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Nonrelativistic fermions with holographic interactions and the unitary Fermi gas
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We present an alternative way of computing nonrelativistic single-particle spectra from holography. To
this end, we introduce a mass gap in a holographic Dirac semimetal and subsequently study the nonrelativistic
limit of the resulting spectral functions. We use this method to compute the momentum distributions and the
equation of state of our nonrelativistic fermions, of which the latter can be used to extract all thermodynamic
properties of the system. We find that our results are universal and reproduce many experimentally and
theoretically known features of an ultracold Fermi gas at unitarity.
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I. INTRODUCTION

Our understanding of ultracold Fermi gases has signifi-
cantly progressed over the past decade, due to the fact that
the s-wave scattering length, which is the relevant measure
for the strength of the interactions in these systems, can be
conveniently engineered by tuning a magnetic field near a so-
called Feshbach resonance [1,2]. This allows for an accurate
experimental analysis of ultracold gases in both the weakly
and strongly coupled regime [3–8]. A particularly interesting
situation occurs exactly at resonance, where the external
magnetic field is such that the scattering length diverges. At
this point, collisions between the atoms are unitarity limited
and the system becomes almost scale invariant in the sense
that the only length scale at zero temperature is the average
interatomic distance that is set by the atomic density and
diverges at zero density. Consequently, the thermodynamic
properties of the Fermi gas become universal at unitarity [9].

Being strongly coupled, close to scale invariant, and exper-
imentally accessible, these ultracold gases at unitarity present
a benchmark problem for the application of the holographic
anti-de Sitter/conformal field theory (AdS/CFT) correspon-
dence, which aims to describe a (possibly deformed) CFT as
a boundary property of a dual theory in a curved space-time
with one more spatial dimension [10]. This correspondence
was discovered within string theory [11] and for condensed-
matter physics has especially had some successes in the
application to emergent relativistic systems such as graphene
[12,13] and Weyl or Dirac semimetals [14–21]. A common
way to deal with nonrelativistic systems in holography is to
use instead of an AdS space-time background a so-called
Lifshitz background [22–26] as a gravitational dual with a
dynamical exponent z = 2.

However, the fermionic spectra obtained in this way are
generally particle-hole symmetric and without a mass gap.
Hence, for the description of an ultracold gas of massive
atoms, a different approach is needed. The purpose of this
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paper is to provide this alternative approach to nonrelativis-
tic holography, which allows us to compute nonrelativistic
single-particle spectra that can in principle be compared with
experiments. Our method uses as its starting point results for
the dynamics of Dirac fermions from holography [29], from
which we can also obtain single-particle spectra with a mass
gap by introducing a mass deformation in the CFT. The intro-
duction of the mass gap allows us to consider the nonrelativis-
tic limit of such spectra, where this mass scale, which contains
the speed of light c, is large compared to all the other energy
scales in the problem. Our most important finding below is
that we obtain a data collapse for the spectral functions in the
limit c → ∞, i.e., the spectral functions are universal after an
appropriate scaling with the chemical potential.

An important advantage of our procedure is that it allows
us to directly compare results obtained from a holographic
model with experimental data. Therefore, we also extensively
discuss the application of our method to ultracold Fermi gases
at unitarity. In particular, we determine the equation of state
from the single-particle spectra, i.e., the density as a function
of the chemical potential and temperature, which is shown in
Fig. 1 and from which all thermodynamic functions follow.
The equation of state can be directly compared with results
from experiments [27,30–32] and from other theoretical mod-
els that are based on, for example, quantum Monte Carlo
methods [33,34], the Luttinger-Ward formalism [35], Wilso-
nian renormalization-group methods [36], or, more recently,
the complex Langevin model [28]. Of course, a quantitative
comparison requires fine-tuning of the model parameters and
possibly also examining different gravitational dual theories.
This is beyond the scope of the present paper, in which we pri-
marily focus on the method to obtain universal nonrelativistic
spectra from holography. Therefore, the main purpose of the
comparison to the unitary Fermi gas is to show that our spectra
are able to reproduce many of its qualitative features.

