
PHYSICAL REVIEW A 99, 013613 (2019)
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Small weakly bound droplets determine a number of properties of ultracold Bose and Fermi gases. For
example, Efimov trimers near the atom-atom-atom and atom-dimer thresholds lead to enhanced losses from
bosonic clouds. Generalizations to four- and higher-body systems have also been considered. Moreover, Efimov
trimers have been predicted to play a role in the Bose polaron with large boson-impurity scattering length.
Motivated by these considerations, the present work provides a detailed theoretical analysis of weakly bound
N -body clusters consisting of N − 1 identical bosons (denoted by “B”) of mass m that interact with a single
distinguishable impurity particle (denoted by “X”) of mass M . The system properties are analyzed as a function
of the mass ratio κ (values from κ = 1 to 50 are considered), where κ is equal to m/M , and the two-body
s-wave scattering length aBX between the bosons and the impurity. To reach the universal Efimov regime in
which the size of the BBX trimer as well as those of larger clusters is much larger than the length scales of
the underlying interaction model, three different approaches are considered: resonance states are determined in
the absence of BB and BBX interactions, bound states are determined in the presence of repulsive three-body
boson-boson-impurity interactions, and bound states are determined in the presence of repulsive two-body
boson-boson interactions. The universal regime, in which the details of the underlying interaction model become
irrelevant, is identified.
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I. INTRODUCTION

Ultracold single- and dual-species atomic gases can nowa-
days be prepared and manipulated with exquisite precision.
This has paved the way for the study of various phenomena,
including the Mott-insulator transition [1], topological defects
such as vortices [2,3], as well as fermionic and bosonic
polarons [4–8]. Polarons, which have been studied extensively
in the context of electronic systems, are quasiparticles with
an effective mass that, typically, differs from the mass of the
underlying constituents [9,10]. It has recently been proposed
that the energy of the ground-state Bose polaron at unitarity
is governed by Efimov physics in the low- to medium-density
regime [11,12]; i.e., the polaron energy is in these regimes pre-
dicted to be given by −ηh̄2/(m|a−|2), where η is a dimension-
less universal number and a− the boson-impurity scattering
length at which the BBX trimer hits the three-atom threshold
on the negative boson-impurity scattering length side.

More specifically, the equal-mass Bose polaron at unitarity
was considered within a variational framework [12]. Treating
the Bose polaron using up to two Bogoliubov excitations, it
was shown that the low-density equation of state is governed
by the energy of the BBX Efimov trimer. Using a more flexible
wave function, which allows for up to three Bogoliubov
excitations, the low-density energy is, instead, governed by
the BBBX tetramer that is attached to the BBX trimer. These
findings raise two important questions: Does the inclusion of
more Bogoliubov excitations change the equation of state of
the Bose polaron in the low- and medium-density regimes?
Does, and if so how, the picture change if one considers mass-
imbalanced systems? This paper focuses on the determination
of weakly bound few-boson systems with a single impurity.

A good understanding of the hierarchy of few-body states is a
prerequisite for answering the questions raised above.

For single-component bosons, the properties of the four-
body system have been mapped out in detail [13–16]. At
unitarity, i.e., for an infinitely large s-wave scattering length
(there exists only one scattering length in this case), two
four-body states are universally tied to each Efimov trimer. In
general, the four-body states are resonance states with finite
lifetimes [15–17]; encouragingly, the lifetimes are sufficiently
long for tetramers to be observed in ultracold gas experiments
[18–20]. The properties of these resonance states, including
their convergence to the universal limit, were studied using
a momentum space based formalism [15,16]. The univer-
sal limit has also been reached—at least in an approximate
fashion—by increasing the size of the lowest Efimov trimer
via a repulsive three-body potential [21–23]. This approach
provides approximate values for the universal energy ratios
but not, in general, about lifetimes.

For two-component systems, comparatively little is known
about N -body states tied to Efimov trimers [11,12,24–32].
Assuming that the impurity and the bosons have the same
mass but are distinguishable, the four-body system has been
found to display characteristics that are similar to the single-
component case [12]. Specifically, two tetramer states have
been predicted to be tied to each Efimov trimer on the negative
scattering length side. A key difference, though, exists in the
scaling parameter λ2, which determines the energy spacing
between consecutive Efimov trimers at unitarity. This scaling
parameter is λ2 = 22.72 for the BBB system (identical parti-
cles) and 1986.12 for the BBX system (assuming equal masses
but vanishing BB interactions) [33–36]. For κ = 8–50, the
energies of the BBBX system, as well as those of five- and
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selected six-body systems, were determined in Ref. [25]. The
present work extends this earlier Bose-environment-impurity
study in several directions: (i) The mass ratio “gap” between
1 and 8 is filled. (ii) Three different classes of few-body
model Hamiltonian are considered and their performance with
respect to providing universal descriptions is compared. (iii)
Selected results for the lifetime of four-body resonance states
are reported. (iv) Selected five- and six-particle results are
presented.

The remainder of this paper is organized as follows. Sec-
tion II A introduces the few-body Hamiltonian models con-
sidered while Secs. II B and II C review the numerical tech-
niques employed to solve the nonrelativistic time-independent
few-particle Schrödinger equation. Results for infinite and
negative interspecies scattering lengths aBX are presented in
Secs. III and IV. Finally, summarizing remarks are presented
in Sec. V.

II. SYSTEM UNDER STUDY AND
NUMERICAL APPROACHES

A. System Hamiltonian

We consider N − 1 identical bosons of mass m with po-
sition vectors �rj (j = 1, . . . , N − 1) interacting with a single
impurity of mass M with position vector �rN . Since we con-
sider a single impurity, its statistics, i.e., whether it is a boson
or fermion, does not play a role. The mass ratio κ ,

κ = m

M
, (1)

is varied from 1 to 50. The κ � 1 regime was recently
investigated in Refs. [31,32]. Our goal is to describe four-
and higher-body states that are universally linked to BBX
Efimov trimers. This implies that we are considering few-
particle Hamiltonian H , for which the magnitude of the s-
wave scattering length aBX is large compared to the ranges
of the underlying interaction model. Moreover, the size of the
Efimov trimer should be much larger than the ranges of the
underlying interactions.

The few-particle Hamiltonian H accounts for the kinetic
energy of each of the particles, a two-body interaction po-
tential VBX(rjN ) for the BX pairs, a two-body interaction
potential VBB(rjk ) for the BB pairs, and a three-body potential
VBBX(rjk, rjN , rkN ) for the BBX triples,

H = − h̄2

2m

N−1∑
j=1

∇2
�rj

− h̄2

2M
∇2

�rN
+

N−1∑
j=1

VBX(rjN )

+
N−2∑
j=1

N−1∑
k>j

VBB(rjk ) +
N−2∑
j=1

N−1∑
k>j

VBBX(rjk, rjN , rkN ).

