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Local manipulation of quantum magnetism in one-dimensional ultracold Fermi
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Effective range is a quantity to characterize the energy dependence in two-body scattering strength and is
widely used in cold atomic systems, especially across narrow resonances. Here we show that the effective
range can significantly modify the magnetic property of one-dimensional (1D) spin-1/2 fermions in the strongly
repulsive regime. In particular, the effective range breaks the large spin degeneracy in the hard-core limit and
induces a Heisenberg exchange term in the spin chain that is much more sensitive to the local density than that
induced by the bare coupling. With an external harmonic trap, this leads to a very rich magnetic pattern where
the antiferromagnetic and ferromagnetic correlations can coexist and distribute in highly tunable regions across
the trap. Finally, we propose to detect the range-induced magnetic order in the tunneling experiment. Our results
can be directly tested in 1D Fermi gases across narrow resonance and suggest a convenient route toward the local
manipulation of quantum magnetism in cold atoms.
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I. INTRODUCTION

Energy-dependent interaction is common in nature, which
roots deeply in the renormalization group theory. In cold
atomic systems, such energy dependence appears naturally
in the Feshbach resonance, which essentially relies on the
energy difference of (open) atomic and (closed) molecular
channels [1]. To describe the low-energy physics, an effec-
tive range expansion is usually introduced to incorporate the
energy dependence of coupling strength g(E), which reads

1

g(E)
= 1

g(0)
+ r0E, (1)

where E is the energy of two colliding particles in the center-
of-mass frame and g(0) is coupling strength at threshold en-
ergy. Here r0 is the effective range, which crucially depends on
the width of resonance. In particular, for narrow resonances,
r0 is typically large as to be comparable with the interparticle
distance. Previous studies have revealed interesting effects of
finite range in cold atoms systems, including the generation of
stronger interaction effects [2–6], the modification of Fermi
superfluids [7,8], the subleading high-momentum tail [9–14],
and the stabilization of repulsive polaron [15] and p-wave
system [16].

In this work, we reveal the significant effect of effec-
tive range to the quantum magnetism of spin-1/2 Fermi
gases. Here we take the one-dimensional (1D) Fermi gas
in a strongly repulsive regime, which features an impen-
etrable nature and thus supports a hidden “lattice” struc-
ture. In this regime, the system is well described by an
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effective Heisenberg spin-chain Hamiltonian which exhibits
exotic quantum magnetic properties and provides additional
insights into the simulation of quantum magnetism without
lattice [17–30] and such spin-chain systems were realized
experimentally recently [31]. Previous studies based on zero-
range interactions have shown that the system can host either
an antiferromagnetic (AFM) or a ferromagnetic (FM) spin
correlation, depending on the sign of coupling strength or
other small perturbations. Moreover, at the infinite coupling
(hard-core) limit, spin and charge are fully decoupled and
the system exhibits huge spin degeneracy, at which point the
FM transition is predicted [32]. Here we will show that the
inclusion of a finite effective range can qualitatively change
above conclusions and brings much richer magnetic structures
to the system.

Our results can be summarized in Fig. 1. In the presence
of a finite range r0, as tuning the inverse coupling 1/g0 from
the repulsive to attractive side, the system adiabatically goes
from an AFM-correlated spin chain to FM-AFM-FM mixed
and, finally, to a fully FM-correlated chain. The spatially
modulated magnetic correlation is due to the range-modified
Heisenberg coupling in an effective spin-chain model, which
is more sensitive to the local density as compared to that in-
duced by bare coupling [see Eq. (10)]. Our results demonstrate
an adiabatic formation of FM domains from the AFM state,
which has not been achieved to date. We further propose to
verify these magnetic properties in the tunneling experiment
of tilted harmonic potential.

II. MODEL AND RESULTS

A. Range-modified effective spin chain

We begin with deriving an effective spin-chain model for
strongly repulsive spin-1/2 fermions (↑,↓) in the presence
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FIG. 1. Schematic diagram of magnetic order for a harmonically
trapped spin-1/2 fermions system with a finite-range (r0 �= 0) in-
teraction. As we tune the interaction (1/g0) from the repulsive to
the attractive side, the system adiabatically goes from an AFM-
correlated spin chain to FM-AFM-FM mixed and, finally, to a fully
FM-correlated chain, which is in sharp contrast to the zero-range
case with either AFM phase (1/g0 > 0) or FM phase (1/g0 < 0).
The red dashed lines and green solid lines represent the AFM and
FM coupling between spins, respectively.

of a finite range. The original Hamiltonian is H = H (0) + U

(here h̄ = 1),

H (0) =
∑

i

(
− 1

2m

∂2

∂x2
i

+ 1

2
mω2

hox
2
i

)
, (2)

U =
∑
i,j

gij δ(xi↑ − xj↓). (3)

Here gij follows the effective range expansion: 1/gij =
1/g0 + r0Eij , with g0 the bare coupling constant and Eij the
relative energy of two colliding particles xi↑ and xj↓. The
present study will focus on the near resonance regime with
large g0 and small r0. Here the confinement length is defined
as aho = (mωho)−1/2.

