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Core filling of dark solitons in a topological superfluid with one-dimensional spin-orbit coupling
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We investigated the core-filling properties of dark solitons in one-dimensional spin-orbit-coupled Fermi gases.
Majorana fermions can exist at the edges of the topological superfluid, when the spin-orbit coupling drives this
system from the superfluid to the topological superfluid. Our results show that when dark solitons participate,
the state of the system and the existence of Majorana zero-energy modes at the edges of topological superfluid
correlate with the filling status of the core of the dark soliton. Furthermore, this dark soliton can actually
accommodate two extra Majorana excitations without interactions in its core, when it is filled with highly
imbalanced spins in a specific region of parameters. These features can be utilized to manipulate Majorana
fermions in the topological superfluid.
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I. INTRODUCTION

Solitons, like dark solitons or bright solitons, have exotic
properties because of their nonlinearity, which can resist
dispersion during propagation. They have been proved to be of
great importance in many physical branches [1]. In ultracold
atomic gases, dark solitons can be created by phase imprinting
[2] or rapid quenches during the collisions of condensates
[3,4]. Apart from their ubiquitous properties, which have been
investigated extensively in theories [5–7] and experiments
[8–12], there are some other interesting phenomena aris-
ing from the so-called topological superfluid [13,14] in
the presence of spin-orbit coupling [13,15,16]. It is well
known that with high spin imbalance, superfluid systems
can be driven into an inhomogeneous Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) phase [17–19] in low dimensions. How-
ever, when the spin-orbit coupling comes into play, the FFLO
state will be suppressed and the system will be driven into a
topological superfluid phase, where dark solitons can exist, in
contrast to the FFLO state. It has been reported that Majorana
zero-energy modes can exist in this topological superfluid
because of its topological properties [20,21]. In this article,
we present a more exotic phenomenon: that the existence of
Majorana excitations at the edges of the topological superfluid
is relevant to the filling status of the core of the dark soliton.
When this dark soliton is filled, there are two extra Majorana
excitations that coexist in the core without interactions. These
results are in agreement with prior works [22,23]. Allowing
for the fact that Majorana fermions have been proved to
be promising candidates for quantum bit (qubit) for quan-
tum computing because of its non-Abelian statistic property
[24,25], these discoveries indeed establish relations between
condensed-matter physics and the development of quantum
computing.
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In this article, we indicate that the state of the system
and the existence of Majorana fermions at the edges of the
topological superfluid are related to the filling status of the
core of the dark soliton. Since a dark soliton is a diplike
structure in the diagram of atomic density, the depth of this dip
is controllable by adjusting parameters such as the strength
of spin-orbit coupling, interatomic interaction, and external
Zeeman field. When we change the depth of a dark soliton,
it is equivalent to filling it with atoms. We show that we
can control which kind of spin (up or down) fills in the
soliton by carefully adjusting the parameters. More important,
we find that only when filled with spin which is superior
in total numbers in a specific region of parameters can two
pairs of Majorana fermions exist at the edges of topological
superfluid. However, if we increase the strength of spin-orbit
coupling and Zeeman field to a special region, one of the
two pairs of Majorana excitations will disappear and an extra
pair of Majorana excitations will emerge in the core of the
dark soliton. Compared with prior works done by several
groups [22,23,26], our work specifies the relation between the
existence of two kinds of Majorana excitations and the filling
status of the core of the dark soliton.

There are articles [27,28] pointing out that the intrinsic
instability of dark solitons could be suppressed by filling
the core of solitons with imbalanced spins. This result holds
even for soliton trains [27]. In this case, our research in fact
gives insight into manipulating Majorana fermions carried by
dark solitons which exist in the topological superfluid in high
dimensions.

This article is arranged as follows. In Sec. II, we introduce
our model based on the Bogoliubov–de Gennes (BdG) equa-
tion, which is derived from the mean-field theory. Although
this model is a qualitative theory, it still captures most features
of the system during the crossover from Bose-Einstein con-
densate (BEC) to Bardeen-Cooper-Schrieffer (BCS) super-
fluid [29]. In Sec. III, we will discuss thoroughly the relation
between the existence of Majorana excitations and the filling
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status in the the core of the dark soliton. In Sec. IV, a summary
discussion and conclusion will be presented.

