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Fermi-Fermi crossover in the ground state of one-dimensional few-body systems with anomalous
three-body interactions
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In one spatial dimension, quantum systems with an attractive three-body contact interaction exhibit a scale
anomaly. In this work, we examine the few-body sector for up to six particles. We study those systems with a self-
consistent, nonperturbative, iterative method in the subspace of zero total momentum. Exploiting the structure
of the contact interaction, the method reduces the complexity of obtaining the wave function by three powers
of the dimension of the Hilbert space. We present results on the energy, momentum, and spatial structure, as
well as Tan’s contact. We find a Fermi-Fermi crossover interpolating between large, weakly bound trimers and
compact, deeply bound trimers: at weak coupling, the behavior is captured by degenerate perturbation theory; at
strong coupling, the system is governed by an effective theory of heavy trimers (plus free particles in the case
of asymmetric systems). Additionally, we find that there is no trimer-trimer attraction and therefore no six-body
bound state.
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I. INTRODUCTION

Quantum gases displaying scale invariance and scale
anomalies have been under study both theoretically and ex-
perimentally in a variety of contexts in the last two decades.
In three dimensions (3D) the unitary Fermi gas is an example
of a truly scale invariant, strongly interacting Fermi gas [1,2]
(in fact, it displays nonrelativistic conformal invariance [3]),
whereas the two-dimensional (2D) version of the same system
presents a scale anomaly [4–7]. Both of the above examples
have been realized experimentally with ultracold atoms by
several groups, and in particular, the 2D case has been under
intense scrutiny in recent years (see, e.g., [8–18]). The effect
of the anomaly in 2D has also been extensively studied from
the theoretical side (see, e.g., [19–27], and [28] for a review).

In the recent work of Ref. [29], it was shown that a very
simple generalization of the 2D scale-anomalous Fermi gas
mentioned above can be achieved in one dimension (1D)
as well. There, a three-species system of fermions, with
an interaction fine tuned such that only three-body forces
are present, contains a dimensionless coupling constant that
induces a bound state (trimer) at arbitrarily small couplings.
At about the same time, the bosonic analog was studied by
several groups in Refs. [30–33], where the few- to many-body
properties were explored both analytically and numerically.
In particular, such bosons were shown to form many-body
bound states (“droplets” [33]) whose energy grows faster than
exponentially with the particle number.

In contrast to the bosonic case mentioned above, relatively
little is known about fermions. For instance, Ref. [29] only
addressed the fully symmetric three-body problem (i.e., the
1 + 1 + 1 problem) and left open the questions of whether
two fermionic trimers are attractive or repulsive (which would
presumably leave an imprint on the nature of the many-body
ground state), and whether there is a coupling-dependent
crossover in the many-body behavior.

These types of questions are also relevant from a more
general perspective, as three-body forces play a central role
in nuclear physics. Indeed, two-body forces are typically
regarded as the most important feature of interacting models,
but three-body forces are being acknowledged as increasingly
relevant [34].

In this work, we seek to address the properties of few-
body, fermionic systems with three-body contact interactions
in 1D. Because the Pauli exclusion principle prohibits con-
tact interactions between two fermions of the same flavor,
the minimum nontrivial number of fermionic components
for this model is three, which we employ. Although it is
likely a challenge to engineer three-body forces, multiflavor
experiments with SU(N ) symmetry have been underway for
a few years [35], in particular, for N = 3 [36–38]. Here,
we investigate specifically the energetics and structure of all
possible interacting cases with up to six particles, labeling
them by the numbers of fermions of each component, e.g.,
2 + 2 + 2 indicates two fermions of each flavor.

Conventionally, 1D few- and many-fermion problems can
be solved exactly by way of the Bethe ansatz. The presence of
three-body interactions, however, makes this problem effec-
tively 2D when particles approach the interaction region, as
we showed in Ref. [29] (see also below). As a consequence,
the problem addressed here requires a different kind of com-
putational method. Fortunately, contact interactions allow for
simplifications which, as we will show below, make few-body
problems tractable for up to six particles with modest compu-
tational resources. For those cases, the full wave function is,
in fact, accessible.

Our approach bears conceptual similarities to the Faddeev-
Yakubovsky equations [39], where the wave function is sep-
arated into interacting and noninteracting pieces, as well as
to the Skorniakov–Ter Martirosian equations [40], where a
three-body problem is reduced to a lower-dimensional integral
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equation. Our method is also reminiscent of the Lippmann-
Schwinger equation [41].

The remainder of the paper is organized as follows: In
Sec. II, we describe the Hamiltonian of the model, provide an
example of the simplest case, and explain how the coupling
is renormalized. Section III introduces our computational
method at length and provides details about the numerical
implementation. Results obtained are presented in Sec. IV,
and we summarize and conclude in Sec. V.