To highlight the range effect, let us first consider the case of
g0 = ∞. In this case, without the range (r0 = 0) the collision
of atoms is forbidden due to hard-core interaction and the
spins can distribute in an arbitrary order in coordinate space,
giving the large spin degeneracy. When we turn on the range
(r0 �= 0), however, the atoms only experience hard-core inter-
action at zero relative energy (Erel = 0), but not at finite Erel,
and the finite-Erel interaction causes a superexchange of spins
at neighboring orders in the coordinate space, giving rise to an
effective spin-chain model. Following the standard procedure,
we obtain the effective Heisenberg spin chain solely induced
by r0:

Hr
eff = r0

∑
l

J r
l

(
sl · sl+1 − 1

4

)
, (4)

where l is the order index of particles in coordinate space and
the Heisenberg coupling is

J r
l = 2N !

m2

∫
dxEij

∣∣∣ ∂D

∂xij

|xij =0

∣∣∣2
θ (· · · < xi = xj < · · · ),

(5)

where xij = xi − xj ; D({xi}) is the Slater determinant of N

fermions occupying the lowest N -level of H (0), and Eij is

FIG. 2. Energy spectrum for 1D trapped ↑↓ and ↑↑↓ systems
as a function of effective range r0 at 1D resonance (1/g0 = 0). The
linear fit is based on the effective spin-chain model (4). Here the
energy E and range r0 units are ωho and ω−2

ho a−1
ho , respectively

the relative collision energy of two particles (xi, xj ) in the
D({xi}); in the θ function xi (= xj ) is with order index l.

To verify the range-induced spin-chain model, we have
exactly solved the two-body (↑↓) and three-body (↑↑↓) prob-
lems in a trapped system with tunable range. In Fig. 2, we plot
the obtained energy spectra of these systems as a function of r0

at 1/g0 = 0, in comparison with the linear fit from the model
Hr

eff . We can see that the effective model can well predict
the real spectra of both systems for small r0(� 0.1 ω−2

ho a−1
ho ).

This validates the effective spin-chain model used for larger
systems.

In combination with the spin-chain model for small 1/g0

[18–28], we write the final effective model in the limit of large
g0 and small r0 as

Heff =
∑

l

(
1

g0
J

g

l + r0J
r
l

)(
sl · sl+1 − 1

4

)
, (6)

with J
g

l

J
g

l = 2N !

m2

∫
dx

∣∣∣ ∂D

∂xij

|xij =0

∣∣∣2
θ (· · · < xi = xj < · · · ). (7)

Physically, both the bare coupling (g0) and effective range
(r0) produce the same isotropic Heisenberg term because both
of them take effect in the spin-singlet interaction channel,
and thus the effective model is determined by the same spin-
projection operator [27].

B. Heisenberg couplings

Before studying the quantum magnetism, we first examine
the density dependence of J

g

l , J r
l for a homogeneous large

system, and the trapped case can be deduced from the local
density approximation. Previously, J

g

l was shown to depend
on the cubic density (∼n3) [18,33] by extrapolating the
nearest-neighboring exchange coupling in the Hubbard model
to continuum [34,35]. Here we point out an alternative way to
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FIG. 3. Heisenberg couplings J
g

l (a) and J r
l (b) (in the units of

ω2
hoaho and ω3

hoaho, respectively) in a harmonic trap. The star, circle,
diamond, square, and triangular points are exact solutions of Eqs. (8)
and (9) for total number N = 2, 3, 4, 5, 6. The red lines are from
analytical expressions (10) together with Thomas-Fermi density
(see text).

derive J
g

l and J r
l from Eqs. (7) and (5) through the momentum

averaging below the Fermi sea:

J g = 2n

m2

〈(
k1 − k2

2

)2〉
, (8)

J r = 2n

m3

〈(
k1 − k2

2

)4〉
, (9)

where 〈F (k1, k2)〉 ≡ ∫ ∫
F (k1, k2)dk1dk2/

∫ ∫
dk1dk2 and

the integration is for k1, k2 ∈ [−kF , kF ], with kF the Fermi
momentum determined by the density n = k3

F /(6π2). The
essence of Eqs. (8) and (9) is to reformulate the manyfold
integration into the combination of the local density and a
pair-averaged function in terms of the relative momentum of
two particles within the Fermi sea. The procedure leads to

J g = 2π2n3

3m2
, J r = 4π4n5

15m3
. (10)

Remarkably, here the range-induced coupling J r has a much
more sensitive dependence on the local density than J g ,
which we will show below to significantly affect the quantum
magnetism in the trapped system. In Fig. 3, we show that
Eq. (10) can well reproduce the exact solutions of J

g

l , J r
l

from Eqs. (8) and (9) for trapped systems up to N = 6,
where for the local density we have used Thomas-Fermi
approximation nl → n(x̄l ) = 1

π

√
2m(NωT − 1

2mω2
T x̄2

l ), with
x̄l = 〈(xl + xl+1)/2〉.