II. METHODOLOGY

The system is trapped in a two-dimensional optical lattice
in the y-z plane; thus, it can be treated as a one-dimensional
system. The spin-orbit coupling can be engineered by two
Raman lasers propagating in the x and −x directions [30,31].
The Hamiltonian of this system should be written in the form
of second quantization:

H =
∫

dx�̂†(x)Hs�̂(x) + HI , (1)

where �̂(x) = [�̂↑(x), �̂↓(x)]T and �̂†(x) =
[�̂†

↑(x), �̂†
↓(x)] are two-component spinors. �̂†

ν (x) and
�̂ν (x) denote the creation and annihilation operator of
atoms respectively with a spin ν (↑, ↓). The single-particle
Hamiltonian Hs reads

Hs = − h̄2

2m

∂2

∂x2
− μ + V (x) + αk̂xσy − hσz, (2)

where the first term is the kinetic energy and m is the mass
of atoms. The second term μ denotes the chemical potential,
which has absorbed the recoil energy EL = h̄2k2

L/2m of the
Raman laser. The external harmonic potential is V (x) =
mω2x2/2 with an oscillation frequency ω. The fourth term
is the energy of spin-orbit coupling with the momentum
operator k̂x = −i∂/∂x. α ≡ h̄2kL/m stands for the strength
of spin-orbit coupling with a recoil momentum h̄kL of the
Raman laser. The last term denotes the energy shift caused
by the Zeeman field originating from the Raman lasers, where
h = h̄�/2 is the energy of the effective Zeeman field with a
Rabi frequency � of the laser beam. σi are standard 2 × 2
Pauli matrices, where i = x, y, z.

The second term HI = g1D

∫
dx�̂

†
↑(x)�̂†

↓(x)�̂↓(x)�̂↑(x)
on right side of Eq. (1) describes the interaction between
two different spin states with an effective one-dimensional
(1D) attractive interaction strength g1D = −2h̄2/ma1D . The
1D s-wave scattering length a1D [32] originates from 3D
scattering length a3D [33], which can be tuned by Feshbach
resonances in experiment. Here we introduce a dimensionless
parameter γ ≡ −mg1D/n(0)h̄2 to describe the interaction
between atoms and fix it to γ = 2.04 in this article. This
value can help us compare our result with that of previous
work [23] when there is an overlap and it is accessible for
experiments [33]. Note that it is an experimental parameter,
which means it is supposed to be measured in the presence
of the spin-orbit coupling. In this way, the effects of the
spin-orbit coupling have been automatically included in this
parameter, so we only need to focus on the single-particle
Hamiltonian. There are theoretical works [34–36] that deal
with the effects of the spin-orbit coupling on the two-body
interaction. These results may help to get the exact form of
the interactions between atoms in many-body system, but for
now it is very convenient to adopt the experimental parameter.
n(0) =

√
4Nmω/h̄π2 is the density of atoms at the center of

the trap within Thomas-Fermi approximation. The number of
atoms is N = 80 in our setup. Here we adopt the standard

mean-field procedure to rewrite the interaction as

HI � −
∫

[�(x)�†
↑(x)�†

↓(x) + H.c.]dx −
∫

dx
|�(x)|2

g1D

,

(3)

where �(x) ≡ −g1D〈�↓(x)�↑(x)〉 is the complex or-
der parameter of the superfluid system in zero tem-
perature. Now we can define a Nambu spinor ψ (x) ≡
[�↑(x),�↓(x),�†

↓(x),�†
↑(x)]T and rewrite our Hamiltonian

in Eq. (1) as

H �
∫ [

1

2
ψ†(x)HBdGψ (x) − |�(x)|2

g1D

]
dx + TrH0, (4)

where H0 = − h̄2

2m
∂2

∂x2 − μ + V (x) and TrH0 is the trace of
H0. We can write HBdG in the form of 4 × 4 matrix:

