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Phase-separation dynamics induced by an interaction quench of a correlated Fermi-Fermi mixture
in a double well
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We explore the interspecies interaction quench dynamics of ultracold spin-polarized few-body mass-balanced
Fermi-Fermi mixtures confined in a double well with an emphasis on the beyond Hartree-Fock correlation
effects. It is shown that the ground state of particle-imbalanced mixtures exhibits a symmetry breaking of the
single-particle density for strong interactions in the Hartree-Fock limit, which is altered within the many-body
approach. Quenching the interspecies repulsion towards the strongly interacting regime, the two species phase
separate within the Hartree-Fock approximation while remaining miscible in the many-body treatment. Despite
their miscible character on the one-body level, the two species are found to be strongly correlated and exhibit a
phase separation on the two-body level that suggests the antiferromagneticlike behavior of the few-body mixture.
For particle-balanced mixtures we show that an intrawell fragmentation (filamentation) of the density occurs both
for the ground state and upon quenching from weak to strong interactions, a result that is exclusively caused
by the presence of strong correlations. By inspecting the two-body correlations, a phase separation of the two
species is unveiled, being a precursor towards an antiferromagnetic state. Finally, we simulate in situ single-shot
measurements and showcase how our findings can be retrieved by averaging over a sample of single-shot images.
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I. INTRODUCTION

Ultracold Fermi gases offer an excellent test bed for sim-
ulating and exploring exotic quantum phases of matter [1–3].
Recent experimental advances constitute a valuable resource
for disclosing the intricate complexity of condensed matter
systems. Indeed, several key quantities can be adjusted in the
laboratory including the interparticle interaction strength via
Feshbach resonances [4,5], the particle number [6–8], and the
external potential landscape [3,9]. Besides single species also
mixtures of fermions can nowadays be experimentally pre-
pared with neutral fermionic atoms, e.g., in different hyperfine
states such as 40K [10,11], 6Li [11,12], and 87Sr [13].

In this context, impressive features have been revealed
evincing, for instance, superfluidity [14,15], quantum mag-
netism [16–19], insulating phases [20–22], phase separation
[23–25], fermi polarons [26–29], and Josephson junctions
[30–33]. A major focus has been the phase diagram of Fermi-
Fermi (FF) mixtures ranging from the strongly attractive
to the strongly repulsive regime of interactions [24,34–39].
For instance, referring to attractive particle-imbalanced FF
mixtures, it has been shown that beyond a critical polar-
ization the mixture forms a superfluid paired core being
surrounded by a shell of unpaired fermions [24,34]. Turning
to the repulsive regime of interactions, magnetization effects
emerge. For increasing repulsion, a first-order phase tran-
sition [35] between paramagnetism and itinerant ferromag-
netism [35–39] has been revealed. It has been argued that
this transition can be described by the mean-field model of
Stoner [40,41] for strongly short-range repulsively interacting
fermions.

The majority of the above-mentioned studies have been fo-
cused on the static properties of FF mixtures within a Hartree-

Fock (HF), i.e., mean-field, description in higher dimensions.
Most importantly, the dynamical properties of FF mixtures
are largely unexplored and especially the role of many-body
(MB) effects is much less understood. An intriguing prospect
here is whether magnetization or phase-separation effects
emerge during the nonequilibrium dynamics of FF mixtures.
A widely used technique to induce the nonequilibrium dy-
namics is the so-called quantum quench [42,43], where the
quantum evolution is generated following a sudden change
of an intrinsic system’s parameter such as the interaction
strength [44–48]. For instance, it has been recently shown
that the interaction quench dynamics of a Bose-Bose mixture
crossing the miscibility-immiscibility threshold leads to the
dynamical phase separation of the two clouds which exhibit
domain-wall structures [47]. Turning to FF mixtures, a natural
question that arises is whether such a phase separation can be
observed and what is its dependence on the particle number
of each species [49,50]. Another interesting aspect here is
whether any instabilities occurring in the HF approximation
[40] are altered due to the presence of correlations as well
as the crucial role of the latter [24,39,51,52] in the course of
the evolution. Motivated also by the experimental capability
to prepare few-fermion mixtures in one dimension [6–8,53],
we study here the interaction quench dynamics of a spin-
polarized FF mixture confined in a double well. To simu-
late the correlated quantum dynamics of the FF mixture we
employ the multilayer multiconfigurational time-dependent
Hartree method for atomic mixtures (ML-MCTDHX) [54],
which is a variational method capturing all the important
particle correlations.