(2)

The distances rjk are defined through rjk = |�rj − �rk|.
Throughout we treat the two-body s-wave scattering length
aBX of the BX pairs as a tunable parameter. This is accom-
plished by changing the depth dBX of a purely attractive two-
body Gaussian potential while keeping the range rBX constant,

VBX(rjN ) = dBX exp

[
− (rjN )2

2(rBX)2

]
. (3)

The depth dBX (dBX < 0) is restricted to values for which
VBX(rjN ) supports at most a single two-body s-wave bound
state in free space. This implies that we eliminate a large set
of “high-energy channels” from the outset. As will become
clear below, our model Hamiltonian also excludes weakly and
deeply bound BB molecules. The unitary point, where aBX

diverges (i.e., where aBX is infinitely large), is of particular
interest in this work. At unitarity, the two-body binding energy
vanishes and the two-body interaction is, in the rBX → 0 limit,
not characterized by a length scale. Throughout, we consider
finite two-body ranges rBX. For our results to be universal, it is
necessary to work in the parameter regime where the sizes of
the dimers, trimers, and larger clusters are much larger than
the range rBX. Note that our interaction is single-channel in
nature and that universality refers to zero-range universality
and not van der Waals universality [37–40].

The BB interaction potential VBB(rjk ) is also modeled by a
Gaussian potential,

VBB(rjk ) = dBB exp

[
− (rjk )2

2(rBB)2

]
. (4)

In contrast to the BX potential, which is purely attractive, the
BB potential is chosen to vanish or to be purely repulsive with
a positive BB s-wave scattering length aBB. Even though the
use of a purely repulsive interaction potential is unphysical
(typical van der Waals potentials relevant to cold alkali gases
have, regardless of the sign of the s-wave scattering length, an
attractive pocket), the model should yield reasonable results
provided the BB scattering length is much smaller than the
magnitude of the BX scattering length, i.e., for aBB � |aBX|.

Lastly, the three-body interaction VBBX is parametrized
via a purely repulsive Gaussian potential with barrier dBBX

(dBBX � 0) and range rBBX,

VBBX(rjk, rjN , rkN )

= dBBX exp

[
− (rjk )2 + (rjN )2 + (rkN )2

2(rBBX)2

]
. (5)

The use of a repulsive three-body potential facilitates reaching
the regime where the bound states of the three- and higher-
body clusters are large compared to the length scales of the
underlying interaction potentials [21–23,25]. Specifically, a
nonzero dBBX can lead to a large BBX ground-state trimer,
which mimics the behavior of large, universal excited Efimov
trimer states. If we consider the case where dBX < 0 and
dBB = 0, then the three-body potential VBBX can be inter-
preted as setting the value of the three-body parameter. It was
shown in Ref. [25] for κ = 8–50 that the BBBX ground-state
energies are, if expressed in units of the BBX ground-state
energies, to a good approximation independent of the value of
dBBX provided dBBX is, for constant rBBX, sufficiently large.
For small dBBX, in contrast, the three-body potential serves
as a perturbation that modifies the, in general, nonuniversal
ground states of the Hamiltonian with dBX < 0 and dBB = 0.

The model Hamiltonian H , Eq. (2), has a large number of
parameters: the mass ratio κ; the ranges rBX, rBB, and rBBX; the
BX and BB scattering lengths aBX and aBB (or, alternatively,
the parameters dBX and dBB); and the strength dBBX of the
three-body potential. Given the large number of parameters,
we cannot exhaustively explore the complete parameter space.
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Our nonexhaustive study considers three different subclasses
of the Hamiltonian H , referred to as model I–model III:
Model I: dBX < 0, dBB = 0, and dBBX = 0.
Model II: dBX < 0, dBB = 0, and dBBX > 0.
Model III: dBX < 0, dBB > 0, and dBBX = 0.

The ground states and likely also a subset of the excited
eigenstates supported by model I are expected to be “con-
taminated” by, possibly significant, finite-range or nonuni-
versal corrections. Sufficiently high in the energy spectrum,
however, the three-body bound states supported by model I
exhibit Efimov characteristics and the associated four-body
resonance states should exhibit model-independent properties.
For models II and III, we calculate bound states but not
resonance states. The premise is that the repulsive BBX and
BB potentials serve to push the particles out, leading—for cer-
tain parameter combinations—to ground states that are large
compared to the length scales of the underlying interaction
potentials. The BBX energies depend on the parameters of
the Hamiltonian model. However, universality implies that the
BN−1X energies for N � 3, if measured in units of one of the
BBX Efimov trimer energies, are independent of the details of
the underlying model Hamiltonian.

A key goal of this work is to determine universal energy
ratios for few-body systems as a function of the mass ratio and
to illustrate convergence toward these universal energy ratios
for the different models. Model I was employed in Ref. [26]
for large mass ratios, model II in Ref. [25] for κ = 8–50,
and a model similar to model III in Refs. [27,41] for systems
with equal masses and relatively small mass imbalance, with
the BX and BB Gaussian potentials replaced by square-well
potentials.

Throughout, we set rBX = rBB = rBBX/
√

8 and vary dBX,
dBB, and dBBX. We use rBX to define the short-range energy
scale Esr,

Esr = h̄2

2μr2
BX

, (6)

where the two-body reduced mass μ is defined as μ =
mM/(m + M ).

B. Determination of bound states

The few-body bound states considered in this work have
vanishing total relative orbital angular momentum L and pos-
itive relative parity �. To determine the L� = 0+ bound-state
energies, we separate off the three center-of-mass degrees of
freedom (the relative Hamiltonian is denoted by Hrel) and
solve the relative Schrödinger equation

Hrelψ = Eψ (7)

by expanding the eigenstates ψ in terms of explicitly corre-
lated Gaussian basis functions φl [42,43],

ψ =
Nb∑
l=1

clS (φl ( �X)), (8)

where

φl ( �X) = exp
(− 1

2
�XT Al

�X)
. (9)

Here, �X collectively denotes a set of N − 1 relative Jacobi
vectors, Nb the number of unsymmetrized basis functions,
and Al a (N − 1) × (N − 1) parameter matrix. The linear
parameters cl are obtained by diagonalizing the generalized
eigenvalue problem spanned by the relative Hamiltonian ma-
trix H rel and the overlap matrix O, whose ll′ element is
given by 〈φl|φl′ 〉. The overlap matrix enters since the basis
functions are not orthogonal to each other. Importantly, all
matrix elements have compact analytical expressions. The
N (N − 1)/2 nonlinear variational parameters contained in
the symmetric Al matrices are determined through a semis-
tochastic optimization procedure [44]. In Eq. (8), S denotes
a symmetrizer, which ensures that the basis functions are
symmetric under the exchange of the position vectors of any
two identical bosons.