II. HAMILTONIAN AND RENORMALIZATION

The system is defined by the following Hamiltonian:

Ĥ =
∑

s=1,2,3

∫
dp ε(p) â†

s,pâs,p + g

∫
dx n̂1(x)n̂2(x)n̂3(x),

(1)

where ε(p) = h̄2p2

2m
. Here, â

†
s,p and âs,p are the fermionic cre-

ation and annihilation operators for particles of species s and
momentum p, and n̂s (x) is the corresponding density at posi-
tion x. Throughout this work, we will take h̄ = kB = m = 1.

In what follows, we use the momentum (position) variables
p, k, q (respectively x, y, z) to distinguish between fermionic
species. For instance, in first quantization, the Hamiltonian for
the four-body 2 + 1 + 1 system is

Ĥ = 1

2

(
p̂2

1 + p̂2
2 + k̂2 + q̂2

) + g

2∑
i=1

δ(xi − y)δ(y − z).

(2)

For other numbers of particles, one interaction term must be
included for every possible combination of three different-
flavored fermions (trimers). Fermions of the same species do
not interact because of the Pauli exclusion principle.

In order to renormalize the bare coupling g, we choose
a lattice regularization such that from this point on the bare
coupling g is a lattice coupling. The connection between g and
the specific physical situation is determined by a renormal-
ization prescription which relates g to the lattice momentum
cutoff � and the trimer binding energy εB . That relationship
is obtained by solving the three-body problem as shown in
Ref. [29], which yields

1

g
= − 1

L2

∑
k

1

εk + εB

, (3)

where L = Nx� is the lattice size, � is the lattice spacing, εk =
(k2

1 + k2
2 + k2

3 )/2, k = (2π/L)(n1, n2, n3), and the sum cov-
ers 0 � |n1 + n2| � �, with the constraint n1 + n2 + n3 = 0
(i.e., vanishing total momentum).

As can be appreciated in Eq. (3), the ultraviolet (i.e.,
short-range) behavior of the momentum sum is the same as
that of the 2D two-body problem in the sense that they both
diverge logarithmically [29]. We thus see that even though our
problem is in 1D globally, it is in 2D locally.

III. FORMALISM

As mentioned above, in this work we consider systems
with three species of fermions 1,2,3 and corresponding vary-

ing particle numbers N1, N2, N3. We will fix those numbers
and refer to the corresponding system as the N1 + N2 + N3

problem. As species 1,2,3 are distinguishable from one an-
other but particles are otherwise identical, we use as a starting
point a product wave function with one factor for each species,
i.e., we start with a multiparticle wave function of the form
ψ = ψ1ψ2ψ3.

Within a given species, the wave function must be anti-
symmetric with respect to particle exchange, and to impose
that property we expand that factor in a basis of Slater
determinants of plane waves. (In particular, we use a single
Slater determinant as a starting point in the iteration process
described below.) Since the Hamiltonian preserves particle
symmetry and the symmetric and antisymmetric subspaces
are orthogonal, this initial projection is sufficient to capture
the antisymmetry of the true wave function of the interacting
system. In particular, when transforming from the position-
space wave function ψ (x) to the momentum-space wave func-
tion φ(p), the usual (unsymmetrized) Fourier transform may
be used. Additionally, we make use of the fact that the total
momentum is conserved and impose a zero-total-momentum
constraint on the multiparticle wave function.

Formally, our approach consists in separating the kinetic
and potential energy operators and grouping the former with
the energy eigenvalue E in the Schrödinger equation, i.e., if
Ĥ = T̂ + V̂ , then we write the eigenvalue problem as

φ = 1

T̂ − E
V̂ φ , (4)

where φ is the multiparticle wave function and the inverse
of T̂ − E is easily addressed as it is diagonal in momen-
tum space. The problem now becomes that of finding, for a
proposed E, whether such a unit-eigenvalue equation can be
satisfied. To that end, we implement the iterative approach
described below which, crucially, exploits the zero-range na-
ture of the interaction to avoid computing determinants (which
would be the conventional way to solve the above problem).

As an illustration, consider the simplest nontrivial case
of 2 + 1 + 1 particles. The kinetic energy terms are simply
given by the sum of the kinetic energies of the individual
particles. As shown in Eq. (2), the interacting part of the
Schrödinger equation contains two terms corresponding to the
two different ways in which the 1 + 1 subsystem can interact
with the two identical particles. We consider just one of those
terms and proceed in momentum space.

