamiltonian can be well approx-
imated by Hcl−ext = (

∑∞
m=1 π2m2Jm)q2

ext/2 + νx2, which is
quadratic both in x and qext, making the excited wave packet
robust. The wave packet thus enjoys isochronicity to an unex-
pectedly high degree. Moreover, the dispersion near the Dirac
point is approximately given by E (q) = A − πJ1q in the limit
of s1 
 1 where q = qext ± 1 ∼ 0 is the quasimomentum in
E (qext ) expressed above in the reduced zone representation.
This dispersion is thus in line with the explanation by the
Dirac equation [11,12].

Let us look at some numerical results of the TDSE calcula-
tions. Figure 5 shows the postexcitation evolution of the wave
packet during the holding time. Here the parameters are ν =
1.0 × 10−5, s1 = 10, and s2 = 5 for (a), s2 = 6.25 for (b), and
s2 = 8 for (c), respectively. In the case of (a), most of the
atoms are transferred to the bottom of the second excited band,
and only a small fraction of the wave packet goes to the top of
the first excited band. In addition, the Landau-Zener transition
between first and second excited bands is negligible [19,36].
The atoms are thus trapped in the second excited band. In
the case of (b), the gap is closed. Therefore, the wave packet
traces the band structure without reflection at the edge of the
second excited band. This results in the well-defined sharp
wave packet in position space. In the case of (c), the wave
packet traces the first excited band, and their typical wave
packet motion is characterized by xmax = 117 lattice sites and
τc = 11.9 ms. We note that all the figures show some beats,
which are characteristic interference patterns. This effect is
due to the nonparabolic dispersion of the band structure and
the broadening of the initial wave packet in momentum space.

Figure 6 shows momentum distributions after the band
mapping procedure is effected at representative values of
the holding time. (Note we plot only the positive part of
the momentum space because the density distribution always
keeps its symmetric feature with respect to q = 0.) We employ
the same band mapping procedure as in the experimental
paper [29], namely, we let the lattice height decay with the
decay time constant equal to 100 μs so that the band mapping
is presumably completed in 1 ms. The resulting distribution
is what would be observed experimentally. As we discussed
above, the momentum distribution is almost localized around
p = 2 in Fig. 6(a). However, in Figs. 6(b) and 6(c) the

013621-5



TOMOTAKE YAMAKOSHI AND SHINICHI WATANABE PHYSICAL REVIEW A 99, 013621 (2019)

FIG. 5. Time evolution of the wave packet in position space as
a function of holding time with s1 = 10 and ν = 1.0 × 10−5. Time
t = 0 corresponds to immediately after the second off-duty cycle.
Density becomes denser toward red and lower toward white. (a) For
s2 = 5, the excited wave packet is mostly located around the bottom
of the second excited band, thus it is located around the origin of the
harmonic potential. (b) For s2 = 6.25, the band gap becomes closed,
therefore the excited wave packet smoothly traces the band structure.
This results in a less dispersive motion of the wave packet in position
space. (c) For s2 = 8, the excited wave packet gets located around the
top of the first excited band, therefore it traces the first energy band.
The wave packet can thus travel far away from the origin.

main part of the momentum distribution travels in the first
excited band 1 < p < 2. Especially, in Fig. 6(b), the wave
packet appears less dispersive than the other two cases, the
classical Hamiltonian being well approximated by that of the
1D harmonic trap.

Let us also examine the dynamics (Fig. 7) with a tighter
harmonic trap ν = 1.2 × 10−4. In this case, the initial wave

FIG. 7. Time evolution of the wave packet in position space as a
function of holding time. Same as Fig. 5 with ν = 1.2 × 10−4.

function has a broader momentum distribution than in the
previous looser case. The features are almost the same as in
the case of ν = 1.0 × 10−5; however, the tighter trap reduces
both the time scale of the periodic motion and the length scale
of the position space. In Fig. 7(c), the characteristic values
are xmax = 33 lattice sites and τc = 3.13 ms. Figure 8 also
shows the momentum distribution after the band mapping.
In comparison to Fig. 6, each momentum distribution shows
a broader shape, reflecting the spatial tightness of the initial
wave function.