The explicitly correlated Gaussian basis set expansion
approach has several characteristics that make their use ad-
vantageous in the context of Efimov studies. The nonlinear
variational parameters can be chosen to describe different
“geometries” such as a “3+1 configuration,” where one atom
is very loosely bound to a more tightly bound trimer [25].
Moreover, since the basis set is constructed using nonorthog-
onal basis functions that cover vastly different length scales,
bound states whose sizes range from the two-body ranges
rBX and rBB to several 10 or 100 times rBX and rBB can
be generated [25]. Another useful feature is that one can
construct separate basis sets for each of the eigenstates. This
has the benefit that the basis set can be targeted toward a
specific state and that a comparatively small basis set may
provide an excellent description of a given eigenstate [45].

C. Determination of resonance states

The states supported by Hrel can be grouped into three
classes: (i) bound states, which are characterized by an expo-
nentially decaying tail at large distance scales; (ii) scattering
states, which display oscillatory behavior in one or more
distance coordinates; and (iii) resonance states, which are
characterized by exponential growth in at least one of the
distance coordinates. As discussed in what follows, the explic-
itly correlated Gaussian approach can be generalized to treat
resonance states via the complex scaling approach [46,47].
The lth basis function given in Eq. (9) can be rewritten as [42]

φl ( �X) = exp

⎡
⎣−

N∑
j<k

r2
jk

2(αl,jk )2

⎤
⎦, (10)

where the nonlinear width parameters αl,jk are determined by
the elements al,jk of the matrix Al . Equation (10) shows that
the basis functions fall off exponentially as one or more of the
interparticle distances become large. This illustrates that the
basis functions cannot be used (at least not directly) to expand
resonance states, which contain an exponentially growing
piece. In general, this holds true for nearly all basis functions
that are designed to describe bound states of Hermitian
Hamiltonian [43].

The complex scaling approach provides a means to use
basis functions such as those given in Eq. (9) to describe
resonance states [43,46–49]. To this end, the vector �X is
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rotated into the complex plane [46,47],

�X′ = U �X, (11)

where U is equal to exp(ıθ ) and θ is an appropriately chosen
rotation angle. The transformed Schrödinger equation reads

H̃relψ̃ = Ẽψ̃, (12)

where H̃rel = U †HrelU and ψ̃ = U †ψ . To find the eigenener-
gies Ẽ, we expand

ψ̃ =
Nb∑
l=1

dlS (φl ( �X)), (13)

where the φl ( �X) are defined in Eq. (9) and where the dl

are complex (linear) expansion coefficients. Since the matrix
elements (H̃rel )ll′ are complex, the generalized eigenvalue
problem is spanned by the complex Hamiltonian matrix H̃ rel
and the real overlap matrix Õ. The Hamiltonian matrix H̃ rel
depends on the rotation angle θ but Õ does not (in fact, we
have Õ = O). The kinetic energy contribution to the matrix
elements contains an overall factor of exp(2ıθ ), which can
be calculated upfront for each θ considered [46,47]. The
calculation of the potential energy contribution, in contrast, is
more involved [43]. Since the rotation introduces a θ depen-
dence in the exponent of the Gaussian interaction potentials,
the potential energy contribution to the Hamiltonian matrix
element has to be calculated separately for each rotation angle
and matrix element. While this is technically straightforward,
it does increase the computational effort compared to the
bound-state calculations, especially if a fine resolution in the
rotation angle is desired.

For the basis functions considered here (and more gener-
ally, for all square integrable basis functions), it can be shown,
assuming one has a complete basis set, that (i) the energies
of bound states are independent of the rotation angle, i.e.,
Ẽ = E for true bound states; (ii) the energies of scattering
states rotate with the rotation angle, i.e., Ẽ = exp(iθ )E for
scattering states; and (iii) the energies of resonance states live
in the complex plane and are independent of the rotation angle
[46,47]. In practice, there tends to exist a limited range of
angles for which the energy Ẽ does not move in the complex
energy plane (is stationary). The challenge is thus to generate
a basis set for which the energy Ẽ is, for a range of rotation
angles, stationary (or stationary within some tolerance). To the
best of our knowledge, a unique approach that accomplishes
this does not exist. The reason is that the variational principle,
which provides the backbone for most basis set construction
schemes that are aimed at describing bound states, does not
apply to resonance states.

Following the strategy that has been used to describe three-
particle systems [48,49], our calculations consist of two steps.
First, we generate a basis set by minimizing the energy of
a “target state” by diagonalizing the generalized eigenvalue
problem spanned by H rel and O. Specifically, the basis set is
increased one basis function at a time, with the newly added
basis function chosen such that the energy of the state whose
energy is higher than but closest to a preset “target energy”
Etarget is minimized. The target energy is chosen based on the
real part of the energy of the resonance state. If the real part is
expected to be Er (this expectation may derive from previous

calculations or physics arguments), we choose Etarget to be
comparable to but above Er . The calculations are repeated for
different Etarget to eliminate a possible bias due to the choice
of the actual value of the target energy. Second, we rotate the
basis functions of the basis set constructed in the first step and
solve the generalized eigenvalue problem spanned by H̃ rel and
Õ for various angles θ (typically of order 50–75), where θ

ranges from 0 to 0.48 radians (θ has to be smaller than π/2).
Importantly, the rotation approach results in the energy Er of
the resonance state as well as its lifetime τ ,

τ = h̄

2|Ei | ; (14)

throughout, we write the resonance energy as E = Er + ıEi ,
where Ei is negative. The complex scaling approach is illus-
trated in the Appendix.

III. RESULTS: UNITARITY

This section presents few-body energies for models I–III
with infinitely large s-wave scattering length aBX.