II. HOLOGRAPHIC INTERACTIONS

To explain most clearly the physical content of our ap-
proach, we consider a relativistic Dirac fermion � with bare
mass M0 and chemical potential μ0 that is linearly coupled
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FIG. 1. The universal equation of state obtained for our nonrela-
tivistic fermions with holographic interactions. The atomic density n

divided by the ideal Fermi gas density nid is shown as a function
of the chemical potential times the inverse thermal energy βμ ≡
μ/kBT . For comparison, the inset shows the experimental results of
Ref. [27] in red (dark gray) and the theoretical results from Ref. [28]
in green (light gray) obtained from the complex Langevin method.
Note that our construction of the holographic interactions depends
on four dimensionless model parameters that are introduced in the
text below and that are not yet fine-tuned to the experiments, as these
contain effects of the inhomogeneity of the harmonically trapped gas
and of the phase transition to the superfluid state. The specific values
used are here the same as in Fig. 3.

to a strongly interacting CFT through a fermionic operator O.
Referring to Appendix C for our conventions in this section on
the units (mostly h̄ = c = 1) and on the Dirac theory in flat
and curved space-times, the corresponding grand-canonical
action is

S =
∫

k

{
�†γ 0(− /

K − iM0)� + g�†O + gO†�
} + SCFT,

(1)

with
∫
k

≡ ∫
d4k/(2π )4, kμ = (−ω, k), /K = γ μKμ, γ μ the

gamma matrices, Kμ = (−ω − μ0, k), g a coupling constant,
and SCFT the action of the deformed CFT containing O. To
make a connection with condensed-matter physics, we think
of the CFT as being formed out of collective variables of the
single fermion �. From this perspective, the operator O is
then a composite operator containing �. We remark that we
employ holography in the spirit of a bottom-up approach, in
which we only know some global (universal) properties of the
action of the CFT. However, the exact microscopic content
of the CFT is unknown, so that it is not possible to give an
explicit expression for SCFT. Nonetheless, we discuss some
possible microscopic connections to the unitary Fermi gas
at the end of the paper. The CFTs described by holographic
models contain a large number of degrees of freedom N [11],
which implies that upon integrating out the CFT we can write
the retarded Green’s function for � as

G−1
R (ω, k) = −γ 0(

/
K + iM0) − �(ω, k), (2)

with �(ω, k) ≡ g2GO(ω, k) the self-energy matrix for �

that, due to the implicit large-N limit, only involves the two-
point function GO of O. The latter can be directly obtained
from the dictionary of the AdS/CFT correspondence.

(a) (b)

FIG. 2. (a) A typical bulk solution of the gauge field At in blue
(dark gray) and the scalar field rφ in yellow (light gray). The latter is
multiplied by r so that its value at the boundary at r = ∞ gives the
mass M0, up to the constant α = 4

√
3/π 2 that is derived in Ref. [29].

From the value of At at the boundary, we can read off the chemical
potential divided by the charge q. (b) The Witten diagram from which
the self-energy for � follows. The dashed line gives the propagator
GO, which follows from the propagation of the Dirac fermions in the
curved bulk space-time.

Technically, we obtain the above Green’s function GR from
a holographic dynamical-source model [15]. The calculation
of the Green’s function is then a two-step process. The first
step is to find the gravitational dual of the CFT, also known
as the bulk background, which consists of a so-called asymp-
totically AdS space-time with an additional spatial coordinate
r . Moreover, to have a nonzero temperature T and chemical
potential μ0 in the CFT, we need to have a black-hole horizon
at r = r+ and a U (1) gauge field A = Atdt in the bulk [14].
Finally, consistent with our above interpretation of O, we
need to introduce a mass deformation in the CFT. This we
achieve by adding also a real scalar field φ to the gravity
theory [16]. The gravitational background is then found by
simultaneously solving the Einstein equations, the Maxwell
equations, and the Klein-Gordon equation. Numerically, this
is achieved by integrating the coupled equations of motion
for At (r ), φ(r ) and the metric gMN (r ), or equivalently the
vielbeins eM

N (r ) [37], from the horizon at r+ to the boundary
at r = ∞, where the CFT lives. We refer to Appendix A for
the explicit equations of motion. Here we use capital Roman
indices in the five-dimensional bulk space-time, which, as
opposed to the Greek indices, include the radial r direction.
From the boundary values of the solution, we can then read
off the chemical potential and the mass M0, as illustrated in
Fig. 2(a), whereas the temperature is equal to the Hawking
temperature that follows from the behavior of the metric at
the horizon.