One of the identical particles is a spectator, while the other
three interact such that the Fourier transform over the former
is trivial. As usual, translation invariance yields a δ function
that imposes conservation of total momentum of the reactants,
leading to

g

L2

∑
p′

1,k
′,q ′

φ(p′
1, p2, k

′, q ′) δ(P1 − P ′
1), (5)

where P1 = p1 + k + q and P ′
1 = p′

1 + k′ + q ′. While explic-
itly a function of all four momentum variables, this term
can be reduced to a function of only one by choosing the
center-of-momentum frame (i.e., only eigenstates of the total
momentum operator with eigenvalue zero are considered),
such that P1 + p2 = 0; from here on out, we will work in this
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frame. Then the δ function appears as δ(P ′
1 + p2). Including

both contributions to the interacting piece and rearranging, the
full Schrödinger equation becomes

φ(p1, p2, k, q ) = G0(P 2)
∑

i

(−1)if (pi ), (6)

where the fermionic antisymmetry is manifest. Here P 2 =
1
2 (p2

1 + p2
2 + k2 + q2) is the total kinetic energy, and

G0(P 2) = −g/L2

P 2 − E
(7)

is the noninteracting propagator multiplied by −g/L2. The
function f , not yet determined, is related to φ by

f (p) = 1

2!

∑
u,v

(1 − P̂up )φ(u, p, v, ς ), (8)

where u, v are dummy variables, and the first sum has been
carried out using the δ function; the operator P̂up exchanges u

and p. Here and in what follows, ς denotes the negative of the
sum of all other momentum variables present as arguments,
which results from momentum conservation; thus, in the
above equation, ς = −u − p − v.

The benefit of this approach is apparent already in Eq. (6)
upon considering the indistinguishability of fermions of the
same species. Indeed, together with zero total momentum
and the freedom to relabel summation indices, all interaction
terms were brought into the same functional form using
the function f (p) of Eq. (8), which depends on only one
momentum variable.

By substituting Eq. (6) into Eq. (8), an implicit summation
equation for f is obtained which can be solved iteratively.
Being a function of only one variable instead of four, f is
much more amenable to an iterative solution than the original
equation in terms of the momentum-space wave function φ.
This three-dimensional reduction in the complexity of the
problem that must be solved is a general feature of this method
for the three-body contact interaction.

Up to this point, the energy eigenvalues have not been
addressed. By requiring the momentum-space wave function
φ to be normalized, however, we obtain an equation that, when
solved simultaneously with the aforementioned summation
equation for f , fixes E. A further simplification arises here:
Since all momenta are summed over, particle species are
interchangeable in f inside the sums, greatly reducing the
number of terms. Finally, φ (and f ) may be taken to be real,
since any imaginary part would obey the same equation. All
told, the normalization condition which fixes E is

1 =
∑

p1,p2,k,q

G2
0(P 2)f (p1)

∑
i

(−1)i+1f (pi ), (9)

where constant prefactors have been omitted for reasons dis-
cussed in the next section. With periodic boundary conditions,
the kinetic contributions are expanded as ( 2πn

L
)
2
, n integer,

and the energy is expressed in terms of the three-body energy
as −E = αεB , where εB is the (positive) binding energy of the
trimer at the given coupling.

The different five- and six-body systems can be treated in a
similar fashion; the corresponding expressions for all possible
interacting configurations are collected in Table I. In all cases,
when constructing the definition of f , it is crucial to do so
in a way that retains the ordering of like-flavor fermions as
arguments of φ.

A. Iterative method

For all cases, the wave function φ is initialized as a
uniform momentum distribution subject to the constraints of
antisymmetrization and zero total momentum. The auxiliary
functions f are constructed from such φ (see Table I, third
column) before being fed into their defining implicit equations
(see Table I, second and third columns). An initial run of
4000 iterations on f is carried out before continuing until the
lowest energy value of α = −E/εB that leads to a properly
normalized wave function (built from f ) is converged to a
tolerance of 10−3. The numerical value of α is determined

TABLE I. Wave functions and auxiliary functions for various systems. The collective index (p1p2u), appearing in sums in the third column,
indicates a summation over cyclic permutations of p1, p2, u as the first three arguments of φ, which correspond to like-flavor fermions. All f

expressions are summed over u and v. The argument of G0(P 2) is always the sum of the kinetic energies of all the particles in the system, i.e.,
P 2 = 1

2 (
∑

i p
2
i + ∑

j k2
j + ∑

k q2
k ).

System φ f Summand Normalization summand

2+1+1 G0

∑
i

(−1)if (pi )
1

2!
(1 − P̂up )φ(u, p, v, ς ) G2

0f (p1)
∑

i

(−1)i+1f (pi )

2+2+1 G0

∑
i,j

(−1)i+j f (pi, kj )
1

(2!)2
(1 − P̂up )(1 − P̂vk )φ(u, p, v, k, ς ) G2

0f (p1, k1)
∑
i,j

(−1)i+j f (pi, kj )

3+1+1 G0

∑
i,j,k

εijkf (pi, pj )
1

3!