A. Model I

Table I reports selected bound-state energies for model I,
which is characterized by a vanishing BB interaction poten-
tial, for N = 3–6. In the limit that the trimer size is much
larger than the (effective) range of the BX interaction poten-
tial, the N = 3 energies for model I should approach Efimov’s
zero-range results. The second column of Table I shows that
the energy ratio |Egr

3 |/Esr increases with increasing mass ratio
κ . This suggests that the three-body ground-state energies of
model I are contaminated the most by nonuniversal correc-
tions for large mass ratios κ . Consistent with the literature,
the energy ratio between two consecutive three-body energies
approaches the universal zero-range value λ2 (see Table II) for
sufficiently high excitations. For κ = 50, e.g., the energy ratio
E

exc,1
3 /E

exc,2
3 deviates by about 7.6% from the universal value

while the energy ratio E
exc,2
3 /E

exc,3
3 deviates by only about

0.4% from the universal value.
Table I reveals three trends for N � 4: (i) The energy ratios

E
gr
N /E

gr
3 for N = 4–6 decrease monotonically with increasing

κ . (ii) The number of four-body bound states increases with
increasing κ . While we cannot rule out the existence of ex-
tremely weakly bound four-body states beyond those reported
in Table I (our approach yields variational upper bounds and
it is possible that weakly bound states are not captured by
the basis sets considered), the trend that N � 4 systems with
larger κ , described by model I, support more bound states than
systems with smaller κ is evident. (iii) The ratio E

exc,1
4 /E

gr
3

changes, as also illustrated in Fig. 1, nonmonotonically with
increasing κ . The energy ratio takes a minimum at κ ≈ 2 and
increases for both smaller and larger mass ratios (we explored
the regime 1 � κ � 50). We note that the nonmonotonic
change of the energy ratio E

exc,1
4 /E

gr
3 with κ may be sensitive

to the specifics of the two-body interaction considered.
Analysis of the four-body resonance states that are tied

to E
exc,j
3 shows, as we will discuss now, that the four-body

spectra reported in Table I, especially for large κ , are not
universal; this is, of course, not surprising given the discussion
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TABLE I. Bound-state energies for the BN−1X system, N = 3–6, with infinitely large s-wave scattering length aBX and dBB = dBBX = 0
(model I) for various mass ratios κ . Since |Egr

3 |/Esr (see column 2) increases with increasing κ , the results are expected to be less universal for
larger κ than for smaller κ (see text for details). The “missing entries” correspond to parameter combinations where either the calculation was
not attempted or no bound state was found. The energy ratios in columns 3–11 have uncertainties in the last digit reported.

κ |Egr
3 |/Esr E

gr
3 /E

exc,1
3 E

exc,1
3 /E

exc,2
3 E

exc,2
3 /E

exc,3
3 E

gr
4 /E

gr
3 E

exc,1
4 /E

gr
3 E

exc,2
4 /E

gr
3 E

exc,3
4 /E

gr
3 E

gr
5 /E

gr
3 E

gr
6 /E

gr
3

1 2.354 × 10−4 12.21 1.026 43.60 97.92
2 3.470 × 10−3 23860. 6.956 1.008 18.64 35.20
3 9.660 × 10−3 3398. 5.646 1.011 13.69 24.35
4 1.694 × 10−2 1140. 5.046 1.021 11.61 20.03
8 4.437 × 10−2 151.8 4.184 1.130 8.840 14.51
12 6.512 × 10−2 58.52 66.09 3.892 1.310 7.964 12.83
16 8.082 × 10−2 30.98 39.35 3.740 1.489 7.519 11.99
133/6 9.881 × 10−2 15.47 23.49 23.67 3.606 1.711 7.134 11.27
26 1.075 × 10−1 11.22 18.70 18.90 3.552 1.819 1.013 6.981 10.98
30 1.152 × 10−1 8.575 15.41 15.64 3.508 1.911 1.059 6.859 10.76
35 1.232 × 10−1 6.587 12.62 12.91 3.467 2.005 1.134 6.742 10.54
40 1.300 × 10−1 5.371 10.66 11.04 3.434 2.082 1.214 6.651 10.37
45 1.358 × 10−1 4.572 9.182 9.680 3.408 2.145 1.290 6.578 10.24
50 1.409 × 10−1 4.016 8.021 8.648 3.386 2.199 1.362 1.003 6.518 10.13

presented in Sec. II. Table III summarizes the real and imagi-
nary parts Er and Ei of the four-body resonance energies for
κ = 4–50. In Table III, Er and Ei are reported in terms of the
excited three-body bound-state energies E

exc,j
3 . As mentioned

in the Appendix, a precise and unambiguous identification
of resonance states becomes numerically more challenging
as |Er |/Esr and/or |Ei |/Esr decrease. Consequently, Table III
reports results for resonances tied to three different three-body
states for κ = 50 but only one three-body state for κ = 4. For
κ � 4, the complex scaling approach, as implemented by us,
did not yield reliable four-body results.

We first discuss our results for κ = 4–16. For these κ , the
ratio Er/E

exc,1
3 deviates notably from both the energy ratios

E
gr
4 /E

gr
3 and E

exc,1
4 /E

gr
3 , indicating that the four-body results

reported in Table I are not universal. For κ = 16, we were
able to reliably determine Er for a four-body resonance tied
to the second excited trimer state, yielding Er/E

exc,2
3 = 2.22.

Since this value is close to the ratio of 2.19 obtained for the

TABLE II. Column 2 shows the scaling parameter λ2 predicted
by the zero-range theory for the three-body system for various κ .

κ λ2

1 (1986.1)2 = 3.9447 × 106

2 (153.84)2 = 23666.

3 (57.876)2 = 3349.6
4 (33.491)2 = 1121.6
8 (12.488)2 = 155.94
12 (8.1305)2 = 66.105
16 (6.2804)2 = 39.443
133/6 (4.8651)2 = 23.670
26 (4.3477)2 = 18.902
30 (3.9553)2 = 15.644
35 (3.5944)2 = 12.920
40 (3.3249)2 = 11.055
45 (3.1152)2 = 9.7047
50 (2.9470)2 = 8.6847

resonance attached to the first excited trimer, we conclude that
the energy ratios for the four-body resonances for κ = 4–16,
tied to the first excited three-body state, are close to universal.

For larger mass ratios, the four-body resonances tied to
the first excited trimer are not universal. However, closer to
universal results are obtained for the resonances that are tied
to the second or third excited trimers. For κ = 30–50, our
complex scaling results suggest that there are two four-body
states tied to each Efimov trimer, with the second state having
a resonance position that is just a bit below the corresponding
trimer energy. For smaller κ , “excited” four-body resonance
states with real parts Er very close to the Efimov trimer energy
may also exist. However, we were not able to describe such
resonance states by our approach. We note that the identifica-
tion of the four-body resonances for κ � 35 is challenging due
to the existence of multiple four-body resonances. For κ = 35,
e.g., we find a resonance at Er ≈ 4.9E

exc,2
3 that is not reported

in Table III since we believe that this resonance would not
“survive” if we went to resonances that are attached to more
highly excited three-body states.