The second step is then to find the two-point function
GO, that according to the holographic dictionary follows
by having two Dirac spinors, which together contain the
degrees of freedom of � and O, propagate on the gravitational
background found in the first step, as illustrated in Fig. 2(b).
These spinors have bulk charge q under the U (1) gauge
field and bulk masses M and −M , respectively. Furthermore,
they are coupled to the scalar field φ by a Yukawa coupling
with strength λ, which is necessary to provide a coupling
between the chiral components of the boundary spinor �

[29]. From the associated equations of motion for these bulk
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fermions, we can then derive a differential equation for the
4 × 4 matrix �, which is related to GO by GO(ω, k) =
− limr→∞ r2Mγ 0�(r, ω, k). This equation reads

−(er
r ∂r + 2M )� + i(i

/
K + λφ) − i�(i

/
K − λφ)� = 0,

(3)

where now Kμ = (−ω − qAt , k) and /K = γ νeμ
ν Kμ. It is

supplemented with the initial condition �(r+) = iγ 0, corre-
sponding to purely infalling conditions at the horizon. Hav-
ing solved Eq. (3), we find the spectral function ρ(ω, k) =
Im[Tr GR (ω, k)]/π of �, which depends on the ratios
kBT/M0c

2 and μ0/M0c
2 obtained from the gravitational

background, and additionally on the dimensionless param-
eters q, M , λ, and g involved in our construction of the
holographic interactions. We comment on the physical signif-
icance of these model parameters at the end of the paper.

III. NONRELATIVISTIC LIMIT

The above (semi)holographic model yields relativis-
tic spectral functions that obey the frequency sum rule∫

dωρ(ω, k) = 4 [38] and thus contain both particle and
antiparticle peaks, separated by a gap proportional to M0c

2

[29]. The introduction of this mass scale allows us to in-
spect the nonrelativistic limit by considering temperatures and
chemical potentials that are small compared to this scale.
For this, however, we first need a suitable definition of the
nonrelativistic chemical potential μ, which differs from μ0

defined above, as in the limit c → ∞ we want to measure the
chemical potential with respect to the bottom of the particle
band as illustrated in Fig. 3(a). Hence, when μ = T = 0,
we expect a delta peak at (ω, k) = (0, 0). Defining μ∗

0 as the
value of μ0 at which this occurs, the nonrelativistic chemical
potential μ is then proportional to μ0 − μ∗

0.
Moreover, for a genuine nonrelativistic spectrum, we

should observe that in the regime where h̄ω and h̄ck are small
compared to M0c

2, the spectral functions no longer depend
on the energy scale M0c

2. Another way of saying this is that
the spectra should only depend on the ratio βμ rather than
on kBT/M0c

2 and μ/M0c
2 separately. An obvious strategy

to find such spectra is therefore to analyze spectral functions
for several small values of T and μ, keeping the ratio βμ

fixed. Our numerical data shown in Fig. 3(b) reveals that we
can indeed find a data collapse in this limit, provided that we
use the nonrelativistic chemical potential μ = Z(μ0 − μ∗

0 ),
with the wave-function renormalization factor Z defined by
1/Z = −2∂ωRe[Tr GR (ω, 0)]−1|ω=ω0

with ω0 the position of
the peak at zero momentum. In Fig. 3(c), we show the spectral
functions obtained for βμ = 2 for several values of k. The
locations ω(k) of the peaks in these spectra indeed conform
to a nonrelativistic dispersion ω(k) = h̄(k2 − k2

F )/2Meff with
kF the Fermi momentum and Meff � 0.86M0 for the model
parameters in the figure that we have chosen such that the
spectral functions resemble those of the unitary Fermi gas.

Finally, it is very important to realize that in principle
the antiparticle part of the spectrum is still present in our
numerics due to the fact that we can make the scale M0c

2

very large, but not truly infinite. However, this part must not
be included in the nonrelativistic spectral function that only

(a)

(b) (c)

FIG. 3. (a) Starting with a relativistic spectrum with particle and
antiparticle peaks, we obtain nonrelativistic spectra by inspecting
the nonrelativistic regime at small μ, where the antiparticle peak
decouples. (b) The spectral function at fixed βμ = 2 and k = 6kF /5,
for several values of kBT/M0c

2. The legend shows the values of
kBT/M0c

2 in units of 10−4 (the order of the legend is from the left
to the right curve in the inset). (c) The universal spectral functions
at fixed βμ = 2 for the values of k/kF shown in the legend (here
the value of k/kF increases linearly from 0 for the leftmost peak
to 8/5 for the rightmost peak). To make this figure, we have fixed
kBT/M0c

2 = 10−4, but note that (b) shows that the dependence of
the universal spectral functions on this parameter is negligible. In
both (b) and (c), we used {q, M, λ, g} = {1, 49/100, −3/4, 1/3}, for
which h̄kF � 2.1

√
μM0 and Z � 0.3. A discussion on the choice of

these used model parameters can be found in Appendix B.

describes the particles. Naturally, this part of the spectrum
also does not collapse. In practice, this means that we should
cut off the spectrum at some point inside the mass gap. Our
results are not very sensitive to this cutoff, provided the scale
M0c

2 is taken large enough. By construction, the final spectral
functions then also satisfy the desired frequency sum rule∫

dωρ(ω, k) = 2 for spin-1/2 particles.