We find that the ground state of particle-imbalanced
species exhibits a symmetry breaking, for strong interactions,
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on the single-particle density level within the HF approxima-
tion. This behavior is a manifestation of the Stoner instability
[40,41] and renders the mixture immiscible. The presence of
higher-order quantum correlations alters this instability and
an intrawell fragmentation of the one-body density arises,
i.e., the density profile breaks into several density branches
(filaments),1 while the two species remain miscible. Perform-
ing an interspecies interaction quench from weak to strong
coupling, we find that within the HF approximation the σ -
species (with σ = A,B denoting each species) single-particle
density filamentizes and subsequently the two species phase
separate. In sharp contrast, in the presence of quantum cor-
relations the filamentation of the one-body density becomes
suppressed and the fermionic components show a miscible
behavior on the one-body level. Remarkably enough, Mott-
like one-body correlations [47,55–57] between the filaments
formed are revealed, indicating their tendency for localization.
Most importantly, both the intra- and interspecies two-body
correlation functions show that two fermions of the same or
different species cannot populate the same filament but only
distinct ones. The latter, which is arguably one of our main
results, unveils that a phase-separation process occurs only
on the two-body level, suggesting the formation of few-body
antiferromagneticlike order [19,53].

Turning to particle-balanced FF mixtures, we find that the
single-particle density of the ground state exhibits a miscible
behavior at weak and strong interactions in both the HF and
MB approaches. Moreover, an intrawell fragmentation occurs
only within the MB approach. Quenching the interspecies
interaction from weak to strong coupling, we observe that
in the HF approximation the FF mixture remains miscible
throughout the evolution, while performing an overall breath-
ing motion. Within the MB approach the two species, besides
undergoing a breathing mode while remaining miscible, fur-
ther exhibit an intrawell fragmentation (filamentation) of their
single-particle density. Also in this case Mott-like one-body
correlations appear between the distinct filaments formed.
Moreover, two fermions of the same or different species ex-
hibit an anticorrelated behavior in a single filament, while they
are strongly correlated when residing in distinct filaments,
indicating the tendency towards an antiferromagnetic state.
Finally, we simulate single-shot absorption measurements and
showcase that by averaging a sample of in situ images we can
adequately reproduce the MB fermionic quench dynamics on
the single-particle density level.

This work is structured as follows. Section II presents our
setup and the basic observables of interest. The nonequilib-
rium dynamics induced by an interspecies interaction quench
for particle-imbalanced and -balanced species within a dou-
ble well is analyzed in Secs. III and IV, respectively. We
summarize our findings and provide an outlook in Sec. V. In
Appendix A we provide a brief discussion regarding our nu-
merical implementation of the single-shot procedure. Finally,

1Due to the presence of strong interspecies interactions, the
Gaussian-like density profile within each well deforms and either
exhibits several local maxima or breaks into distinct density branches
[47]. Throughout this work we refer to both of these local maxima or
density branches as filaments.

in Appendix B we present further details of our numerical
simulations and demonstrate the convergence of the results
discussed in the main text.