Importantly, the complex scaling calculations also provide
estimates of the lifetimes τ . If expressed, as in Table III,
in terms of the corresponding trimer energies, the imaginary
parts Ei of the resonance energies are comparable, in terms

1 2 3 4
κ

1

1.01

1.02

1.03

E 4ex
c,

1  / 
E 3gr

FIG. 1. Energy of the four-body excited state supported by model
I at unitarity. Circles show the energy ratio E

exc,1
4 /E

gr
3 as a function

of the mass ratio κ .
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TABLE III. Resonance energies for the BN−1X system, N = 4, interacting through a BX Gaussian potential with infinitely large s-wave
scattering length aBX and dBB = dBBX = 0 (model I) for various mass ratios κ . Columns 2–5 report four-body resonances tied to the first excited
three-body state with energy E

exc,1
3 , columns 6–7 report four-body resonances tied to the second excited three-body state with energy E

exc,2
3 ,

and column 8 reports four-body resonances tied to the third excited three-body state with energy E
exc,3
3 . The missing entries indicate that a

calculation was either not attempted or did not yield reliable results. In some cases, we were able to determine Er approximately but not Ei ; in
these cases, the Ei entry is marked by “?”.

κ
(

Er

E
exc,1
3

,
Ei

E
exc,1
3

) (
Er

E
exc,1
3

,
Ei

E
exc,1
3

) (
Er

E
exc,1
3

,
Ei

E
exc,1
3

) (
Er

E
exc,1
3

,
Ei

E
exc,1
3

) (
Er

E
exc,2
3

,
Ei

E
exc,2
3

) (
Er

E
exc,2
3

,
Ei

E
exc,2
3

) (
Er

E
exc,3
3

,
Ei

E
exc,3
3

)

4 (3.28, ≈0.03)
8 (2.63,0.018)
12 (2.35,0.019)
16 (2.19,0.011) (2.22, ≈0.01)
133/6 (2.19,0.009) (1.03,0.004) (2.08,0.020) (1.96, ?)
26 (2.45,0.023) (1.19,0.028) (2.05,0.016)
30 (2.95,0.047) (1.44,0.047) (2.06,0.005) (1.04,0.003) (2.00, ?)
35 (3.46,0.048) (1.61,0.055) (1.93,0.003) (1.03,0.0006)
40 (3.73,0.039) (1.73,0.056) (1.02,0.010) (≈1.94, ?) (≈1.03, ?) (≈2.01, ?)
45 (3.85,0.030) (1.83,0.051) (1.20,0.0009) (1.04,0.015) (1.86,0.078) (1.04, ?) (2.07, ?)
50 (3.90,0.026) (1.94,0.049) (1.46, ?) (1.10,0.021) (1.85, ?) (1.03, ?) (2.40,≈0.036)

of the order of magnitude, to those found for the equal-
mass four-boson system. For example, Ref. [16] found Er =
4.6108E

exc,j
3 and Ei = 0.01484E

exc,j
3 for the energetically

lower-lying BBBB state and Er = 1.00228E
exc,j
3 and Ei =

2.38 × 10−4E
exc,j
3 for the energetically higher-lying BBBB

state in the large-j limit. This suggests that signatures of the
four-body resonance states of unequal-mass systems should
be observable experimentally.

B. Model II

Since resonance states are, in general, more challenging to
determine than bound states, it is desirable to employ an inter-
action model for which the ground state of the trimer behaves
close to universal. This section summarizes our energies at
unitarity for model II, for which the repulsive BBX potential
leads to a significant reduction of the binding energy of the
ground-state trimer. Table IV summarizes three-, four-, and
five-body energies, which are obtained for such a large dBBX

that the difference to the infinity limit is rather small (see
also Ref. [25]). In general, the resulting energy ratios could
depend on the details of the underlying potential model. For
the three-body sector, we believe that the results reported in
Table IV are, to a very good approximation, universal since
E

gr
3 /E

exc,1
3 is close to the zero-range prediction for λ2.

As discussed in Ref. [25], the four-body systems with
κ � 16 support two four-body states. One four-body state is
roughly twice as strongly bound as the trimer while the other
is extremely weakly bound. As the mass ratio decreases, the
weakly bound state disappears (or at least our calculations
were not able to describe it) while the deeper-lying four-
body state becomes more strongly bound. For κ = 1, e.g.,
the binding energy of the ground-state tetramer is roughly 10
times larger than that of the ground-state trimer. In terms of
size, this suggests that the ground-state tetramer is smaller
by about a factor of

√
10 than the ground-state trimer. Since

|Egr
4 |/Esr is still much smaller than 1, we believe that the

tetramer energy is close to universal. This is confirmed by

TABLE IV. Energies of the BN−1X system, N = 3–4, interacting through a BX Gaussian potential with infinitely large s-wave scattering
length aBX, repulsive three-body Gaussian potential, and vanishing BB potential (dBB = 0) for various mass ratios (model II). The κ = 1, 2,
and 4 energies are obtained for dBBX = 4.8Esr; the reported energies should be close to the dBBX → ∞ limit. We find |Egr

3 |/Esr = 2.4 × 10−8,
3.1 × 10−6, and 4.6 × 10−5 for κ = 1, 2, and 4, respectively. The entry “−” indicates that a bound state was not found. The energies for
κ = 8–50 are taken from Ref. [25].

κ E
gr
3 /E

exc,1
3 E

gr
4 /E

gr
3 E

exc,1
4 /E

gr
3 E

gr
5 /E

gr
3

1 9.51 − 25.1
2 4.85 − 9.74
4 3.36 − 5.71
8 (12.510)2 ≈ 156.5 (1.647)2 ≈ 2.713 − (2.06)2 ≈ 4.244
12 (8.158)2 ≈ 66.55 (1.58)2 ≈ 2.496 − (1.94)2 ≈ 3.764
16 (6.313)2 ≈ 39.85 (1.544)2 ≈ 2.384 (1.002)2 ≈ 1.004 (1.88)2 ≈ 3.534
133/6 (4.904)2 ≈ 24.05 (1.510)2 ≈ 2.280 (1.010)2 ≈ 1.020 (1.82)2 ≈ 3.312
30 (3.998)2 ≈ 15.98 (1.488)2 ≈ 2.214 (1.026)2 ≈ 1.053 (1.78)2 ≈ 3.168
40 (3.372)2 ≈ 11.37 (1.471)2 ≈ 2.164 (1.046)2 ≈ 1.094 (1.75)2 ≈ 3.063
50 (2.996)2 ≈ 8.714 (1.461)2 ≈ 2.135 (1.067)2 ≈ 1.138 (1.73)2 ≈ 2.993
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the fact that Refs. [12,27] found similar ratios for E
gr
4 /E

gr
3 ,

namely 9.35–9.7, using different models. We note that the
energy ratio E

gr
4 /E

gr
3 of 9.74 (see Table IV) for the κ = 1

system with large repulsive three-body force is about 20%
smaller than the energy ratio E

gr
4 /E

gr
3 of 12.21 obtained in the

absence of the three-body force (see Table I). This indicates
that the κ = 1 results reported in Table I are not universal
despite the fact that the ratio |Egr