IV. UNITARY FERMIONS

Unitary fermions constitute, similar to the findings above,
a system described at zero temperature by a set of universal
constants and whose dimensionless thermodynamic functions
depend solely on βμ. An example of the former is the constant
βSF defined by μ = (1 + βSF)εF , with εF the Fermi energy.
Experiments as well as theoretical models have determined
that at zero temperature, so in the superfluid phase, βSF �
−0.6 [6,7,27,34,39,40]. The same quantity in the normal
phase should in principle be slightly less negative, but is not
accurately known at present. Therefore, we have for simplicity
taken our model parameters such that also βN � −0.6. To see
this from our spectra, we can use that εF = h̄2k2

F /2mid with
mid the mass of the ideal Fermi gas. The Fermi momentum
h̄kF � 2.1

√
μM0 follows directly from the dispersion in our
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FIG. 4. (a) The momentum distributions found from the spectral functions integrated with the minimum cutoff frequency ω = −10μ/h̄

and including a wave-function renormalization factor 1/Z. The legend shows the values of βμ (here the value of βμ increases from 0.34
for the curve that is the least steep at kF to 4.21 for the steepest curve at kF ). (b) The momentum distributions behave as 1/k4 for large k,
although there are some deviations if k is too large. The coloring is the same as in (a) (here the value of βμ increases from 0.34 for the curve
corresponding to the rightmost peak to 4.21 for the curve corresponding to the leftmost peak). (c) The contact parameter scaled with μ2m2

id/h̄
4,

as determined from the large momentum tails in (b).

spectral functions at low temperatures and the value of the
mass mid � 0.94M0 we obtain from the dispersion of the
critical system near μ = T = 0, since our spectral functions
indeed contain a very sharp peak in this case.

From our spectral functions, we can next calculate the
momentum distributions N (k) = ∫

dωρ(ω, k)nF (h̄ω) with
nF the Fermi-Dirac distribution. These can ultimately be used
to determine the equation of state that was already shown
previously in Fig. 1. Performing the calculation, whose out-
come is shown in Fig. 4(a), we need to realize that the above-
mentioned wave-function renormalization requires us to add
an additional factor of 1/Z to the momentum distribution.
In this manner, the integral of N (k) over momentum space
approaches the ideal result at low temperatures, as expected
from Luttinger’s theorem. To understand also physically why
this factor is necessary, we note that the spectral functions we
obtain generically consist of the nonrelativistic low-frequency
peak with a spectral weight of 2Z and a long tail at higher fre-
quencies that contains most of the remaining spectral weight.
Such tails are a recurring feature in holographic spectra and
are related to the nonanalytic behavior (−ω2 + c2k2)M of the
self-energy due to the asymptotically AdS gravitational back-
ground. This tail persists even in the low-temperature limit,
where the momentum distribution only captures the states
at small negative frequencies. We can therefore interpret our
spectra as containing a “coherent” part of weight 2Z, which
is shown in Fig. 3 and describes the nonrelativistic unitary
fermions, and an “incoherent” part of weight 2(1 − Z).

Comparing the momentum distributions to the results of
Refs. [41,42], we see that many features of the unitary Fermi
gas are reproduced by our nonrelativistic fermions. For in-
stance, we have checked that the slope of N (k) at the Fermi
momentum does not diverge in the zero-temperature limit,
which signals a non-Fermi-liquid behavior and is in agree-
ment with Fig. 6 of Ref. [42]. Moreover, the characteristic
asymptotic behavior of the momentum distributions as C/k4

for large k in terms of the contact parameter C, is also seen
in our data in Fig. 4(b), although we observe some relativistic
corrections for even larger k. From this figure we can also
read off the contact parameter, which results in Fig. 4(c).

Recall that to calculate the momentum distributions, we must
introduce a frequency cutoff inside the gap from which we
start integrating the spectral functions. The dependence on
this cutoff is negligible for the momentum distributions in
Fig. 4(a) themselves, but the cutoff does have some influence
on the tails in Fig. 4(b), as small deviations get amplified
by the factor k4. Given these uncertainties and the fact that
we can still fine-tune several model parameters, we find the
agreement with Fig. 2(b) of Ref. [42] rather encouraging. Note
that our momentum distributions also contain an interesting
crossing point, which appears to be a universal feature of
strongly interacting systems [43].