To this end we can rewrite the spin-chain Hamiltonian (6)
as Heff = ∑

l J
eff
l (sl · sl+1 − 1

4 ), where the effective coupling
depends on the coupling, range, and local density nl :

J eff
l = 2π2n3

l

3m2

(
1

g0
+ 2π2

5m
n2

l r0

)
. (11)

C. Spatially modulated quantum magnetism

From the expression of J eff
l , we can see that its sign can be

effectively tuned by local density nl , distinct from the zero-
range case where the magnetic property is solely determined
by the sign of coupling strength. This immediately leads to
two effects for a trapped system with inhomogeneous density.
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FIG. 4. (a) Energy spectrum of four harmonically trapped
fermions (N↑ = N↓ = 2) as a function of −1/g0 (in the unit of
ω−1

ho a−1
ho ). Here we take r0 = 0.05ω−2

ho a−1
ho . (b) Schematics of AFM

(red dashed lines) and FM (green solid lines) magnetic correlation in
the chain at different coupling strengths as marked in (a). The dotted
lines with crossings refers to the zero effective coupling J eff

l = 0.

First, the system is no longer described by a single coupling
strength, and there is no exact hard-core limit with large
spin degeneracy. Second, given r0 > 0 and in the regime of
1/g0 < 0, particles at different regions inside the trap may
experience different signs of J eff , which means that the AFM
and FM magnetic correlation can coexist in the system, i.e.,
the quantum magnetism can be locally manipulated.

In Fig. 4(a), we show the energy spectrum of four fermions
(N↑ = N↓ = 2) by solving the spin-chain Hamiltonian (6)
at a given r0 = 0.05 ω−2

ho a−1
ho . Totally there are six energy

levels, two with total spin S = 0, three with S = 1, and one
with S = 2, similarly to the zero-range case [5]. With a finite
range, the six levels no longer cross each other at 1/g0 = 0,
while the ground-state transition (from S = 0 to S = 2) moves
to the negative coupling side at gc < 0.

Now we analyze the adiabatic change of the ground state
(with S = 0) before the transition (in the regime −1/g0 <

−1/gc). In the positive coupling side of resonance, the ground
state holds the AFM correlations in the spin chain given
by all positive J eff

l [marked as 1© in Figs. 4(a) and 4(b)].
As increasing −1/g0 across resonance to negative coupling
side, two states becomes degenerate at point 2©, where the
Heisenberg coupling at the edges of the chain touches
zero(J eff

1 = J eff
3 = 0) and the edge particles are decoupled

from the chain, giving two degenerate spin states (S = 0
and S = 1). Further increasing 1/g0 beyond this point, the
edge spins have FM correlation with negative coupling, while
the center are AFM correlated with positive coupling (see
3©). When reaching 4©, the center coupling becomes zero

(J eff
2 = 0), and the system is divided into two independent

magnetic domains with FM correlation. At this point, three
spin states are degenerate, corresponding to two FM (triplet)
pairs forming total spin S = 0, 1, 2. Beyond this point, the
ground state of the system changes to S = 2 FM state, and
all sites are with FM correlations ( 5©).

The above picture can be generalized to an arbitrary num-
ber of particles. Take the spin-balanced case N↑ = N↓ =
N/2, for example, as increasing −1/g0 the ground state of
the system (with S = 0) is expected to cross a sequence
of degeneracies with other spin states until the transition to
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FIG. 5. Diagram for phases characterized by different magnetic
correlations of the system in terms of the bare coupling and effective
range. Here N↑ = N↓ = 4. The units of 1/g0 and r0 are ω−1
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ho and
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ho , respectively.