∑
(p1p2u)

φ(p1, p2, u, v, ς ) G2
0f (p1, p2)

∑
i,j,k

εijkf (pi, pj )

2+2+2 G0

∑
i,j,k

(−1)i+j+kf (pi, kj , qk )
1

(2!)3
(1 − P̂up1 )(1 − P̂vk1 )

× (1 − P̂ςq1 )φ(u, p1, v, k1, ς, q1)
G2

0f (p1, k1, q1)
∑
i,j,k

(−1)i+j+k+1f (pi, kj , qk )

3+2+1 G0

∑
i,j,k,l

(−1)lεijkf (pi, pj , kl )
1

3! · 2!

∑
(p1p2u)

(1 − P̂vk1 )φ(u, p1, p2, v, k1, ς ) G2
0f (p1, p2, k1)

∑
i,j,k,l

(−1)l+1εijkf (pi, pj , kl )

4+1+1 G0

∑
i,j,k,l

εijklf (pj , pk, pl )
1

4!
{1 − [1 − (1 − P̂up3 )P̂up2 ]P̂up1 }
× φ(u, p1, p2, p3, v, ς )

G2
0f (p1, p2, p3)

∑
i,j,k,l

εijklf (pi, pj , pk )
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by cubic spline interpolation of the normalization of φ in a
monotonic neighborhood containing unity.

To ensure numerical stability, f is divided by the most
recent normalization of φ before each iteration. Since the
implicit summation equation is unaffected by overall factors
(by virtue of the fact that the Schrödinger equation is linear),
this division has no impact on the functional form; thus,
constant prefactors, including those proportional to g/L2 and
those arising from combinatorics, are absorbed into the overall
scale of f and thus may be omitted from the normalization
expressions. (All coupling dependence is carried and enforced
by the implicit equation for f .) While all values of α of course
lead to proper normalizations immediately after this step, only
the correct α is a fixed point and remains equal to unity after
repeated iterations. While the outermost momentum loops are
carried out in parallel, all other entries of f are updated as
soon as they are computed, as in the Gauss-Seidel method.

B. Weak-coupling expansion

In the limit of very small coupling, we expect that the
ground state can be expressed as a linear combination of non-
interacting ground states. In this limit, the energy can be writ-
ten as E = EFG − ε, where EFG is the energy of the nonin-
teracting free gas (FG) ground state and ε is a small deviation
of the order of εB . At leading order in ε, the surviving terms
in the sum over G0(P 2) are the ones for which P 2 = EFG.
Similarly, at leading order in εB , −g/L2 ≈ εB . As a result,

G0(P 2) = εB

ε
+ O

( εB

P 2

)
. (10)

Working in the basis of noninteracting FG states, the
momentum sums appearing in the equations for f may
now be carried out in closed form, allowing an exact solution
at weak coupling.

IV. RESULTS

Using the technique described above, we have explored the
properties of all attractively interacting systems with up to
six particles beyond the already solved case of three particles
(namely, the 1 + 1 + 1 problem): four particles (2 + 1 + 1);
five particles (2 + 2 + 1 and 3 + 1 + 1); and six particles (2 +
2 + 2, 3 + 2 + 1, and 4 + 1 + 1). In this section we show, for
those systems, our results for the ground-state energy, spatial
and momentum structure, and Tan’s contact of all six systems
across five orders of magnitude in the trimer binding energy
εB [expressed in dimensionless form as εB ≡ (2π/L)−2εB].

A. Energy

Figure 1 shows our results for the ground-state energy E

of the various few-body problems as a function of the binding
energy εB ≡ (2π/L)−2εB of the trimer. EFG is the ground-
state energy of the corresponding noninteracting system, and
N = N1 + N2 + N3 is the total particle number. In all cases,
the energy of the system is progressively more dominated by
the binding energy of the trimer as the coupling is increased.

At weak coupling, one may attempt to capture the physics
of the system with perturbation theory, which amounts to
computing 〈V̂ 〉 in a noninteracting ground state, where V̂ is
the three-body interaction. As we will show, however, the

FIG. 1. Top: Ground-state energy E per particle of few-body
systems as a function of the coupling, as measured by the binding en-
ergy εB ≡ (2π/L)−2εB of the trimer. EFG is the ground-state energy
of the corresponding noninteracting system. (Bottom left) Weak-
coupling regime, where dashed lines depict the NLO perturbative
approximation using a linear combination of noninteracting ground
states. (Bottom right) Energy per particle at strong coupling in units
of the trimer binding energy; the limiting values in this case are given
by the number of trimers formed, divided by N , which yields (from
bottom to top) −1/3, −1/4, −1/5, −1/5, −1/6, and −1/6. Dashed
curves depict the NLO approximation in the particle-to-trimer mass
ratio with Bethe-Peierls boundary conditions.