HBdG =
(

Hs −i�(x)σy

i�∗(x)σy −H ∗
s

)
. (5)

A. Bogoliubov–de Gennes (BdG) equation

According to the Bogoliubov transformation, we can diag-
onalize the BdG Hamiltonian in the following form,

HBdG�n(x) = En�n, (6)

where �n = [u↑n(x), u↓n(x), v↓n(x), v↑n(x)]T and its conju-
gate �∗

n = [u∗
↑n(x), u∗

↓n(x), v∗
↓n(x), v∗

↑n(x)]T are wave func-
tions of particles and holes with energy En and −En, re-
spectively, where n = 1, 2, 3.... We can express the order
parameter �(x) by u(x) and v(x) as

�(x) = −g1D

2

∑
|En|<Ec

[u↑nv
∗
↓n�(En) + u↓nv

∗
↑n�(−En)].

(7)

Note that the Fermi distribution function f (En) =
1/(eEn/kBT + 1) here degenerates to the Heaviside
step function �(En) since we are interested in the
zero-temperature situation. Here the index of the summation
means we only consider up to the nth energy level with
corresponding energy En close to a cutoff Ec, and similarly
hereafter. The high-energy cutoff Ec ≈ 560h̄ω is sufficient
enough in our setup.

B. Numerical methods

The Bogoliubov–de Gennes (BdG) equation can be solved
numerically with an iterative procedure and we will intro-
duce our method briefly here. In order to solve Eq. (6),
we need to know the exact form of �(x). However, to get
the exact form of �(x), we have to solve Eq. (6). This
is a typical self-consistent system, and we always handle
this kind of system by iteration. First, we choose an initial
ansatz �(x) = �0 exp[iπ�(x − xi )]. The reason we choose
this ansatz is that the order parameter will change its sign
when going through a dark solion located at the point node
xi . It is equivalent to getting a π phase jump, and this form
of order parameter can exactly capture this picture due to
the property of the Heaviside function. It is worth noting
that this expression may also be applicable when it comes
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FIG. 1. (a) The typical diplike density plot of a dark soliton. (b) The profile of pairing energy gap �(x ). We can see that �(x ) plunges
cross the origin which is the center location of the dark soliton. (c) The density distributions of up spins (solid line) and down spins (dashed
line) near the core of the soliton. It is clear that up spins fill in the core of the soliton instead of the down spins. Their density difference near
the core is shown in panel (d). n0 is the maximum total density near the x = 0. The spin-orbit coupling strength and the Zeeman field are
α = 0.6εF /kF and h = 0.4εF , respectively.

to a multiple-soliton situation [22] if we want to manipulate
soliton trains in the future.

Subsequently, we take this initial �(x) to Eq. (6) and
solve the BdG equation by basis expansion. We implement
Ns = 300 single-particle harmonic eigenstates to expand the
u(x) and v(x), and then produce a new �(x). This procedure
will not stop until �(x) converges to a stable value. Then we
extract the v(x) and u(x) in �n(x) with their corresponding

FIG. 2. (a) The total density of state ρ(x,E) with two pairs
of Majorana excitations located at the edges x ≈ ±1.1xF and x ≈
±0.7xF , respectively. Panels (b) and (c) indicate that the two pairs
of Majorana excitations are contributed by ρ↑(x, E) and ρ↓(x,E)
separately. ρσ (x,E) is calculated with Eq. (8). Here the strength
of spin-orbit coupling is α = 0.6εF /kF and the Zeeman field is
h = 0.4εF .

En. So far, since all ingredients are available here, we present
our analysis in next section.