II. THEORETICAL FRAMEWORK

A. Setup

We consider a FF mixture consisting of NA and NB spin-
polarized fermions with equal masses MA = MB ≡ M for
the A and B species, respectively. Such a mass-balanced
fermionic mixture can be experimentally realized by two
different hyperfine states, e.g., of 40K or 6Li [58,59]. These in-
ternal states could refer, for instance, to |F = 9/2,mF − 9/2〉
and |F = 9/2,mF = −7/2〉 of 40K [60]. The mixture is con-
fined in a one-dimensional double-well external potential [61]
which is composed of a harmonic oscillator with frequency
ω and a centered Gaussian with height V0 and width w. The
resulting MB Hamiltonian reads

H =
∑

σ=A,B

Nσ∑
i=1

[
− h̄2

2M

(
d

dxσ
i

)2

+ 1

2
Mω2

σ

(
xσ

i

)2

+ V0

w
√

2π
e−(xσ

i )2/2w2

]

+
NA∑
i=1

NB∑
j=1

gABδ
(
xA

i − xB
j

)
. (1)

We operate in the ultracold regime, hence s-wave scattering
is the dominant interaction process. Consequently the inter-
species interactions can be adequately modeled by contact
interactions, which scale with the effective one-dimensional
coupling strength gAB for the different fermionic species.
Since s-wave scattering is forbidden for spin-polarized
fermions [62,63], due to the antisymmetry of the fermionic
wave function, fermions of the same species are considered
to be noninteracting. Therefore, only interspecies interactions
are relevant in the MB Hamiltonian. The effective inter-
species one-dimensional coupling strength [64] is given by

gAB = 2h̄2as
AB

μa2
⊥

[1 − |ζ ( 1
2 )|as

AB/
√

2a⊥]−1, where ζ refers to the

Riemann zeta function and μ = M
2 is the corresponding re-

duced mass. Here a⊥ = √
h̄/μω⊥ is the transversal length

scale with transversal confinement frequency ω⊥ and as
AB is

the three-dimensional s-wave scattering length between the
two distinct species. We note that gAB can be experimentally
adjusted either by means of as

AB with the aid of Feshbach
resonances [5,65] or by manipulating ω⊥ via confinement-
induced resonances [64,66].

In the following our Hamiltonian is rescaled in units of
h̄ω⊥. Thus, the corresponding length, time, and interaction
strength scales are expressed in terms of

√
h̄

Mω⊥
, ω−1

⊥ , and√
h̄3ω⊥
M

, respectively. Moreover, the amplitude of the Gaussian
barrier V0, its width w, and the frequency of the harmonic
oscillator ω are given in units of

√
h̄3ω⊥
M

,
√

h̄
Mω⊥

, and ω⊥,
respectively. To limit the spatial extension of our system we
impose hard-wall boundary conditions at x± = ±40.

Throughout this work, our system is initially prepared
in the MB ground state of the Hamiltonian (1) within the
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weak interspecies interaction regime, namely, gAB = 0.1.
The corresponding double-well potential is characterized by
the harmonic-oscillator frequency ω = 0.1, barrier height
V0 = 2, and width w = 1. Thus, in a noninteracting single-
particle picture four doublets are included below the maxi-
mum of the barrier. To induce the nonequilibrium dynamics of
the FF mixture in the double well we quench at t = 0 the in-
terspecies interaction strength towards the strongly correlated
regime, e.g., gAB = 4.0, and let the system evolve in time.
Quenching the interspecies repulsion towards the strongly
interacting regime favors the occurrence of a breathing mode
[47] and the appearance of strong intra- and interspecies
correlations (see Secs. III and IV) due to the quench imported
interaction energy into the system [67]. Below we first analyze
the dynamics of a particle-imbalanced mixture with NA =
3 (NA = 5) and NB = 1 fermions, respectively, and sub-
sequently examine the corresponding particle-balanced case
with NA = NB = 2 and NA = NB = 5.