3 |/Esr is rather small.
Interestingly, Ref. [12] reported the existence of an ex-

tremely weakly bound excited four-body state for κ = 1 (see
Table I of Ref. [12]). For our model II, we were not able to find
such a state. Looking ahead, we note that our calculations for
model III with large dBX suggest, in agreement with Table IV,
that the κ = 1 and 12 systems do not support an excited
four-body state at unitarity. While we cannot rule out that
this is due to the variational character of our calculations (i.e.,
an excited state is supported by model II but we missed it),
we speculate that the disagreement between our results and
Ref. [12] points toward a sensitive dependence of the energy
ratios on the underlying model interaction.

Table IV also reports five-body energies. These will be
discussed in more detail in the next section.

C. Model III

Reference [27] investigated the equal-mass polaron prob-
lem by modeling the boson-boson interaction by a repulsive
two-body step potential. It was later argued [12] that the
results for the interaction model used in Ref. [27] (basically,
our model III with repulsive and attractive two-body step
potentials instead of repulsive and attractive two-body Gaus-
sian potentials) should be universal, provided the energies
are scaled by the trimer ground-state energy. Interestingly,
Ref. [27] found four- and five-body bound states but no
six-body bound state. It was suggested [12] that this may
be due to the fact that a single impurity can bind one s-
and three p-wave bosons and that shell closure prevents the
binding of additional bosons. In the following, the question
of universality and the existence of six-body bound states is
investigated using model III.

Circles in Figs. 2(a) and 2(b) show the energy ratio
E

gr
3 /E

exc,1
3 as a function of aBB/rBB for κ = 12 and κ =

133/6, respectively. For comparison, the horizontal dashed
lines show the scaling parameter λ2 from the zero-range
theory, which assumes vanishing BB interactions. The energy
ratios for model III plateau as aBB/rBB increases at a value
somewhat larger than that predicted by the zero-range theory.
The deviation between E

gr
3 /E

exc,1
3 for the largest aBB consid-

ered and the zero-range scaling parameter is 0.19% and 1.4%
for κ = 12 and κ = 133/6, respectively. This shows that the
actual value of the aBB scattering length plays a secondary
role, provided aBB is much smaller than the size of the ground-
state trimer. A sufficiently large positive value of aBB leads to
the exclusion of a portion of the configuration space, thereby
bringing the results closer to the universal regime. We were
unfortunately not able to reliably determine E

exc,1
3 for κ = 1

due to the extremely large scaling parameter. We expect that
E

gr
3 /E

exc,1
3 would reach a plateau for smaller aBB/rBB than for

κ = 12 and that the percentage deviation between the plateau

1 1.5 2
aBB / rBB

63

64

65

66

67

E 3gr
 / 

E 3ex
c,

1

1.5 2
aBB / rBB

20

21

22

23

24

25

E 3gr
 / 

E 3ex
c,

1

(a)

(b)

FIG. 2. Characteristics of model III at unitarity. Circles show the
energy ratio E

gr
3 /E

exc,1
3 as a function of aBB/rBB for (a) κ = 12 and

(b) κ = 133/6. For comparison, dashed horizontal lines show the
zero-range scaling parameter λ2 from Table II.

value and the zero-range scaling parameter would be smaller
than the percentage deviation for κ = 12.

Figures 3(a)–3(c) summarize our N = 4–6 results for
κ = 1, κ = 12, and κ = 133/6, respectively. For all three
mass ratios, the change of E

gr
N /E

gr
3 decreases with increasing

aBB/rBB. For fixed mass ratio κ , the energy ratio E
gr
4 /E

gr
3 (cir-

cles) reaches a plateau quicker than the energy ratios E
gr
5 /E

gr
3

(squares) and E
gr
6 /E

gr
3 (triangles). Also, the “flattening” with

increasing aBB/rBB is faster for κ = 1 than for κ = 12 and
133/6. For comparison, the dashed horizontal lines on the
right edge of Figs. 3(a)–3(c) show the energy ratios for model
II (see Table IV and Ref. [25]). For N = 4, the energy ratios
for model III (circles) for the largest aBB/rBB considered and
model II (lowest dashed line) differ by about 2.4%, 7.1%, and
3.9% for κ = 1, 12, and 133/6, respectively. The calculations
underline that it is challenging to reach the fully universal
regime for large mass ratios by adding purely repulsive two- or
three-body potentials. The deviations for N = 5 are 0%, 19%,
and 13% for κ = 1, 12, and 133/6, respectively. Generally
speaking, we expect that the discrepancy between the two
sets of results would increase with increasing N . For κ =
133/6, this is indeed the case [see Fig. 3(c)]. For N = 6
and κ = 1, Fig. 3(a) shows converged energy ratios up to
aBB/rBB ≈ 0.285; for larger aBB/rBB, our energy ratios (not
shown) are not fully converged. For aBB/rBB ≈ 0.6, e.g., we
find E

gr
6 /E

gr
3 = 35.2, which should be considered as a lower

bound since our calculations are variational and E
gr
3 is highly

accurate. We conclude that model III supports a six-body
bound state in the large-dBBX limit. Such a bound state was not
found in Ref. [27] for the square-well model. This suggests
that the shell-closure argument put forward in Ref. [12] does
not hold, in general, for bosonic systems with an impurity.
The discussion surrounding Fig. 3 can be summarized as
follows: While models II and III predict somewhat different
energy ratios for N � 5, we believe that these models provide
a realistic description of the hierarchy of few-body states of
small bosonic systems with a single impurity.
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0 0.25 0.5 0.75
aBB / rBB

0
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E Ngr
 / 

E 3gr

1 1.25 1.5 1.75 2
aBB / rBB

2

4

6

E Ngr
 / 

E 3gr

1.5 1.75 2 2.25
aBB / rBB

2

3

4
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E Ngr
 / 

E 3gr
(a)

(b)

(c)

FIG. 3. Comparison of ground-state energies for models II and
III at unitarity. Circles, squares, and triangles show the energy ratios
E

gr
4 /E

gr
3 , Egr

5 /E
gr
3 , and E

gr
6 /E

gr
3 , respectively, as a function of aBB/rBB

for (a) κ = 1, (b) κ = 12, and (c) κ = 133/6 for model III; the lines
connecting the symbols serve as a guide to the eye. The dashed
horizontal lines show the energy ratios for model II (see Table IV).
The N = 6 energy ratio for model II is only shown for κ = 133/6.