C. Effects of the atom-atom interaction

One of the reasons why ultracold atomic systems are
considered to offer a fascinating experimental playground is
that the strength of the nonlinear interaction is controllable by
the Feshbach resonance [34] so that the strongly interacting
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FIG. 6. Momentum distributions after the band mapping procedure with holding time thold = 0 (purple solid), 5.95 (green dashed), and
11.9 (light-blue long-dashed) ms. Here ν = 1.0 × 10−5. (a) corresponds to s2 = 5, (b) to s2 = 6.25, and (c) to s2 = 8.
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FIG. 8. Same as Fig. 6 for ν = 1.2 × 10−4. The holding time thold = 0, 1.57, and 3.13 ms.

regime becomes experimentally accessible with ease. Accord-
ing to previous studies, the atom-atom interaction alters the
conventional band structure, causing, for instance, the so-
called nonlinear Bloch bands presenting loop-like structures
at the band edge [30], solitary wave packets [31], and so forth.
Such changes show up when the strength of the nonlinear
term becomes comparable to the lattice height [37]. In the
experimental system considered, the nonlinear term is typi-
cally quite small such as 10−5–10−2. Nevertheless, to make
the influence of the nonlinear term clearly visible, we extend
its numerical range from 0 up to 1 in this paper.

Figure 9 shows the time evolution of the isochronic wave
packet after the pulse sequence at various values of the
effective interaction g. For this reason, we use the same

FIG. 9. Time evolution of the isochronic excited wave packet in
position space as a function of holding time with (a) g = 5 × 10−4,
(b) 1 × 10−2, and (c) 1. Here s1 = 10, s2 = 6.25, and ν = 1.0 ×
10−5. All the cases show clear and robust oscillation as in Fig. 5(b).

parameter set as for Fig. 5(b), but with (a) g = 5 × 10−4,
(b) 1 × 10−2, and (c) 1. Even in the case of (c) with g = 1,
there is no dramatic change; therefore the system is insensitive
to the interaction strength in a practical parameter regime.
Nevertheless, the nonlinear term broadens the initial wave
packet in space to such an extent that we notice the slight
spatial broadening of the excited wave packet in Fig. 9(c) by
scrutiny. On the contrary, in momentum space, the nonlinear
term contracts the initial wave packet, therefore the excited
wave packet immediately after the pulse sequence shows a
narrower distribution as shown in Fig. 10(a). However, the
wave packet with g = 1 spreads out gradually in momentum
space due to the interaction which imparts momentum to the
atom [Fig. 10(b)], so that the wave packet catches up with
those for smaller values of g, and the distributions thus coin-
cide after 11.9 ms. The semiclassical treatment then becomes
adequate. This result indicates that the nonparabolic disper-
sion dominates the early dynamics in the parabolic lattice
with ν = 1.0 × 10−5. At any rate, it appears difficult for real
experiments to reveal clear indication of the nonlinearity.

IV. CONCLUSIONS

We have theoretically examined the standing-pulse wave
sequence method established in Ref. [23], and extended it
to the coherent wave packet shaping in higher bands of the
one-dimensional bichromatic superlattice system. The bichro-
matic OL studied here revealed an unconventional crossing of
energy bands, namely, the Dirac point, between the first and
second excited bands. The excitation selection rule is seen to
change abruptly across the Dirac point as the height of the
second optical lattice is varied because the parity of the Bloch
states changes correspondingly. Our numerical results show
that the standing-wave pulse sequence method is also valid
for the bichromatic optical superlattice. For an ideal set of
parameters, the population transfer from the ground band to
the first and second excited bands is attained within 100 μs
with almost 100% efficiency.

In addition, we numerically examined effects of the har-
monic trap and the atom-atom interaction. We mainly focused
on the dynamics of the excited wave packet after the pulse
sequence. In so doing, we identified momentum distributions
of the excited wave packet by mimicking the experimental
band mapping technique, namely, by simulating the adiabatic
decay of the applied optical lattice.
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The classical theory accounts for the bulk of the dynamics
in phase space. We have seen that the band dispersion dom-
inates the dynamics. We found that the band dispersion ap-
proaches a parabolic curve in the presence of the Dirac point,
particularly with s1 = 10. Consequently, the wave packet
preparation in the presence of the Dirac point produces amaz-
ingly robust wave packets as shown in Figs. 5(b) and 7(b).
This inspiring feature of the wave packet would be useful for
atomic interferometry. We calculated the momentum distribu-
tion of the isochronic wave packet as a reference for future
experiments.

The harmonic potential affects the width of the initial
distribution in momentum space, which in turn causes some
reduction of the transfer rate. This fact suggests that a low-
frequency harmonic trap would be more preferable to a high-
frequency one for preparing the initial state of the BEC. We
also examined the effect of the atom-atom interaction in the
framework of the mean-field theory which is sufficient for
modeling practical experiments. We found that the interaction
does not alter the dynamics substantially for the interaction
strength considered. Since we merely considered the 1D sys-
tem in this paper, it remains to explore how the dimensionality
of the system affects the excitation process. However, its effect
would be negligible in practical situations according to our
previous study [20] as long as the nonlinear term is relatively
small in comparison to the lattice height.