Finally, we calculate the total density by integrating
the momentum distributions over momentum space. The
result, normalized by the ideal Fermi gas density for
which the momentum distribution for μ > 0 reads Nid(k) =
2nF (μk2/k2

F,id − μ), is shown in Fig. 1. For low temper-
atures, our result asymptotically approaches 1/(1 + βN)3/2

with βN � −0.6, as expected. This limit is not clearly visible
in the data of Refs. [27,28], since at low temperatures the
unitary gas becomes superfluid, a feature that we have not
included yet but can also be achieved holographically.

V. DISCUSSION AND OUTLOOK

Up to now, we have used holography as a bottom-up
approach in which the various model parameters can be tuned
to fit experiments. However, the holographic dictionary also
provides insight into the physical significance of these param-
eters. For instance, the conformal dimension of the operator O
is equal to 2 + M , and q and λ determine the strength of the
CFT three-point functions 〈O†O(�†�)〉 and 〈O†O(�†γ 0�)〉,
respectively. In the context of the unitary Fermi gas, a natural
choice for the operator O is �† multiplied with the annihi-
lation operator of a Feshbach molecule. If this identification
is correct, then g would correspond to the atom-molecule
coupling of the Feshbach resonance. Exploring these possible
microscopic connections in detail is beyond the scope of
the present paper and is left for future work. Continuing in
the spirit of bottom-up holography, however, our approach

013606-4



NONRELATIVISTIC FERMIONS WITH HOLOGRAPHIC … PHYSICAL REVIEW A 99, 013606 (2019)

allows for many extensions by adding more ingredients to the
gravitational dual theory, such as the inclusion of the backre-
action on the bulk geometry by a complex scalar field that is
dual to the superfluid order parameter and the introduction of
a spin and/or mass imbalance.

ACKNOWLEDGMENTS

This work was first presented at the Aachen workshop,
Quantum Many-Body Methods in Condensed Matter Sys-
tems. It is a pleasure to thank the participants of this workshop
for helpful discussions and feedback. Moreover, we thank
Stefan Vandoren and Umut Gürsoy for very stimulating dis-
cussions. This work was supported by the Stichting voor Fun-
damenteel Onderzoek der Materie (FOM) and is part of the
D-ITP consortium, a program of the Netherlands Organisation
for Scientific Research (NWO) that is funded by the Dutch
Ministry of Education, Culture and Science (OCW).

APPENDIX A: ACTIONS AND EQUATIONS OF MOTION
FOR THE BULK THEORY

In this Appendix, we present more details on the gravita-
tional background that is used to obtain the results in the main
text. In particular, we present the equations of motion that
need to be solved to obtain this background. Moreover, we
present the equations of motion for the probe Dirac spinors
propagating on this background, which ultimately lead to the
self-energy of our spectral functions.

1. Gravitational background

The bulk theory contains a gauge field A = Atdt to account
for the chemical potential in the CFT and a scalar field φ to
account for the mass deformation in the CFT. The scalar field
is tachyonic with mass m2

φ = −3, such that the corresponding
deformation of the CFT has the dimension of a fermionic mass
deformation.

The gravitational background follows from the backreac-
tion of these fields on the geometry described by the metric
gMN , which follows from the action

Sbackground =
∫

d5x
√−g

{
R + 12 − 1

4
F 2

− 1

2

[
(∂φ)2 + m2

φφ2
]}

. (A1)

Here, g is the determinant of the metric, R is the Ricci
scalar, F = dA, and (∂φ)2 = ∂Mφ∂Mφ. Moreover, we note
that the first two terms in the Lagrangian density represent
the standard Einstein-Hilbert Lagrangian R − 2�, since in
our units the cosmological constant is given by � = −6 as
explained in Appendix C.

For the metric ds2 = gMNdxMdxN we use the following
ansatz:

ds2 = −f (r )e−χ (r )dt2 + dr2

f (r )
+ r2dx2 , (A2)

where the metric components as well as At and φ only
depend on the radial coordinate r due to planar symmetry.

The equations of motion following from Eq. (A1) can then
be written as

φ′′ +
(

f ′

f
+ 3

r
− χ ′

2

)
φ′ + 3

f
φ = 0 , (A3)

A′′
t +

(
3

r
+ χ ′

2

)
A′

t = 0 , (A4)

χ ′ + r

3
φ′2 = 0 , (A5)

f ′ +
(

2

r
− χ ′

2

)
f + r

6
eχA′2

t − r

2
φ2 − 4r = 0 , (A6)

where a prime denotes differentiation with respect to r .
A gravitational background then follows from solving this
system with the initial conditions f (r+) = 0, At (r+) = 0,
χ (r+) = 0 and two free initial conditions φ(r+) and A′

t (r+).
After solving the system, the solution is rescaled such that
in the end χ (∞) = 0 as required for asymptotically AdS
space-times. It can be shown that φ′(r+) is not independent
of the other initial conditions.