interaction term breaks the degeneracy among noninteracting
ground states; carrying out that calculation using a valid,
but arbitrary, noninteracting ground state would not yield the
correct result. Instead (using a linear combination of non-
interacting ground states), degenerate perturbation theory at
next-to-leading order (NLO) yields the dashed lines of Fig. 1
(bottom left), which agree with our nonperturbative results
in the weak-coupling limit. Our nonperturbative calculation
converges to the following values (from bottom to top): −2
(red), −3/2 (blue, magenta), −1 (green), −5/6 (yellow), and
−3/5 (cyan). The NLO energy of a single trimer would appear
in all the panels of Fig. 1 simply as −1/3, which is actually
(and deceptively) the exact result at all couplings.

To find the correct linear combinations of noninteracting
ground states, we may solve the equations for f at weak
coupling as described previously. For the 2 + 1 + 1 system,
the FG states allow only momentum values of p = 0 and
|p| = 1, allowing us to write⎛

⎝ 3 −2 −1
−2 4 −2
−1 −2 3

⎞
⎠

⎛
⎝f (−1)

f (0)
f (1)

⎞
⎠ = ε

εB

⎛
⎝f (−1)

f (0)
f (1)

⎞
⎠, (11)
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yielding eigenvalues of ε = 4εB and ε = 6εB , where the total
energy is E = EFG − ε; there is also a spurious solution of
ε = 0 that is inconsistent with the assumed approximation.
This splitting of energies demonstrates how an arbitrarily
small coupling breaks the degeneracy of the FG states. The
eigenvector corresponding to the ground state, ε = 6εB , de-
mands that f (−1) = f (1) = − 1

2f (0). Consistency with the
equations in Table I then determines

f (p) =
√

2[δ(p − 1) − 2δ(p) + δ(p + 1)], (12)

which also allows determination of the position-space wave
function as

ψ (x1, x2, y, z) = ψ̃ (x2, y, z) − ψ̃ (x1, y, z), (13)

where ψ̃ (x, y, z) = 1√
2L2 [cos ( 2π (x−y)

L
) + cos ( 2π (x−z)

L
)]. The

same procedure may be carried out for the other systems; in
all cases, the ground-state eigenvalues agree with the limiting
values in Fig. 1 (bottom left).

In the limit of strong coupling, trimers will be extremely
localized and act as impenetrable, composite fermions. The
low-energy effective Hamiltonian in terms of noninteracting
trimers and the remaining unbound fermions can be written as

Ĥeff = 1

2m

(
p̂2

unbound + λp̂2
trimer

)
, (14)

where λ = 1/3 is the fermion-to-trimer mass ratio and is
treated as a small parameter. For all of the systems considered
here except the 2 + 2 + 2 problem, only one trimer forms.
In those cases, the limit of small λ yields a massive trimer
which, using Bethe-Peierls boundary conditions, shows that
the problem is equivalent to that of noninteracting fermions in
a 1D hardwall box. Using that mapping, we present results on
a NLO (first order in λ) approximation to the energy for com-
parison with our numerical results in Fig. 1 (bottom right), for
which we find the agreement to be excellent. The 2 + 2 + 2
system comprises two trimers, so we treat its strong-coupling
limit as that of two identical fermions of mass 3m on a 1D
ring; again, the agreement is very satisfactory.

B. Trimer-trimer interaction and (un-)bound state

Of particular interest is the nature of the interaction be-
tween two trimers. At strong coupling, the deeply bound
trimers likely repel each other due to Pauli exclusion of their
constituent fermions. At weak and intermediate couplings,
however, it is a priori possible for the trimer-trimer interaction
to be attractive, such that hexamers may form, and that trimer-
trimer pairing may affect the nature of the ground state in the
many-body regime.

To address this question, we apply our method to the
2 + 2 + 2 system, fixing the energy to twice the binding
energy εB (the threshold for attractive interaction), and search
for the smallest value of εB that allows a normalized wave
function. While this can be carried out numerically, our results
indicate that such a hexamer state is not physical. In Fig. 2,
the calculated energy of this state is larger than the kinetic
energy associated with the momentum cutoff �, violating the
necessary separation of scales in our renormalization scheme.
Furthermore, in contrast to all other cases investigated, the
energy does not converge to a continuum value in the limit of
large Nx . Combined with the fact that the 2 + 2 + 2 system’s

FIG. 2. (Left) Coupling (εB ) required for threshold trimer-trimer
binding. In addition to diverging in the continuum limit, the energy
of the bound hexamer state (dotted blue) always exceeds the lattice
cutoff energy (red), indicating that no such state exists. (Right)
Energy of the 2 + 2 + 2 system relative to the energy of two trimers,
showing that the trimers repel each other.

energy appears to approach 2εB asymptotically from below
(see Tables II and III), we conclude that the trimers approach a
hard-core repulsive interaction in the limit of large coupling.