Reference [25] (see also Table IV) found that model II at
unitarity supports an excited four-body state for κ = 16–50.
For κ = 12, in contrast, no such state was found. The corre-
sponding results for model III are summarized in Fig. 4. The
change of the energy ratio E

exc,1
4 /E

gr
3 decreases as aBB/rBB

increases. For the largest aBB/rBB considered, the energy
ratio E

exc,1
4 /E

gr
3 for κ = 133/6 takes a value of around 1.011,

which is somewhat smaller, accounting for error bars, than
the corresponding value of 1.020 for model II (according to
Ref. [25], the error bar is 0.005 on the square root of the
energy ratio).

In agreement with the model II results, we find that the
excited four-body state for κ = 12 disappears as aBB/rBB goes
beyond a critical value [aBB/rBB � 1.42; see Fig. 4(a)], which
is smaller than the value for which we would expect, based
on the ground-state results shown in Fig. 3, the energy ratio
to be independent of aBB/rBB. Figure 4 indicates that the
predictions of models II and III for the energy ratio E

exc,1
4 /E

gr
3

are reasonably consistent.
For κ = 1, we find that the excited four-body state sup-

ported by model I disappears when the boson-boson scattering
length is sufficiently repulsive (model III). The absence of an
excited four-body state at unitarity for κ = 1, as predicted by
models II and III, is in disagreement with the predictions of
the “r0 and � models” of Ref. [12]. In those models, an energy

0.75 1 1.25 1.5
aBB / rBB

1

1.05

1.1

1.15

E 4ex
c,

1  / 
E 3gr

1.5 1.75 2 2.25
aBB / rBB

1

1.04

1.08

E 4ex
c,

1  / 
E 3gr

(a)

(b)

FIG. 4. Energies of the excited four-body states at unitarity.
Circles show the energy ratio E

exc,1
4 /E

gr
3 for model III as a function

of aBB/rBB for (a) κ = 12 and (b) κ = 133/6; the lines connecting
the symbols serve as a guide to the eye. The horizontal dashed line
in panel (b) shows the corresponding energy ratio for model II.

for the excited four-body state, expressed in terms of the
three-body ground-state energy, of 1.0030(3) and 1.0036(1)
was reported for the r0 and � models, respectively. Since the
binding energy is extremely small, it might be that a small
change in the interaction model moves the critical scattering
length of the excited four-body state from the positive to
the negative scattering length side, thereby explaining the
discrepancy. Alternatively, it could be that our model supports
an excited four-body bound state at unitarity but that our
numerical approach missed the state.

IV. RESULTS: NEGATIVE SCATTERING LENGTH SIDE

This section discusses the behavior of the BBBX system
with κ = 133/6 as a function of the interspecies s-wave
scattering length aBX (aBX < 0). For model II, the critical
BX scattering lengths a

gr
4,− and a

exc,1
4,− , at which the ground

and first excited tetramer energies are resonant with the four-
atom threshold, were predicted to be a

gr
4,− ≈ 0.55a3,− and

aexc
4,− ≈ 0.91a3,−, respectively [25]. Here, a3,− is the critical

BX scattering length at which the trimer that the four-body
states are tied to becomes unbound on the negative scattering
length side.

To obtain a sense for the dependence of these results on
the underlying model, we additionally performed calculations
for the negative aBX regime using model I. Specifically, we
determine the energy of the four-body resonances tied to
the first excited BBX trimer. The results are summarized in
Fig. 5. The solid line shows the energy E

exc,1
3 of the first

excited trimer while the circles and squares show the real
part Er of the energetically lower- and higher-lying four-body
resonances. The absolute value |Ei | of the imaginary part
is shown by error bars. For example, the magnitude of the
imaginary part Ei of the resonance energy of the energetically
lower-lying four-body state changes from 9 × 10−3E

exc,1
3 at
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FIG. 5. Generalized Efimov spectrum, obtained using model I,
for κ = 133/6 as a function of the inverse of the BX s-wave scatter-
ing length aBX (only the negative aBX regime is shown). The energies
and scattering lengths are scaled by the short-range quantities Esr and
rBX, respectively (the energy is shown on a square-root scale). The
solid line shows the energy E

exc,1
3 of the BBX system. The circles and

squares show the real part Er of the resonance energies of the BBBX
system (to guide the eye, the dotted line connects consecutive points
for the energetically lower-lying resonance). The error bars indicate
the absolute value of the imaginary part Ei of the resonance energy
(again, using the square-root scaling); a smaller |Ei |/Esr corresponds
to a larger scaled lifetime.

unitarity to around 10−4E
exc,1
3 for the point closest to thresh-

old in Fig. 5. The magnitude of the imaginary part Ei of
the resonance energy of the energetically higher-lying four-
body state changes from 4 × 10−3E

exc,1
3 at unitarity to around

2 × 10−4E
exc,1
3 for the point closest to threshold in Fig. 5.

Extrapolating the four-body resonance energies Er to zero,
we estimate the following critical scattering lengths for the
two four-body states: a

gr
4,− ≈ 0.66a3,− and a

exc,1
4,− ≈ 0.94a3,−.

The agreement with the results for model II is quite good, es-
pecially considering that the critical scattering lengths have a
few percent uncertainty due to numerical inaccuracies and that
the determination of the critical scattering lengths requires an
extrapolation to the threshold.

V. SUMMARIZING REMARKS

This work determined the bound-state energies of an
impurity that interacts with N − 1 bosonic atoms through
short-range interactions that are characterized by the s-wave
scattering length aBX. For the cases considered, the impurity
mass was the same as or smaller than that of the bosons.
Impurity problems are ubiquitous in physics, ranging from
impurities in condensed matter systems to impurities in quan-
tum liquid droplets, such as helium and molecular hydrogen
clusters, to impurities in cold fermionic and bosonic atomic
gases. A key objective of the present work was to investigate,
using two-body interactions that mimic zero-range interac-
tions in the limit that the trimer size is large compared to the
range of the two-body potential, universal four- and higher-
body states that are linked to three-body Efimov trimers
consisting of two bosonic atoms and the impurity. To address
this objective, the results for different interaction models
were compared. While the present work considered two-body
single-channel models, Ref. [12] treated the N = 4 system
with κ = 1 using a two-body coupled-channel model.