B. Many-body approach

To solve the underlying MB Schrödinger equation that
governs the quench-induced dynamics of the FF mixture we
utilize ML-MCTDHX [54]. It is based on an expansion of
the MB wave function with respect to a time-dependent and
variationally optimized MB basis. Such a treatment enables

us to take into account both the inter- and intraspecies corre-
lations inherent in the system. In order to include the inter-
and intraspecies correlations, we first introduce M distinct
species functions �σ

k (�xσ ; t ). Here �xσ = (xσ
1 , . . . , xσ

Nσ
) refer to

the spatial σ = A,B species coordinates of each component
consisting of Nσ fermions. Then the MB wave function �MB

is expressed as a truncated Schmidt decomposition [68] of
rank D,

�MB(�xA, �xB ; t ) =
D∑

k=1

√
λk (t )�A

k (�xA; t )�B
k (�xB ; t ). (2)

In this expression D � min[dim(HA), dim(HB )] and Hσ is
the Hilbert space of the σ species (see also the discussion
below). The Schmidt coefficients λk (t ) in decreasing order
denote the natural species populations of the kth species
function �σ

k of the σ species. They serve as a measure of the
system’s entanglement or interspecies correlations. Specifi-
cally, the system is called entangled or interspecies correlated
[69] when at least two distinct λk (t ) are nonzero, since in this
latter case the total MB state [Eq. (2)] cannot be expressed as
a direct product of two states.

To explicitly incorporate the interparticle correlations each
of the species functions �σ

k (�xσ ; t ) is expanded using the
determinants of mσ distinct time-dependent fermionic single-
particle functions (SPFs) ϕ1, . . . , ϕmσ

. In particular,

�σ
k (�xσ ; t ) =

∑
l1, . . . , lmσ∑

li = N

Ck,(l1,...,lmσ )(t )
Nσ !∑
i=1

sgn(Pi )Pi

⎡
⎢⎢⎢⎣

∏
j ∈ {1, . . . , mσ }

with lj = 1

ϕj (xK (j ); t )

⎤
⎥⎥⎥⎦. (3)

Here P refers to the permutation operator which exchanges
the particle positions xμ, μ = 1, . . . , Nσ , within the SPFs.
Also K (j ) ≡ ∑j

ν=1 lν , with lν denoting the occupation of
the νth SPF and j ∈ {1, 2, . . . , mσ }. The symbol sgn(Pi )
denotes the sign of the corresponding permutation and
Ck,(l1,...,lmσ )(t ) are the time-dependent expansion coefficients
of a certain determinant. The eigenfunctions of the one-
body reduced density matrix of the σ species ρ (1)

σ (x, x ′; t ) =
〈�MB(t )|�̂σ,†(x)�̂σ (x ′)|�MB(t )〉 are termed natural orbitals
φσ

i (x; t ), where �̂σ (x) refers to the fermionic field operator
of the σ species. Note here that the natural orbitals are re-
lated to the SPFs via φσ

i (x, t ) = ∑mσ

j=1 Uijϕj (x, t ), where Uij

is the unitary transformation that diagonalizes ρ (1)
σ (x, x ′; t )

when it is expressed in the basis of SPFs.2 The eigenvalues
of ρ (1)

σ (x, x ′; t ) are the so-called natural populations nσ
i (t ).

If more than Nσ natural populations nσ
i (t ) possess a non-

negligible occupation [0 < nσ
i (t ) < 1 with Nσ < i < mσ ],

2Indeed, the single-particle reduced density matrix can be expanded
in the SPF basis as ρ (1)

σ (x, x ′; t ) = ∑mσ

i,j=1 ρi,j (t )φ∗
i (x; t )φj (x ′; t ).