III. ANALYSIS

In this section, we try to reveal the relation between the
existence of Majorana excitations and the different filling sta-
tuses of the core of the dark soliton. Without loss of generality,
we have chosen the direction of the Zeeman field so that
there are more up spins than down spins, i.e., n↑ > n↓. As
soon as we get the information about the eigenfunctions u(x),
v(x), and their corresponding eigenvalues, we can calculate
the local density of states

ρσ (x,E) = 1

2

∑
|En|<Ec

[|uσn|2δ(E − En) + |vσn|2δ(E + En)],

(8)

and the density of atoms

nσ (x) = 〈�̂†
σ (x)�̂σ (x)〉

= 1

2

∑
|En|<Ec

[|unσ (x)|2�(En) + |vnσ (x)|2�(−En)],

(9)

which satisfies the constraint N = ∫
dx(n↑(x) + n↓(x)). The

typical density profile of a dark soliton and its order parameter
are shown in Figs. 1(a) and 1(b). Figures 1(c) and 1(d) are
characteristic patterns of imbalanced spins. The spin-orbit-
coupling strength is α = 0.6εF /kF in Fig. 1, where the kF =√

2mεF /h̄ is the Fermi wave vector with the Fermi energy

013612-3



XINWEI FAN, XIN ZHANG, ZHONGZHOU REN, AND CHANG XU PHYSICAL REVIEW A 99, 013612 (2019)

FIG. 3. Wave functions of Majorana excitations. The energy of
the two Majorana excitations are very close: E1 = +1.0726 × 10−3

in panel (a) and E2 = +1.0727 × 10−3 in panel (b). Because of the
symmetry of the BdG equation, there are two corresponding states
which possess the same physical meaning but with negative energy.
The strength of spin-orbit coupling is α = 0.6εF /kF and the Zeeman
field is h = 0.4εF .

εF = Nh̄ω/2, which is also used as the units of energy. The
length coordinates are scaled by xF = √

Nh̄/mω. Figure 1(c)
shows that a filling has happened in the core of the soliton for
there is a bulge in the profile of up spins around x = 0, which
means the atoms with up spins prefer to stay in the core of the
soliton rather than the outside in contrast to the down spins.
Figure 2 shows the local density of states ρ↑(x,E), ρ↓(x,E),
and their summation ρ(x,E) with the same parameters of
Fig. 1. We find that Andreev fermionic bound states [5] are
located in the core (x ≈ 0) of the soliton and two pairs of
Majorana excitations are located respectively at the edges of
topological regions. Here we pair the Majorana excitations by
their distance from the center, i.e., the inner and outer pair.
However, from the aspect of energy, each side (left and right)
of Majorana excitations occupies the same energy, which is
shown by their wave functions in Fig. 3. The energies of
these Majorana excitations are |EM | ≈ 10−3εF . The two pairs
of Majorana modes emerge because the system has partially
entered a topological superfluid phase [23], which means only
the wings of the system are in the topological superfluid phase,

FIG. 4. (a) The critical Zeeman field h − hc(x ). We can find that
h − hc(x ) > 0 only at the wings, which means these regions are in
topological superfluid states. The two pairs of Majorana excitations
which exist at the edges of the topological regions are highlighted by
red points. (b) The order parameters of three Zeeman fields. We can
see that the order parameter oscillates drastically when increasing the
Zeeman field to h = 0.7εF and is very small when h = 1.0εF . Here
α = 0.6εF /kF .

while the center is still in a normal superfluid state. Here we
adopt the local density approximation to justify this point.

It is known that there is a critical Zeeman field [37] hc =√
μ2 + �2 between the normal superfluid and topological

superfluid. For a system which is normal (topological) super-
fluid, we have h < hc (h > hc), but not vice versa, which will
be addressed later. Allowing for the harmonic trap applied to
the system, we can implement the local density approximation
by changing the chemical potential μ to a local one μ(x) =
μ − V (x), and then the critical Zeeman field will be hc(x) =√