Based on the above analysis, we conclude that at least
at the few-body level there is no trimer-trimer bound-state
formation. It remains to be determined whether the presence
of a Fermi surface (i.e., a finite background fermion density)
induces trimer-trimer pairing in the many-body regime.

C. Structure

1. Momentum structure

In Figs. 3 and 4 we show the momentum distribution for the
2 + 1 + 1 problem at weak and strong coupling, respectively.
As expected, at weak coupling, only low-lying momentum
states are occupied. As we increase the coupling, higher
momentum states become filled (Fig. 4; note the difference
in scales compared to Fig. 3). We anticipate that the increased
number of momentum states contributing at strong coupling
corresponds to enhanced spatial localization of trimers.

2. Spatial structure: Selected two-body density matrices

Since f provides full information on the momentum-space
wave function, we can also access the position-space wave
function by Fourier transformation. Here we provide spatial
density distributions of the simplest case (2 + 1 + 1) to illus-
trate how an excess particle positions itself around a trimer.
In Figs. 5 and 6, we present the particle density of the two
identical particles as a function of their positions. Since the
system is translation invariant, we fix the position of one of the
unique fermions at the origin and integrate over the position
of the other. With this choice, the (1D) origin serves as the
center of the trimer and we will refer to it accordingly.
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TABLE II. Numerical energy ratios α = −E/εB corresponding to each coupling εB = (2π/L)−2εB .

System

εB 2 + 1 + 1 2 + 2 + 1 3 + 1 + 1 2 + 2 + 2 3 + 2 + 1 4 + 1 + 1

10−3 − 994.019 − 995.016 − 997.001 − 1988.024 − 1991.045 − 3994.985
2 × 10−3 − 494.038 − 495.031 − 497.002 − 988.048 − 991.085 − 1994.970
5 × 10−3 − 194.107 − 195.078 − 197.004 − 388.126 − 391.193 − 794.929
10−2 − 94.208 − 95.154 − 97.011 − 188.269 − 191.385 − 394.869
2 × 10−2 − 44.411 − 45.306 − 47.030 − 88.589 − 91.757 − 194.779
5 × 10−2 − 14.969 − 15.729 − 17.117 − 29.626 − 32.751 − 74.736
7.5 × 10−2 − 8.698 − 9.369 − 10.546 − 17.097 − 20.096 − 48.202
10−1 − 5.702 − 6.301 − 7.313 − 11.133 − 13.989 − 35.067
2 × 10−1 − 1.626 − 2.045 − 2.673 − 3.081 − 5.453 − 15.888
5 × 10−1 0.264 0.036 − 0.246 0.590 − 1.116 − 5.144
7.5 × 10−1 0.573 0.403 0.209 1.190 − 0.306 − 2.925
1 0.706 0.569 0.422 1.440 0.068 − 1.864
1.5 0.823 0.724 0.625 1.660 0.417 − 0.837
2 0.875 0.797 0.721 1.758 0.577 − 0.341
3 0.922 0.867 0.815 1.848 0.729 0.137
5 0.956 0.922 0.888 1.913 0.843 0.503
7.5 0.972 0.949 0.924 1.945 0.896 0.680
10 0.979 0.962 0.942 1.959 0.923 0.764

Figure 5 shows the analytical results in the weakly inter-
acting limit (our nonperturbative result at εB = 10−4 is indis-
tinguishable from the perturbative result at ε = 6εB). The left
panel reveals that the ground state favors a configuration of
one large trimer far away from a free particle. The first excited
state, however, favors a four-body molecular configuration
(right panel) where the two identical fermions are equidistant
from the molecular center. The probability distribution,

P (|x2 − x1|/L) =
∫

dy dz |ψ (x1, x2, y, z)|2, (15)

for particle separations |x2 − x1| is plotted in Fig. 7, showing
that the ground state typically maximizes the distance between
identical fermions.

Figure 6 provides support for our approximate model at
strong coupling. One fermion is tightly bound and highly lo-
calized around the center of the trimer, while the other tends to
be on the opposite side of the ring (we use periodic boundary
conditions), albeit with much more freedom to move about
the ring. In fact, due to the high degree of localization of the
particle in the trimer, the separation of the two particles can
be approximately regarded as the position of the free fermion.

TABLE III. Lattice sizes Nx used for each entry of Table II.