Compared to the amplitude modulation method [17,18],
the pulse-sequence method excites atoms into higher bands
in a shorter period of time with higher efficiency. Moreover,
the acceleration by an external potential could serve to control
the position of an atom initially localized in momentum
space. Thus, creating solitary wave packets in the presence
of the Dirac point would be an especially fascinating ap-
plication akin to optical soliton generations in the field of
quantum optics. Another fascinating application would be to
investigate the topological dynamics in higher bands such as
the topological pumping [38]. However, the pulse-sequence
method may not be suitable for the selective momentum
transfer which requires energy conservation. For instance,
the hole creation in Fermionic quantum degenerate gases of
Refs. [18,22] used the amplitude modulation method instead
to guarantee energy conservation. On the other hand, devis-
ing a suitable combination of the pulse-sequence and the
amplitude modulation would lead to a powerful strategy for

precise and coherent manipulation of the atomic wave packet.
Moreover, the combination may pave the way to the physics
of exotic coherent resonant band couplings [3,39] with lattice
modulation [21,40], lattice shaking [41], and so forth. Much
remains to be explored.
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APPENDIX A: TOY MODEL FOR THE
PULSE-SEQUENCE METHOD

To grasp the mechanism of interband transition by the
pulse-sequence method, here we account for the popula-
tion transfer to the second excited band subject to a single
standing-wave pulse sequence. Consider the following toy
model for a monochromatic OL, namely, s2 = 0 in Eq. (3),
assuming the initial wave packet to be in the ground state of
a very loose parabolic trap ν 
 0. The system is spatially so
spread out that the uncertainty principle demands px = 0, that
is K = 0 with q = 0 [23]. The model consists of three states,
K = 0,±1 with q = 0 so that a state vector is represented by
a triplet of numbers (a, b, c) such as

(a, b, c) → ae−2ix + b + ce2ix.

The initial state is then

�(t = 0) = (0, 1, 0),

while the normalized eigenvectors vn (n = 0, 1, 2) are

vn = (CB(n, 0,−1),CB(n, 0, 0),CB(n, 0,+1)),

where n is the band index. [See Figs. 11(a) and 11(b).] Turning
the OL on suddenly is equivalent to projecting onto the OL
eigenvectors, thus

�(t = 0) = 〈v0|(0, 1, 0)〉v0 + 〈v2|(0, 1, 0)〉v2

= CB(0, 0, 0)v0 + CB(2, 0, 0)v2.

Propagating � over the on-duty period τ1, and then propa-
gating over the off-duty period τ ′

1, we get, in column vector
representation for clarity,

�(t = τ1 + τ ′
1) =

⎛
⎝

{
CB(0, 0, 0)CB(0, 0,−1)e−iE0

0 τ1 + CB(2, 0, 0)CB(2, 0,−1)e−iE2
0 τ1

}
e−i4τ ′

1

CB(0, 0, 0)CB(0, 0, 0)e−iE0
0 τ1 + CB(2, 0, 0)CB(2, 0, 0)e−iE2

0 τ1{
CB(0, 0, 0)CB(0, 0, 1)e−iE0

0 τ1 + CB(2, 0, 0)CB(2, 0, 1)e−iE2
0 τ1

}
e−i4τ ′

1

⎞
⎠.

This wave packet becomes proportional to v2 if

f (τ1, τ
′
1) =

[
CB(0, 0, 0)CB(0, 0, 1)e−iE0

0 τ1 + CB(2, 0, 0)CB(2, 0, 1)e−iE2
0 τ1

]
e−i4τ ′

1CB(2, 0, 0)

−
[
CB(0, 0, 0)CB(0, 0, 0)e−iE0

0 τ1 + CB(2, 0, 0)CB(2, 0, 0)e−iE2
0 τ1

]
CB(2, 0, 1) = 0.

The density | f (τ1, τ
′
1)|2 is doubly periodic in the present

three-state model, thus a typical unit cell appears as in Fig. 12.
Even under this simple assumption, the second excited band
population is observed to reach 99% for s1 = 10 as shown in
Fig. 11(c) and 11(d). To summarize, the first on-off duty cycle
attains minima of | f (τ1, τ

′
1)|2 through the phase difference

FIG. 12. Doubly periodic density | f (τ1, τ
′
1)|2 over a typical cell

with a pair of minima. The shortest and most efficient procedure
can be obtained by evaluating the total time τ1 + τ ′

1 and the density
| f (τ1, τ

′
1)|2 from the figure.

between the K = 0 and K = ±1 components, and then in
the actual experimental system, the second cycle is applied
to make further optimization. In the general case, the multi-
dimensional density plot as a function of (τ1, τ

′
1, τ2, τ

′
2, . . . )

reveals a multitude of minima, thus computational cost for
optimization diverges as the number of pulse sequences in-
creases. This problem may be optimizable, say, by the ma-
chine learning method.