Here ρij (t ) denote the corresponding time-dependent expansion
coefficients. In turn, the eigenvalues of ρij are connected with the
natural populations via a unitary transformation U . Following this
unitary transformation, we obtain ρij = ∑mσ

k=1 U−1
ik nσ

k Ukj .

the fermionic σ species is termed intraspecies correlated;
otherwise the MB state reduces to the HF ansatz [1,62,70].
Indeed, the ML-MCTDHX enables us to operate within dif-
ferent approximation orders [54], and we, e.g., retrieve the HF
ansatz [62] in the limit of D = 1 and mσ = Nσ ,

�HF(�xA, �xB ; t )

=
∏

σ=A,B

Nσ !∑
i=1

sgn(Pi )Pi

[
ϕ1

(
xσ

1 ; t
) · · · ϕNσ

(
xσ

Nσ
; t

)]
. (4)

It is also worth mentioning that within the HF approximation
the natural orbitals are Nσ -fold degenerate, i.e., their popula-
tions obey nσ

i (t ) = 1/Nσ . Thus, ρ (1)
σ (x, x ′; t ) is diagonal on

any orthonormal single-particle basis that spans this Nσ -fold
degenerate space. As a consequence, the SPFs ϕi coincide
with the natural orbitals φσ

i , where i = 1, . . . , Nσ , in this
case. Furthermore, employing the Dirac-Frenkel variational
principle [71,72] for the MB ansatz [see Eqs. (2) and (3)],
we obtain the ML-MCTDHX equations of motion [54] for

013605-3



J. ERDMANN, S. I. MISTAKIDIS, AND P. SCHMELCHER PHYSICAL REVIEW A 99, 013605 (2019)

the fermionic mixture. These equations correspond to D2

linear differential equations of motion for the coefficients
λi (t ) coupled to a set of D[(mA

NA
) + (mB

NB
)] nonlinear integro-

differential equations for the species functions and mA + mB

integro-differential equations for the SPFs.

C. Correlation functions

To unveil the degree of intraspecies correlations at the
one-body level during the quench dynamics we employ the
normalized spatial first-order correlation function [47,73,74]

g(1)
σ (x, x ′; t ) = ρ (1)

σ (x, x ′; t )√
ρ

(1)
σ (x; t )ρ (1)

σ (x ′; t )
. (5)

Here ρ (1)
σ (x, x ′; t ) = 〈�(t )|�̂σ,†(x)�̂σ (x ′)|�(t )〉 refers to the

one-body reduced density matrix of the σ species and
ρ (1)

σ (x; t ) ≡ ρ (1)
σ (x, x ′ = x; t ) is the one-body density. Fur-

ther, �̂σ,†(x) [�̂σ (x)] is the fermionic field operator that
creates (annihilates) a σ -species fermion at position x. In
addition, |g(1)

σ (x, x ′; t )| is bounded within the interval [0,1]
and measures the proximity of the MB state to a prod-
uct state for a fixed set of coordinates (x, x ′). Two differ-
ent spatial regions R and R′, with R ∩ R′ = ∅, possessing
|g(1)

σ (x, x ′; t )| = 0, with x ∈ R and x ′ ∈ R′, are referred to as
perfectly incoherent, while for |g(1)

σ (x, x ′; t )| = 1, with x ∈ R

and x ′ ∈ R′, the regions are said to be fully coherent. When at
least two distinct spatial regions are partially incoherent, i.e.,
|g(1)

σ (x, x ′; t )| < 1, this signifies the emergence of one-body
intraspecies correlations, while their absence is designated by
|g(1)

σ (x, x ′; t )| = 1 for every x and x ′. Most importantly, the
situation where a certain spatial region R is fully coherent, i.e.,
|g(1),σ (x, x ′; t )|2 ≈ 1, with x, x ′ ∈ R, and perfect incoher-
ence occurs between different spatial regions R and R′, i.e.,
|g(1),σ (x, x ′; t )|2 ≈ 0, with x ∈ R, x ′ ∈ R′, and R ∩ R′ = ∅,
indicates the appearance of Mott-like correlations [47,55–57].