The impurity problem studied in this work is unique due to
its close connection to three-body Efimov states. In the large-
|aBX| limit, the weakly bound BBX states follow Efimov’s
radial scaling law, which implies that the three-body states
are governed by the s-wave scattering length and a three-body
parameter. If the four-body states are fully governed by these
parameters, then different interaction models should, in the
limit that the effective range corrections can be neglected,
yield the same value for the four-body energies, provided the
four-body energies are expressed in terms of the three-body
energy and provided the s-wave scattering lengths are the
same. This work shows that this is the case for N = 4 and
κ = 1. As the mass ratio κ increases, model dependencies
at the few percent level develop. For the five-body system,
the energy ratio E

gr
5 /E

gr
3 displays, for κ = 12 and 133/6, a

stronger model dependence than the energy ratio E
gr
4 /E

gr
3 . In

general, the “universality window” decreases with increasing
number of particles since the binding energy increases (i.e.,
the system size shrinks with increasing N ). This is particularly
prominent when κ is notably larger than 1. It would be inter-
esting to extend the very recent effective field theory study
for identical bosons [50] to the bosonic system with impurity
considered in this work. Specifically, it would be interesting
to explore at which order the four-body parameter enters. It
should be kept in mind that the numerical calculations become
more challenging as N increases, implying that it is harder
to exhaustively explore the parameter space of the model
interactions with high accuracy for N = 5 and N = 6. Model
III suggests, in contrast to what was found in Ref. [27] for a
slightly different model, that the system for κ = 1 supports
a six-body bound state. It will be interesting to explore the
implications of this bound state on the physics of the Bose
polaron.
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APPENDIX: ILLUSTRATION OF COMPLEX
SCALING APPROACH

This appendix illustrates the complex scaling approach, us-
ing a basis set constructed from explicitly correlated Gaussian
basis functions, for the BBBX system with mass ratio κ =
8 for infinitely large BX scattering length, dBB = dBBX = 0
(model I), and Etarget = −2.52 × 10−4Esr. This target energy
is about three times less negative than the resonance energy of
Er = −7.69 × 10−4Esr reported in Table III.

To illustrate the construction of the basis set, Fig. 6 shows
the eigenvalues as a function of the inverse of the number
Nb of basis functions. For the example at hand, the first
100 basis functions were chosen such that the two bound
four-body states (see Table I) are reasonably well described.
For Nb = 250 (right edge of the figure), the state with energy
larger than and closest to the target energy corresponds to
the 8th eigenvalue. As more basis functions are added, the
energy of the 8th state drops below Etarget (this occurs around
1/Nb = 0.0035 in Fig. 6) and the next higher-lying state is
being optimized. This “dropping down” is repeated several
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FIG. 6. Basis set generation for BBBX system with infinitely
large interspecies s-wave scattering length and κ = 8 (model I).
The target energy Etarget is set to −2.52 × 10−4Esr. The symbols
show the four-body energies E4 as a function of the inverse of the
number Nb of basis functions. The displayed energies correspond
to the 8th through 14th eigenvalue of the generalized eigenvalue
problem. The “plateau” at E4 ≈ −7.8 × 10−4Esr is indicative of a
four-body resonance (see also Fig. 7). The data suggest that there
may exist another resonance at Er ≈ −2 × 10−4Esr. However, the
complex scaling did not reveal such a resonance. This is likely due to
the fact that the energetically higher-lying plateau is not a signature
of a resonance but related to a BBX bound state.

times during the optimization procedure. The reason that the
energy “drops” during the optimization is that there exists a
continuum of “trimer-plus-atom states” above the three-body
ground state. Since the basis functions have a finite as opposed
to an infinite spatial extent and since the basis set is finite, the
continuum is discretized. The roughly flat portion (plateau at
E4 ≈ −7.7 × 10−4Esr) of the eigenvalues is, as confirmed by
the results presented in Fig. 7, associated with a resonance
state.

To extract quantitative information, we solve the eigen-
value problem spanned by H̃ rel and O for various θ . The
resulting eigenvalues are categorized as corresponding to
bound states, scattering states, and resonance states according
to the behavior of the trajectories in the complex plane. To
locate the resonance states, we plot the trajectories, which
span several orders of magnitude in Er and Ei , in different
energy windows. Squares, circles, triangles, and diamonds in
Fig. 7 show trajectories corresponding to a resonance state
using basis sets with Nb = 1600, 2000, 2500, and 3000 (the
same basis functions as used in Fig. 6). The “beginning point”
(θ = 0) of the trajectories can be identified by the condition
that the imaginary part of the energy is zero for θ = 0. For

-0.00078 -0.000765 -0.00075
Er / Esr

-1e-05

-5e-06

0

E i / 
E sr

FIG. 7. Complex scaling results for the BBBX system with in-
finitely large interspecies s-wave scattering length and κ = 8 (model
I). Red squares, blue circles, green triangles, and black diamonds
show trajectories, generated by scanning the rotation angle θ , in the
complex energy plane for Nb = 1600, 2000, 2500, and 3000, re-
spectively (θ is increased linearly in steps of approximately 6.957 ×
10−3 radians for Nb = 1600, 8.276 × 10−3 radians for Nb = 2000,
6.667 × 10−3 radians for Nb = 2500, and 8.421 × 10−3 radians for
Nb = 3000). For vanishing rotation angle, the imaginary part of the
energy is zero. This figure and Fig. 6 are obtained using the same
basis set.

each trajectory, the symbols are obtained for equally spaced
θ . It can be seen that the trajectories for the different basis set
sizes all go, roughly, through the point (Er,Ei ) ≈ (−7.69 ×
10−4Esr,−5.3 × 10−6Esr ). Moreover, at or near this point in
the complex energy plane, the trajectories for Nb = 2000,
2500, and 3000 slow down; this can be seen from the de-
creased spacing of the symbols. For the example shown,
the calculations for Nb = 1600 do not allow us to extract
the resonance energy and lifetime. It is ensuring, though,
that the results for Nb = 2000–3000 agree with each other.
Repeating the calculations for different Etarget to ensure inde-
pendence of Etarget, we extract the resonance position and its
lifetime. The resonance energy moves somewhat for different
Etarget and different basis sets. The results reported in Table III
are, in most cases, averages from multiple runs.

In general, we find that the resonance position (i.e., the
real part Er ) is numerically more stable than the lifetime τ

[which is proportional to the inverse of the imaginary part,
τ = h/(2|Ei |)]. Also, as a rule of thumb, the closer the real
part Er is to zero, the harder it is to reliably extract the lifetime
from our calculations. Because of this, our complex scaling
calculations (see Table III) are restricted to mass ratios κ � 4).
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