APPENDIX B: OPTIMAL VALUES FOR THE
MONOCHROMATIC OL SYSTEM

Here we validate our numerical approach by comparing
with the experimental results of Ref. [23] for the monochro-
matic OL pulse sequence. As in Sec. III A, we assume
absence of both harmonic trap and atom-atom interaction,

TABLE III. Parameter sets for monochromatic OL listed for
s1 = 10 and 20. Here τi and τ ′

i represent the on-duty period and
off-duty period, respectively, for the ith cycle (i = 1, 2), τtotal = τ1 +
τ ′

1 + τ2 + τ ′
2, and B2 is the second excited band population. Label a

for this work, and b for experiment [23].

s1 τ1 τ ′
1 τ2 τ ′

2 τtotal B2(τtotal )

10 a 24.6 28.8 7.4 2.3 63.1 0.982
b 24.5 28.8 8.1 2.2 63.6 0.982

20 a 15.0 3.3 2.0 20.7 41 0.991
b 17.2 25 12.5 1.1 55.8 0.973
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and consider the q = 0 case. Since dephasing becomes pro-
nounced as the elapsed time gets longer, the proposed ex-
citation method is expected to be of more value for shorter
elapsed time. In Table III, label a corresponds to our nu-
merical results and b to the results in Ref. [23]. In the
case of s1 = 10, the two results almost coincide, whereas
in the case of s1 = 20, we discovered a scheme more effi-
cient with an even shorter duration than the results of s1 =
20 b. This fact reflects the multiple-minimum issue stated in
Appendix A.

APPENDIX C: ENERGY BANDS OF AN ATOM IN THE
BICHROMATIC LATTICE

In this Appendix, we present a simple treatment of the
band structure of the one-dimensional bichromatic lattice.
Here we apply the second-order perturbation theory, regarding
the second harmonic as the perturber to the monochromatic
OL, and explain the crossing features of the bichromatic band
structure discussed in Sec. II. The Hamiltonian HB1 = − ∂2

∂x2 +
s1 sin2(x) gives the Bloch states of the noninteracting bosonic
atoms. Each Bloch state is expanded as

χn
q (x) = eiqx

∑
K

CB1(n, q, K )e2iKx, (C1)

where the coefficient CB1(n, q, K ) derives from the recurrent
formula,

(q + 2K )2CB1(n, q, K ) − s1CB1(n, q, K − 1)/4

−s1CB1(n, q, K + 1)/4 = (
en

q − s1/2
)
CB1(n, q, K ). (C2)

Figure 13 is the Strutt diagram which shows En
q of Eq. (3)

against s2. The shaded regions pertain to the stable solutions
and the counterparts to the unstable ones. The Dirac points
mentioned in Sec. II appear at the intersections of the shaded
regions, for instance, at s2 = (s1/4)2 = 6.25 for the bands
labeled first and second, and at (s1/12)2 
 0.694 for second
and third. An additional Dirac point appears at s2 = (s1/8)2 

1.56 corresponding to q = ±1. The pulse sequence transfers
only those atoms near q = 0, therefore we focus on q = 0
hereafter.

The second-order perturbation theory yields the eigenener-
gies of the bichromatic OL system,

Ẽ n
q 
 en

q + s2

2
− s2

4
dn + s2

2

16
fn, (C3)

where using the standard formulas

dn =
∑

K

{CB1(n, q, K )CB1(n, q, K + 2) + CB1(n, q, K )CB1(n, q, K − 2)} (C4)

and

fn =
∑
j �=n

[∑
K {CB1(n, q, K )CB1(n, q, K + 2) + CB1(n, q, K )CB1(n, q, K − 2)}]2

(
en

q − e j
q
) . (C5)

For the first and second excited bands, the second-order
perturbation term can be ignored, thus the lattice height sc

2
which causes the Dirac point is determined by the condition
of degeneracy,

e1
0 + sc

2

2
− sc

2

4
d1 = e2

0 + sc
2

2
− sc

2

4
d2,

namely

sc
2 = 4

(
e2

0 − e1
0

)
(d2 − d1)

. (C6)

As for the third and fourth excited bands, the second-order
perturbation proves to play a more important role, thus sc

2 for
this case is obtained similarly,

sc
2 =

2(d4 − d3) ± 2
√

(d4 − d3)2 − 4( f4 − f3)
(
e4

0 − e3
0

)

( f4 − f3)
.