μ2(x) + �2(x).
Figure 4(a) shows that in the condition (h = 0.4) of Fig. 2,

the Zeeman field h > hc(x) only at the wings of the system,
which makes these regions topological. Here we will show
the limitation of the critical Zeeman field hc. Increasing the
Zeeman field h to a certain degree, say, h = 0.7εF , we find
that the order parameter in Fig. 4(b) oscillates drastically,
which means the system has entered the FFLO superfluid state
[26] instead of a topological state, even if h is still larger
than hc(x) in some regions. At the same time, down spins
accumulate around the core of the soliton instead of the up
spins, even though they remain the superior ones. It will be
more obvious if we increase the Zeeman field to h = 0.9εF ,
as shown in Fig. 5. Majorana excitations will also disappear
when down spins accumulate around the core, which is shown
in Fig. 6. However, this trend will not last long. If we continue
to increase h to 1.0εF , the order parameter will be extremely
small, so the system can no longer be considered as a
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FIG. 5. (a) The distribution of up spins near the core of the dark
soliton. We can see that with an increasing Zeeman field h, the up
spins stop filling the core gradually. In contrast, panel (b) shows that
the down spins start to accumulate around the core, especially when
h = 0.9. However, the down spins will also stop gathering around the
core if we continue increasing h. The strength of spin-orbit coupling
is α = 0.6εF /kF here.

superfluid. Meanwhile, the down spins will stop gathering and
the core of this soliton will be filled to a flat state correspond-
ing to a quasihorizontal curve in the density diagram. The
series of events suggest that the state of the system is relevant
to the filling status of the core of the soliton.

Note that, in correlation with dark solitons though, those
Majorana excitations shown in Fig. 2 can in fact exist without
solitons [26,38]. In this case, dark solitons are more like an
indictor of these Majorana excitations, which means we can

FIG. 6. Panels (a), (b), and (c) are the local densities of states
ρ(x,E), ρ↑(x,E), and ρ↓(x,E) respectively. In contrast to the
situation with a smaller Zeeman field in Fig. 2, there is no sign
of Majorana excitations. The up spins stop filling the core of the
dark soliton at the same time (see Fig. 5). Here, α = 0.6εF /kF and
h = 0.7εF .

FIG. 7. (a) The critical Zeeman field h − hc(x ). We can see that
the region x ∈ [−1.1, 1.1] is in topological superfluid state. Thus,
only the outer pair of Majorana excitations remains at the edges (the
red points in h = 0.7εF ). (b) The order parameters with different
Zeeman fields. In contrast to the situation when α = 0.6εF /kF in
Fig. 4(b), the order parameter will not oscillate, which means we can
suppress the FFLO state with large strength of spin-orbit coupling.
Here α = 1.3εF /kF .

estimate the state of the system and the existence of Majorana
excitations by the filling status of the dark soliton with specific
parameters in the experiment.

However, there is another kind of Majorana excitations
which is carried by the dark soliton in the topological super-
fluid. When we increase the strength of spin-orbit coupling
above α = 1.2εF /kF and adjust the energy of Zeeman field
to h = 0.7εF , we find that the system will not evolve into
the FFLO superfluid state but a full topological superfluid
state. In this phase, the center of the system also satisfies
the condition h > hc(x) as shown in Fig. 7(a). In contrast to
the case of the FFLO state in Fig. 4(b), the order parameter
will not oscillate in this topological phase, which is shown
in Fig. 7(b). Since the whole region (between the two edges)
is topological, the inner edges will disappear along with the
inner pair of Majorana excitations. However, we also find that
there is a cloudlike structure [22] emerging near x = 0, shown
in Fig. 8(a). This structure near the core consists of two Majo-
rana excitations with energy |EM ′ | ≈ 10−6εF . It is a result of
the overlapping of the bound states [22,23], which means the
energy of the two bound states will decrease close to zero in
this topological phase. Compared with no soliton situation in
Fig. 8(b), it is clear that these two Majorana excitations near
x = 0 are indeed a consequence of the existence of the dark
soliton. More specifically, it originates from the the bound
states carried by the dark soliton [5,22]. Besides, the atoms
fill the core of the dark soliton to a flat state as shown in
Fig. 8(c) in this phase. Once again, the state of the system can
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FIG. 8. Panel (a) is the local density of state when a dark soliton
exists in the topological superfluid. Panel (b) is the local density of
state without solitons. It is clear that panels (a) and (b) are nearly
identical except for the Majorana excitations located at x ≈ 0 in
panel (a). So we confirm that this kind of Majorana excitations is
carried by the dark soliton in contrast to the former kind in Fig. 2. We
can see from the density distribution of atoms (c) that the core of the
dark soliton in (a) is fully filled. Here α = 1.3εF /kF and h = 0.7εF

for both situations.