System

εB 2 + 1 + 1 2 + 2 + 1 3 + 1 + 1 2 + 2 + 2 3 + 2 + 1 4 + 1 + 1
10−3 41 15 15 15 15 15
2 × 10−3 41 15 15 15 15 15
5 × 10−3 41 15 15 15 15 15
10−2 41 41 21 15 15 15
2 × 10−2 41 41 21 15 15 15
5 × 10−2 41 41 21 15 15 15
7.5 × 10−2 41 41 21 15 15 15
10−1 41 41 21 15 15 15
2 × 10−1 41 41 21 15 15 15
5 × 10−1 41 41 25 15 21 21
7.5 × 10−1 41 41 51 31 21 31
1 41 41 51 31 21 31
1.5 41 41 51 31 21 31
2 41 41 51 31 25 31
3 41 41 51 31 31 31
5 41 41 61 31 31 31
7.5 41 41 61 41 41 41
10 41 41 61 41 41 41
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FIG. 3. Weakly interacting (εB = 10−4) momentum density of
two identical particles in the 2 + 1 + 1 system with the distinct
particles integrated out. Here, identical particles fill the Fermi level
rather than take on opposing momenta.

The roughly sinusoidal shape of this curve in Fig. 7 is thus yet
another validation of our approximation at strong coupling.

D. Contact

Tan’s contact [42–44] controls the high-momentum (short-
distance) asymptotics of correlation functions in theories with
short-range interactions. While the resulting universal rela-
tions have not yet been derived for the present case, it is easy
to see using the Feynman-Hellmann theorem that the contact
can be expressed as the derivative of the energy with respect to
the logarithm of the scattering length (as shown for the system
considered here in Ref. [29]). Here, we work in terms of the
binding energy rather than the scattering length, such that the
(dimensionless) contact takes the form

C = −4π
∂E

∂ (ln εB )
, (16)

where (2π/L)2E = E. We compute this derivative from a
cubic spline interpolation of the energy and present the re-

FIG. 4. Strongly interacting (εB = 10) momentum density of
two identical particles in the 2 + 1 + 1 system with the distinct
particles integrated out.

FIG. 5. Weakly interacting particle density (left: E − EFG =
−6εB ; right: E − EFG = −4εB ) of two identical particles in the
2 + 1 + 1 system. For the two distinct particles, one is fixed at the
origin and the other is integrated out.

sults in Fig. 8, where we divide by the number of whole
trimers, ν, that can be formed in each system. Though there
are some small deviations (possibly stemming from the in-
terpolation), the curves for all six cases overlap across the
entire range of coupling values. The agreement is strongest at
large coupling, indicating that the energy there is dominated
by whole trimers—were there larger molecules forming, we
would expect to see variation among the different systems.
At intermediate coupling strengths, the modest differences
may reflect competition between the different particles for
inclusion in the trimer.

As mentioned above, the contact governs the short-distance
behavior of theories with short-range interactions. We there-
fore expect the well-known host of universal relations (pre-
viously derived for two-body interactions) to have analogs
for the present system. It is not difficult to see, following the
derivations of Ref. [45], that the short-distance behavior of the
N -particle wave function should obey

ψ (x1, x2, . . . , xN )

→ ln(rijk

√
εB )Aijk (Rijk, θijk, {xq}) + O(rijk ), (17)

where {xq} = (xq )q 	=i,j,k; rijk = (xi − xj , xi − xk ), such that
(rijk, θijk ) is its polar representation (and therefore rijk is

FIG. 6. Strongly interacting (εB = 10) particle density of two
identical particles in the 2 + 1 + 1 system. For the two distinct
particles, one is fixed at the origin and the other is integrated out.
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FIG. 7. Probability P (|x2 − x1|/L) of finding the two identical
particles at a given separation |x2 − x1| of the two identical particles
in the 2+1+1 problem. This function is translation invariant after
integrating over all positions of the two distinct particles as in
Eq. (15). The stronger the interaction, the farther apart the particles
are likely to be.

a measure of the distance between particles i, j, k, where
each index corresponds to a different particle species); Rijk =
(xi + xj + xk )/3 is the center-of-mass coordinate of particles
i, j, k; and Aijk is the regular part of the wave function. As
mentioned above, this form is expected at short distances (as a
result of the short-range behavior of the three-body problem),
which here means rijk

√
εB 
 1.