After numerically solving the above system of equations,
we extract the parameters of the CFT. The temperature follows
from the metric tensor via

T = f ′(r+)e−χ (r+ )/2

4π
, (A7)

whereas the chemical potential per unit charge and the mass
are given by the boundary values μ0/q = At (∞) and M0 =
limr→∞ rφ(r )/α respectively. Here the proportionality con-
stant α = 4

√
3/π2 is discussed in Ref. [29]; however, note that

there α is defined as what is 1/α here.

2. Probe spinors

The self-energy of our spectral functions follow from the
solution � of Eq. (3) in the main text. To derive this equation,
we have two Dirac spinors ψ (1) and ψ (2) propagate on the bulk
theory obtained from the equations of motion above. These
spinors have masses M1 = M and M2 = −M , respectively,
and are coupled to the gauge field AM with a charge q. The
associated action is given by

SDirac = igf

∫
d5x

√−g(ψ̄ (1)(
/
D − M )ψ (1)

+ ψ̄ (2)(
/
D + M )ψ (2) )

+ igY

∫
d5x

√−gφ(ψ̄ (1)ψ (2) + ψ̄ (2)ψ (1) )

+ igf

∫
d4x

√−h
(
ψ̄

(1)
R ψ

(1)
L − ψ̄

(2)
L ψ

(2)
R

)
, (A8)

where ψ̄ = ψ†�0, /D = �M (∇M − iqAM ), gf and gY are
coupling constants, h is the determinant of the induced met-
ric on the boundary and ψ

(i)
R,L = (1 + �r )ψ (i)/2. The spinor

covariant derivative ∇ and the Dirac matrices in (4 + 1)-
dimensional flat (�M ) and curved (�M ) space-time are defined
in Appendix C. The action consists of a standard Dirac action
for the spinors ψ (i), a Yukawa term which is necessary to
couple the chiral components of the spinor on the boundary
and a boundary action to be consistent with the Dirichlet
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boundary conditions δψ
(1)
R = 0 and δψ

(2)
L = 0. Defining

λ = gY /gf , the equations of motion from the spinor are then

(
/
D − M )ψ (1) = −λφψ (2), (A9)

(
/
D + M )ψ (2) = −λφψ (1). (A10)

Next, we define the Dirac spinors � = ψ
(1)
R + ψ

(2)
L and η =

ψ
(1)
L − ψ

(2)
R , in terms of which the on-shell action is

Son shell = igf

∫
d4x

√−h�̄η. (A11)

The matrix � is now defined in momentum space by

η(r, k) = −i�(r, k)�(r, k), (A12)

so that � is related to the Green’s function for the fermionic
boundary operator sourced by the Dirac spinor � on the
boundary. Equation (3) in the main text then follows from
the above definition when imposing the Dirac equations for
� and η, which follow from rewriting the Dirac equations for
ψ (1) and ψ (2).

APPENDIX B: ON THE CHOICE OF PARAMETERS USED
TO OBTAIN NONRELATIVISTIC SPECTRA

In general, a spectral function ρ(ω, k) depends on
the gravitational-background parameters kBT /M0c

2 and
μ0/M0c

2 and the model parameters q, M , λ, and g. Not
every set of the parameters {q,M, λ, g} is suitable to obtain
universal nonrelativistic spectra with holographic interactions.
First, to satisfy the frequency sum rule, we must have that
−1/2 < M < 1/2 [38]. Moreover, we can restrict to positive
g since the spectral functions only depend on g2. In this
section, we discuss some more restrictions on this set, which
we have taken into account for the values of the paramaters
used in the main text. In particular, fixing q and M , we find a
restriction on λ.

To derive such restrictions, we should realize that the self-
energy contains a gap itself. If the peaks in the nonrelativistic
spectral functions are situated inside this gap, they will not
be broadened and the resulting spectrum will resemble a
noninteracting one, containing delta peaks at each value of k.
Since the gap in the self-energy � is proportional to |λ|M0c

2,
we expect this to occur for large values of |λ|. In the analysis
below, we indeed find an upper bound for |λ|.