FM (S = N/2) state. The first degeneracy occurs at 1/g0 =
− 2π2

5m
n2

1r0, when J eff
1 = J eff

N−1 = 0 and two edge spins are
separated from the system giving a twofold degeneracy, see
the upper line in Fig. 5. Increasing −1/g0 beyond this point,
the Heisenberg couplings transit from pure AFM type to
a FM-AFM-FM mixed type. In this mixed phase, the trap
center shows the AFM correlation (with J eff > 0) because of
higher density, while the trap edge shows FM correlation with
J eff > 0 because of lower density. In this regime, an m + 1-
fold (1 � m � N/2) degeneracy occurs at 1/g0 = − 2π2

5m
n2

mr0

when J eff
m = J eff

N−m = 0. Continuously increasing −1/g0, the
regions with FM correlations becomes enlarged while AFM
correlation becomes reduced, giving the increasing 〈S2

LS2
R〉,

where SL/R is the total spin of left (right) part of the trapped
system. The ground-state transition to the FM state happens
exactly at the N/2 + 1-fold degeneracy point (see the lower
phase boundary in Fig. 5), when 1/g0 = − 2π2

5m
n(0)2r0 with

n(0) the density at trap center. At this point
√

〈S2
LS2

R〉 reaches
the maximum value N/4(N/4 + 1), suggesting two large and
separated FM domains formed at the left and right regions of
the trap.

D. Tunneling experiment

Now we come to the experimental detection of the range-
induced magnetic orders, using the tunneling techniques as
established in experiments [31]. By varying the magnetic field
gradient and tilting the potential barrier, one can control the
number of atoms tunneling out of the trap and probe the
spin structure. Here we propose the measure the possibility
of having all spin-↓ atoms tunneling from the right side
of the trap, which is given by the weight of the full spin
separated configuration (| ↑↑ ... ↓↓ ...〉) in the wave function,
as denoted by P↓ in following discussions.

In Fig. 6(a), we show P↓ as a function of −1/g0 for
the N↑ = N↓ = 2 system, by adiabatically following certain
state from the g0 > 0 side. Without range, we see that P↓
is very small (∼4%) if following the AFM ground state and
can be as large as 16.7% if following FM state, consistent
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FIG. 6. (a) Probabilities of all spin-↓ atoms tunneling from the
right side of the titled trap, denoted by P↓. Red solid line is for system
with range r0 = 0.02 ω−2

ho a−1
ho , by adiabatically following the ground

state in g0 > 0 side to g0 < 0 side. The cross point marks the location
of the FM transition, when P↓ shows a maximum. Blue dashed and
green dotted lines are for zero-range systems adiabatically following
the AFM ground state (S = 0) and the FM state (S = N/2). Here
N↑ = N↓ = 2, the unit of 1/g0 is ω−1

ho a−1
ho . (b) The maximum of P↓

as a function of particle number N for spin-balanced fermions. Red,
blue, and green lines are the same as in (a).

with the experiment [31]. Turning on the range and following
the ground state in g0 > 0 side, P↓ is no longer a constant
but varies sensitively with −1/g0, suggesting the significant
change of magnetic structures or correlations in the trap.
In particular, we see that P↓ reaches a maximum near the
N/2 + 1-fold degeneracy point, where the effective coupling
at the trap center touches zero and the system is composed of
two FM domains (each with spin S = N/4). The maximum
value can be then deduced by expanding the S = 0 state by
two spins with S = N/4:

|S = 0, Sz = 0〉

=
N
4∑

m=− N
4

C (N )
m

∣∣∣∣S1 = N

4
,m

〉
N
2

∣∣∣∣S2 = N

4
,−m

〉
N
2

, (12)

and then P↓ is exactly given by the Clebsch-Gordan
coefficients as

P↓ =
∣∣∣∣C (N )

N
4

∣∣∣∣
2

= 1

N/2 + 1
. (13)

In Fig. 6(b), we have verified this analytic result by numer-
ically calculations from the spin-chain model. Remarkably,
Eq. (13) produces a much larger P↓ in comparison to the

FM state, where P↓ = N
2 ! N

2 !
N! �

√
πN

2

2N is exponentially small.
This reflect the distinct magnetic structure of a pure FM
state and a composition of two FM domains. This can serve
as experimental evidence to identify the spatially modulated
quantum magnetism due to the finite-range effect.

III. REMARK ON A RELATED WORK

Recently, Deuretzbacher and Santos [26] found another
way to locally tune the exchange coefficients of the effective
Heisenberg chain by properly tailoring the transversal con-
finement which may realize a AFM-FM-AFM mixed phase.
Different from their work, here we propose that the finite-
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range effect can also bring about a very rich magnetic pattern.
Our results reveal the significant effect of a finite effective
range in the strong-coupling regime of 1D trapped spin-1/2
fermions. The sensitive density dependence of Heisenberg
coupling induced by the finite range suggests a convenient
route toward the local manipulation of quantum magnetism.
In particular, by engineering the density distribution of cold
atomic gases through the laser potentials, one may get access
to an arbitrary configuration of local Heisenberg coupling in
the coordinate space, and thus an arbitrary type of magnetic
order may be achieved. This concept can be generalized to

higher spins and other composition of atomic mixtures in the
1D strong-coupling regime.
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