(C7)

Substituting actual values into the coefficients in Eqs. (C6)
and (C7), we discuss the case of the first and second excited
bands more closely. Power series for characteristic values
being known such as in the section for Mathieu functions
in Ref. [42], the relations between the lattice height s1 and
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FIG. 13. Stability diagram of the bichromatic lattice with s1 =
10. See text for details.
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the eigenenergies are found to be e1
0 = 4 + s1

2 − s2
1

192 and e2
0 =

4 + s1
2 + 5s2

1
192 where s1, s2 � 1. Now that dominant terms in

the expansion for eigenfunctions are limited, the Bloch coeffi-
cients may be simply approximated by CB1(1, 0,±1) = ± 1√

2

for n = 1 and CB1(2, 0,±1) = 1√
2

for n = 2, and all the other
components are 0. We thus get d1 = −1 and d2 = 1 [Eq. (C8)]
so that

Ẽ1
0 
 4 + s1

2
+ s2

2
− s2

1

192
+ s2

4
, (C8)

and

Ẽ2
0 
 4 + s1

2
+ s2

2
+ 5s2

1

192
− s2

4
. (C9)

The crossing point is located at sc
2 = s2

1
16 . To confirm the valid-

ity of this approximation at s1 = 10, we plot the eigenenergies
of the first and second excited bands as a function of s2 in
Fig. 14. The perturbation result agrees well with that of the
exact diagonalization for small s2 and shows the crossing.
The analytic formula of the second excited band overestimates
the eigenenergy but yields an accurate estimate of s2 for the
crossing.

The eigenenergies of the third and fourth
bands of the monochromatic OL are similarly

found to be e3
0 = 16 + s1

2 + s2
1

480 − 317s4
1

2163353 and

e4
0 = 16 + s1

2 + s2
1

480 + 433s4
1

2163353 . If we apply the same
simple assumption as for the n = 1 and 2 bands above,

we find dn goes to 0. Thus, we assume here that the
Bloch functions have some components other than
K = ±2. The Bloch coefficients for the third excited

band are then given by CB1(3, 0,±3) = ∓ 40−
√

402+s2
1√

2s1
,

CB1(3, 0,±2) = ± 1√
2
, and CB1(3, 0,±1) = ± 24−

√
242+s2

1√
2s1

and the other components are 0. For the fourth excited

band, the coefficients are CB1(4, 0,±3) = − 40−
√

402+s2
1√

2s1
,

CB1(4, 0,±2) = 1√
2
, CB1(4, 0,±1) = 24−

√
242+s2

1√
2s1

, and

CB1(4, 0, 0) = (8−
√

82+s2
1 )(24−

√
242+s2

1 )

2
√

2s2
1

, and the other

components are 0. These values give an approxi-

mate formula d4 − d3 
 5s2
1

2832 . For the second-order
perturbation term, we apply the simple assumption
used for the first and second excited bands, such as
CB1(0, 0, 0) = 1, CB1(3, 0,±2) = ± 1√

2
, CB1(4, 0,±2) = 1√

2
,

and CB1(7, 0,±4) = ± 1√
2
, CB1(8, 0,±4) = 1√

2
, and the

other components are set to 0. The corresponding energies
are e0

0 = 0, e0
3 = e0

4 = 16, and e0
7 = e0

8 = 64, leading to
f4 − f3 = 1/8. The analytic expressions are thus given by

Ẽ3
0 = e3

0 + s2

2
+ 11s2

1s2

210325
− s2

2

2832
, (C10)

and

Ẽ4
0 = e4

0 + s2

2
− 14s2

1s2

210325
+ 5s2

2

2832
. (C11)
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FIG. 15. Eigenenergies for the third and fourth excited bands at q = 0 as a function of s2 as in Fig. 14.
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Finally, we obtain sc
2 = 5s2

1
2432 ± 4s2

1
2432 . Consequently, the first

crossing point is given by s2
1

144 and the second crossing point

is given by s2
1

16 . Figure 15 shows the s2 dependence of the
eigenenergies of the third and fourth excited bands. Again, the
results of the perturbation theory and the analytic formula both
show a good agreement with that of the exact diagonalization.

We surmise that the crossing points may be represented by
a series of ( s1

4l )2 where l is an odd integer for q = 0, and
( s1

4k )2 where k is an even integer for q = ±1 to this order. It
may be interesting to work out mathematical details to clarify
the origin and significance of this behavior. We numerically
checked the results up to s1 = 100. It may be conjectured that
the mathematical features found here hold up to all orders.
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