For k = 0, the peak in the nonrelativistic spectrum is not
situated inside the gap of the self-energy if we restrict to
chemical potentials μ0 that are greater than the critical chem-
ical potential μ∗

0 in the limit g → ∞. Since for nonrelativistic
spectra μ0 � μ∗

0, we can write this criterion as

μ∗
0(q,M, λ, g) > μ∗

0(q,M, λ,∞). (B1)

This condition should also be sufficient for nonrelativistic
spectral functions at nonzero k, provided that the difference
between μ∗

0(q,M, λ, g) and μ∗
0(q,M, λ,∞) is not nonrela-

tivistically small. For parameters satisfying this condition, we
indeed find spectra containing peaks with a nontrivial width,
such as the ones in the main text.

To see what the above condition implies for the allowed
sets of model parameters, we study the behavior of the critical
chemical potential μ∗

0 as a function of λ and g for fixed q and

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Λ/Λc

kF

kF,0

FIG. 5. The Fermi momentum at g = ∞ as a function of λ

depends on μ0 only through kF,0 and λc. Here, we used q = 1, M =
49/100, and kBT = 10−4M0c

2, which is small enough to determine
kF . The values of μ0/M0c

2 are 1/2 for the blue (dark gray) dots and
1 for the yellow (light gray) dots. The black curve shows the graph
of

√
1 − x2, with x = λ/λc.

M . Noting that at the critical chemical potential we have that
kF = 0, we can use that the Fermi momentum kF (λ, g, μ0) at
g = ∞ depends on λ as

kF (λ,∞, μ0) = kF,0

√
1 − λ2

λ2
c

, (B2)

where kF,0 = kF (0,∞, μ0) and λc is defined as the positive
value of λ at which the Fermi momentum at g = ∞ is
zero. This dependence is found numerically and is shown in
Fig. 5. All dependence on μ0 is contained in kF (0,∞, μ0)
and λc(μ0). Putting Eq. (B2) to zero yields that the critical
chemical potential at g = ∞ is given by the solution of |λ| =
λc(μ0). It was furthermore found in Ref. [29] that except for
small μ0, both kF,0 and λc are linear in μ0 > 0, so that in
this regime we can write λc � Bμ0/M0c

2 with B a positive
coefficient which depends on q and M . It follows that at
g = ∞ we get

μ∗
0(λ,∞) = |λ|

B
M0c

2, (B3)

so that the criterion in Eq. (B1) can be written as |λ|M0c
2 <

Bμ∗
0(λ, g).
We proceed by studying the dependence of the critical

chemical potential μ∗
0 on λ and g, of which the result is shown

in Fig. 6. Clearly, for g = 0 we have that μ∗
0 = M0c

2. For λ <

0, we then find that μ∗
0/M0c

2 is a monotonic function starting
at 1 and asymptotically approaching |λ|/B. In contrast, when
λ > 0 we observe that μ∗

0/M0c
2 monotonically decreases to 0

for some value of g, after which it monotonically increases
to λ/B. These findings indicate that we can only obey the
criterion in Eq. (B1) if μ∗

0(λ,∞) < M0c
2, i.e.,

|λ| < B, (B4)

which for fixed values of q and M gives an upper bound
for |λ|. From Fig. 6, we furthermore observe that there is no
restriction on g for negative λ, whereas for positive λ an upper
bound for g2 is required to satisfy Eq. (B4).
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FIG. 6. The critical chemical potential as a function the coupling
g. Here |λ| = 3/4 for the red (dark gray) curves and |λ| = 2 for the
green (light gray) curves. The solid curves correspond to positive
λ and the dashed curves correspond to negative λ. The dotted lines
denote the asymptotic values of the curves, which are equal to |λ|/B.
Here we used q = 1 and M = 49/100, for which B � 1.33.

For the parameters q = 1 and M = 49/100, which are
used in the main text, we have that B � 1.33, so that our
choice λ = −3/4 satisfies the criterion above in Eq. (B4).
We remark that we should not choose |λ| too small, since
then an additional peak near the chemical potential at ω = 0
appears in our spectra. This leads to an avoided crossing
between this peak and the particle band, which makes it hard
to define the critical chemical potential. Having opted for a
negative λ, the above discussion imposes no further restriction
on g. However, to obtain nonrelativistic spectra, we should
not take g too large. To see this, we note that we can think
of g as a measure for the region in momentum space where
the holographic interactions dominate the free kinetic part
of the Green’s function. As a consequence, for large g we find
that the tails at higher frequencies in the spectral functions
that were mentioned in the main text persist until deep in
the relativistic regime. Moreover, the spectral weight in the
gap is then no longer negligible. This is not the case for the
value g = 1/3 used in the main text, which we have taken to
reproduce the value βN � −0.6. Finally, the chosen value for
M in the main text is also related to the above-mentioned tails.
We find that choosing M close to its supremum 1/2 avoids
long tails extending to relativistic ω. In particular, the spectral
functions decay faster than 1/ω for large ω, i.e., for ω � μ

but still within the nonrelativistic regime, as is necessary to
obey the sum rule.