be indicated by the filling status of the core, so is the existence
of the Majorana excitations.

We present a region diagram of the filling status with
different parameters in Fig. 9. This diagram is the essence of
this work since the discussions above are merely examples
of this diagram. Every region has two marks, character and
color, which stand for the filling status of the core and the
state of the system, respectively. First, the UF region with blue
background means the core of the dark soliton is filled by up
spins and the system is normal superfluid. There is a special
region in the UF, namely the region in purple. It is a region
that the filling status is still UF, but the system is partially
topological; see Fig. 4. Since it is still in the UF region, the
boundary is a dot-dashed line instead of a solid line. Second,
the DF region with yellow background indicates the core is
filled by the down spins and the system now is in the FFLO
state. The FF region in green indicates the core is flatly filled,
see Fig. 8(c), and the system is in a normal state, not a
superfluid state. We notice that for α > 1.2εF /kF and to the
range we have examined, the down spins will not participate
in the filling process and the FFLO state will be suppressed
by large strength of the spin-orbit coupling, which give rise to
the last region, namely the FF region with orange. In there, the
core is flatly filled, but the system is in a topological state and
the dark soliton starts to carry its own Majorana excitations in
its core, shown in Fig. 8(a).

FIG. 9. The region diagram of the filling statuses. Different
colors correspond to different state of the system where UF and DF
denote that the core fills with up spins and down spins, respectively.
FF denotes the region where the core is flatly filled. The system
is partially topological in the purple part of the UF region and in
there two pairs of Majorana excitations can exist at the edges of
the topological superfluid. In the orange region, the dark soliton can
carry two Majorana excitations in its core.

It is well known that dark solitons will suffer an intrinsic
instability [6,39–41] when it comes to high dimensions. Re-
cently, there are works [27,28] indicating that the instability
can be suppressed when imbalanced spins fill the core of the
soliton. The magnitude of the suppression is proportional to
the degree of the imbalance, which means that the larger ratio
of imbalanced spins the core possesses, the more stable the
soliton will be. Here, we define the polarization as

P (x) = n↑(x) − n↓(x)

n↑(x) + n↓(x)
. (10)

In the orange region of Fig. 9, where the dark soliton can carry
Majorana excitations in its core, the polarization is P (0) ≈
0.5, which is high enough to suppress the instability [28] if it
can be maintained in high dimensions with time-dependent
evolution. We hope it can be clarified further in the future
because it may be a key to manipulating dark solitons or
soliton trains which can carry Majorana excitations in the
topological superfluid.

IV. DISCUSSION AND CONCLUSION

In this article, we show that the state of the system and the
existence of Majorana fermions at the edges of the topological
superfluid are related to the filling status of the core of the
dark soliton. We point out that only in a specific region of
parameters (purple part of Fig. 9) can two pairs of Majorana
fermions exist at the edges of the topological superfluid.
Furthermore, the dark soliton can carry its own Majorana
excitations in the core with a high spin imbalance which
could be utilized to suppress the instability of the dark soliton
in high dimensions within the orange part of Fig. 9. Our
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results also provide a possible way to search for the Majorana
excitations and the FFLO state experimentally by detecting
the density distribution of different spins around the core of
the dark soliton. Considering that Majorana fermions have
been proved to be a promising candidate for quantum bit for
quantum computing, this work improves the maneuverability
of Majorana fermions and the possibility of realizing quantum
computing in the topological superfluid with the participation
of solitons or soliton trains.
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