To estimate the degree of second-order intra- and inter-
species correlations in the course of the dynamics, we inspect
the normalized two-body correlation function [47,74]

g
(2)
σσ ′(x, x ′; t ) = ρ

(2)
σσ ′(x, x ′; t )

ρ
(1)
σ (x; t )ρ (1)

σ ′ (x ′; t )
. (6)

In Eq. (6), ρ (2)(x, x ′; t ) = 〈�(t )|�̂σ,†(x ′)�̂†,σ ′
(x)�̂σ ′

(x)�̂σ (x ′)|�(t )〉 denotes the diagonal two-body reduced
density matrix which provides the probability of measuring
two particles of species σ and σ ′ located at x and x ′,
respectively, at time t . Referring to the same (different)
species, i.e., σ = σ ′ (σ = σ ′), |g(2)

σσ ′ (x, x ′; t )| accounts for the
intraspecies (interspecies) two-body correlations. We remark
that if g

(2)
σσ ′(x, x ′; t ) = 1 holds, the state is termed fully

second-order coherent, while in case that g
(2)
σσ ′(x, x ′; t ) > 1

[g(2)
σσ ′(x, x ′; t ) < 1] it is termed correlated (anticorrelated). In

addition, g
(2)
σσ ′(x, x ′; t ) is experimentally accessible by in situ

density-density fluctuation measurements [75–77].

-10 0
0

0.1

0.2

0.3

0.4

-100 1 0 10

100-10
0

0.2

0.4
(a) (b)

FIG. 1. One-body density ρ (1)
σ (x ) of the ground state of the σ

species of a FF mixture for different interspecies repulsions gAB

(see the legend) within (a) the MB approach and (b) the HF ap-
proximation. The mixture consists of NA = 3 and NB = 1 fermions
and it is trapped in a double-well potential. The rectangles in
(a) indicate the intrawell fragmentation (filamentation) of ρ (1)

σ (x )
occurring for strong interspecies interactions. The inset in (b) shows
the corresponding energetically degenerate configuration of ρ (1)

σ (x )
with the ρ (1)

σ (x ) of the main panel for gAB = 4.0 within the HF
approximation.

III. INTERACTION QUENCH DYNAMICS
OF A PARTICLE-IMBALANCED MIXTURE

A. Initial state

We consider an interspecies repulsively interacting (gAB)
mass-balanced (MA = MB) FF mixture with spin-polarized
and particle-imbalanced components consisting of NA = 3
and NB = 1 fermions. The mixture is confined within a dou-
ble well and it is initialized in its corresponding interspecies
interacting ground state as described by the Hamiltonian of
Eq. (1), using either imaginary-time propagation or improved
relaxation [54] within the ML-MCTDHX. The double well
is characterized by frequency ω = 0.1, barrier height V0 = 2,
and width w = 1.

To inspect the ground state of the FF mixture we invoke the
σ -species single-particle density ρ (1)

σ (x; t ) [see also Eq. (5)].
Within the weakly interacting regime gAB = 0.1, we observe
that each ρ (1)

σ (x) shows an equal population in the two wells
of the double well and it is distributed in a symmetric manner
both in the HF approximation and on the MB level [see
Figs. 1(a) and 1(b)]. Also, ρ

(1)
A (x; t ) and ρ

(1)
B (x; t ) feature

a miscible behavior in both approaches. Note that, due to
the particle imbalance, the A species which contains the
higher particle number exhibits a broader single-particle den-
sity distribution within each well when compared to the B

species. Turning to the strong interaction regime gAB = 4.0,
an intrawell fragmentation of ρ (1)

σ (x) occurs on the MB level
[see Fig. 1(a)], while ρ

(1)
A (x; t ) and ρ

(1)
B (x; t ) show again

a miscible behavior. Intrawell fragmentation refers to the
filamentation tendency of the one-body density, i.e., to the ap-
pearance of several local maxima occurring in ρ (1)

σ (x) within
each well [see the dashed rectangle in Fig. 1(a), where two
submaxima are present]. Interestingly enough, within the HF
approximation the mixture becomes immiscible with ρ