APPENDIX C: CONVENTIONS ON UNITS
AND DIRAC THEORY

The action for the gravitational background in Eq. (A1) in
SI units reads

S =
∫

d5x
√−g

{
c3

16πG5
(R − 2�) − 1

4μ5c
F 2

−
(

(∂φ)2 + m2
φc2

h̄2 φ2

)}
. (C1)

Here G5 and μ5 are Newton’s constant and the vacuum perme-
ability respectively, defined in 4 + 1 space-time dimensions.
Using the cosmological constant �, we can define the AdS
radius as L2 = 6/(−�), noting that the cosmological constant
is always negative in the asymptotically AdS space-times that
we are dealing with. The dimensionless gauge field and scalar
field are then defined as

Ãt̃ =
√

16πG5

μ5c6
At, (C2)

φ̃ =
√

16πG5

c3
φ. (C3)

The tildes, which we omit in the main text, denote di-
mensionless quantities. The metric signature is mostly plus
and its components are defined by ds2 = gMNdxMdxN , with
xM = {ct, r, x} where capital Roman letters refer to (4 + 1)-
dimensional space-time, as opposed to Greek letters for which
xμ = {ct, x}. With this definition of the metric, the compo-
nents gMN are already dimensionless. All dimensionless units
in the main text are obtained by scaling all length scales by L,
i.e., putting � = −6. As a consequence, when putting h̄ = 1
and c = 1, all energy (or mass) scales are expressed in units
of h̄c/L (or h̄/cL). This is also true for the temperature T ,
setting Boltzmann’s constant kB = 1.

Finally, the Dirac fields in Eq. (A8) are in units of
√

h̄/L

and the dimensionless charge of the probe field is given by

q̃ =
√

μ5c6

16πG5

L

h̄c
q. (C4)

In the main text, we use the dimensionless units defined here
for bulk parameters such as M and q. For quantities defined
in the CFT we use SI units, which means we restore c, h̄,
and kB .

The Dirac matrices in flat (3 + 1)-dimensional space-time
are given by

γ μ =
(

0 σ̄ μ

σμ 0

)
, (C5)

where σ = (I2, σ
i ) and σ̄ = (−I2, σ

i ) with σ i the Pauli
matrices and I2 the 2 × 2 identity matrix. Moreover, we use
underlined indices for tensors and Dirac matrices defined in
flat space-time, so that gMN = ηMN = diag(−1, 1, 1, 1, 1).
The gamma matrices �M in (4 + 1)-dimensional flat space-
time are given by �μ = γ μ for μ �= r and

�r = γ 5 ≡ iγ 0γ 1γ 2γ 3 =
(
I2 0
0 −I2

)
. (C6)

The vielbeins eM
N that appear in the Dirac action in Eq. (A8)

in curved space-time are defined by

gMN = e
P

Me
Q

NηPQ (C7)

where the inverse vielbeins satisfy eM
P e

P

N = δM
N and eP

Me
N

P =
δ

N

M . For the metric in Eq. (A2), this gives

e0
0 =

√
eχ (r )

f (r )
, (C8)

013606-7



N. W. M. PLANTZ AND H. T. C. STOOF PHYSICAL REVIEW A 99, 013606 (2019)

er
r =

√
f (r ), (C9)

ei
i = 1

r
. (C10)

In the main text, we have omitted the underlines and only use
the Dirac matrices in flat space-time. Moreover, all vielbeins
in the main text are such that their lower index corresponds to
the flat one.

The spinor covariant derivative ∇M , which also appears in
the Dirac action in Eq. (A8), is defined as

∇Mψ = ∂Mψ + �Mψ, (C11)

with �M given by

�M = 1
8ωMNP [�N,�P ], (C12)

and the spin connection ω
M

NP given by

ω
M

NP = e
M

Q eR
P �

Q
NR − e

Q
P ∂Ne

M

Q . (C13)

Here �M
NP denotes the Christoffel connection. The spin con-

nection does not appear in the equation for � in the main
text, as we can remove it by rescaling the probe spinors by a
function depending on r only, see Appendix A.2 in Ref. [29]
for details.
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