While we defer a more complete account and derivation
of universal relations to future work, we point out here for
completeness how such calculations would proceed in the
particular case of the trimer distribution function, which is

FIG. 8. Tan’s contact divided by the number of trimers present, ν,
as a function of the dimensionless trimer binding energy εB . (Inset)
Same as main plot, after subtracting the contact for ν trimers; the
oscillations at strong coupling are due to interpolation effects on the
energy upon numerical differentiation.

defined as

g
(3)
123(R, r) =

∫
dx1 . . . dxN |ψ (x1, x2, . . . , xN )|2

×
N1,N2,N3∑
i1,i2,i3

δ
(
xi1 − f1

)
δ
(
xi2 − f2

)
δ
(
xi3 − f3

)
,

(18)

where i1, i2, i3 correspond to the three different species,
f1 = R + (r1 + r2)/3, f2 = f1 − r1, f3 = f1 − r2, and r =
(r1, r2). The first step is to insert Eq. (17) into the above
expression for g

(3)
123(R, r), when r = |r| → 0. Then, each term

in g
(3)
123(R, r) is governed by the divergent piece of the wave

function, which is the same for all terms, such that,

g
(3)
123(R, r) → ln2(r

√
εB ) F (R, θ ), (19)

where

F (R, θ ) =
N1,N2,N3∑
i1,i2,i3

∫ ∏
k 	=i1,i2,i3

dxk|Ai1,i2,i3 (R, θ, {xq})|2, (20)

where {xq} = (xq )q 	=i,j,k . Finally, by integrating over R and θ ,
we obtain the integrated trimer distribution function G

(3)
123(r ),

which inherits the short-distance behavior of g
(3)
123, i.e.,

G
(3)
123(r ) ≡

∫
dRdθ g

(3)
123(R, r) → ln2(r

√
εB ) K. (21)

Here, the constant K is determined by the contact, up to
a coupling-independent factor. Following the derivations of
Ref. [45], it is not difficult to see that our use of the Feynman-
Hellmann theorem to access the contact [i.e., the adiabatic
relation of Eq. (16)] can also be derived starting from Eq. (17)
by evaluating the expectation value of the Hamiltonian. As
above, the crucial aspect of the derivation is that

√
εB sets the

scale for the short-distance behavior, such that once the diver-
gent piece has been factored out, what remains is proportional
to the integrated regular part squared |Ai1,i2,i3 (R, θ, {xq})|2.
One can glean from the above example that the universal
relations of the 1D system explored here will always mimic
those of the 2D analog with two-body interactions.

V. SUMMARY AND CONCLUSIONS

To summarize, we have extended the analysis of the
three-body problem with a three-body contact interaction of
Ref. [29] beyond the 1 + 1 + 1 system. Here, we have studied
the higher-body problems up to six particles in all possible
nontrivial combinations, namely, four particles (2 + 1 + 1);
five particles (2 + 2 + 1 and 3 + 1 + 1); and six particles
(2 + 2 + 2, 3 + 2 + 1, and 4 + 1 + 1). With the exception of
the 2 + 2 + 2 case, which will form two trimers, each of the
cases considered will form only one trimer. To solve those
problems, we designed a self-consistent numerical approach
which is the natural generalization of the analytic solution
of the 1 + 1 + 1 problem of Ref. [29]. Our solution gives
immediate access to essential properties such as the energy
and Tan’s contact, but it also provides the multiparticle wave
function, from which everything else is calculable.
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As a function of the interaction strength, our results show
that the energy of the various systems studied presents clear
variations as a function of the system composition (see Fig. 1).
On the other hand, we have found that Tan’s contact dis-
plays extremely small variations across the different systems.
At weak coupling, we compare with first-order perturbation
theory in the bare coupling, renormalized using the three-
body binding energy, and find good agreement after taking
into account the breaking of the degeneracy of noninteract-
ing ground states, i.e., using degenerate perturbation theory.
At strong coupling, one expects a description dominated
by bound trimers plus noninteracting particles. We imple-
mented that approximation by representing the trimer as a
pointlike fermion of mass 3m interacting with the remaining
particles via a hard-core potential, which we implemented
simply as a vanishing boundary condition in the many-body
wave function (à la Bethe-Peierls). That description works
remarkably well already at couplings of εB = 10, as shown in
Fig. 1.

Our calculations suggest that, as in the case of pure two-
body contact forces, Pauli exclusion provides a strong re-
pulsion that overpowers any residual attraction coming from

the three-body force. The trimers always experience a repul-
sive interaction, as far as we have explored. The emerging
picture is therefore that of a crossover between the original,
attractively interacting fermions (weakly bound into extended
trimers) and deeply bound composite fermions (strongly lo-
calized trimers) with a residual repulsive interaction. Al-
though we have not found trimer-trimer binding, it would
be interesting to investigate the effect of a finite interaction
range, which has been shown to yield droplet formation and
eventually lead to a liquid-gas transition in 1D systems with
finite-range, two-body interactions (see, e.g., [46,47]).

In addition to a numerical calculation of the contact, we
have also outlined the derivation of the universal behavior
of correlation functions at short distances. A more complete
derivation is left for future work, but the general procedure
and how it differs from the two-body interaction case is clear:
two-body quantities are replaced by three-body quantities,
and the two-particle short-distance limit is replaced by the
trimer short-distance limit. Thus, we expect that all the
known universal relations controlled by the contact can be
generalized to the present system by a simple modification of
the known derivations.
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