(1)
A (x)

and ρ
(1)
B (x) being phase separated as it can be observed by

their asymmetric distribution with respect to x = 0 illustrated
in Fig. 1(b). This latter behavior can be thought of as the
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few-body analog of Stoner’s instability [78,79], which is a
well-known phenomenon in solid-state physics, being respon-
sible for magnetization effects emerging in itinerant systems.
Indeed, within the HF approximation in the strongly interact-
ing regime the energy of a miscible state is larger when com-
pared to the energy of a phase-separated (immiscible) one due
to the strong impact of the interaction energy [40,41]. Thus,
the particle-number asymmetry favors a phase-separated state
with ρ

(1)
B (x) being localized in one of the wells and ρ

(1)
A (x)

distributing around it [see Fig. 1(b)]. Since the double well
is symmetric, the same occupation structure of ρ

(1)
A (x) and

ρ
(1)
B (x) with interchanged wells possesses an equal energy,

i.e., the two configurations are energetically degenerate [see
the inset of Fig. 1(b)]. Recall that this phenomenon occurs, in
the one-dimensional spin-independent case considered here,
only within the HF approximation and not at the MB level
in accordance with the Lieb-Mattis theorem [80]. In the
latter approach the Stoner instability ceases to exist due
to the involvement of higher-order quantum superpositions
[19,81].

Next we examine the quantum dynamics of the above-
mentioned weakly interacting, gAB = 0.1, FF mixture by
quenching the interspecies repulsion at t = 0 towards the
strongly correlated regime of interactions gAB = 4.0.

B. Single-particle density evolution

To visualize the nonequilibrium dynamics of the particle-
imbalanced FF mixture on the one-body level we employ
the single-particle density evolution ρ (1)

σ (x; t ) for each of the
species after the quench. Focusing on the HF approximation
[see Figs. 2(a) and 2(b)], we observe that an overall breathing
mode [82,83] of both fermionic clouds takes place manifested
as a contraction and expansion dynamics of ρ (1)

σ (x; t ). The
frequency of this breathing mode is ωbr = 0.2 = 2ω, which
is in accordance with the corresponding theoretical prediction
[83]. Most importantly, a phase-separation process between
the two species occurs and each ρ (1)

σ (x; t ) exhibits an intrawell
fragmentation. This phase separation is a consequence of the
Stoner instability that exists in this strongly interacting regime
even in the ground state of the system (see also our discussion
in Sec. III A). Regarding the intrawell fragmentation, we
observe that ρ

(1)
A (x; t ) forms two filaments in each well, while

ρ
(1)
B (x; t ) exhibits one filament in each well and one (of lower

amplitude) located at the position of the barrier of the double
well [see also the dashed rectangles in Figs. 2(a) and 2(b)]. In
sharp contrast to the above, utilizing the correlated approach,
the single-particle density evolution shows a completely dif-
ferent behavior [see Figs. 2(c) and 2(d)]. The two components
remain miscible throughout the evolution, in accordance with
the ground-state properties discussed in Sec. III A. Moreover,
an intrawell fragmentation emerges with the two filaments
formed in ρ (1)

σ (x; t ) within each well being more pronounced
for the B species, while the filamentary structure of the A

species is suppressed and hardly discernible [see also the
rectangles in Figs. 2(c) and 2(d)]. Finally, both clouds undergo
a breathing motion with approximately the same frequency as
the one observed in the HF approximation.
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FIG. 2. Evolution of the σ -species one-body density ρ (1)
σ (x; t ) of

a FF mixture within (a) and (b) the HF approximation and (c)–(f)
the MB approach following an interaction quench from gAB = 0.1 to
gAB = 4.0. The FF mixture consists of (a)–(d) NA = 3 and NB = 1
particles and (e) and (f) NA = 5 and NB = 1 fermions. The left
and right columns correspond to the densities of the A and the B

species, respectively. The rectangles indicate the number of filaments
formed of the corresponding ρ (1)

σ (x; t ) within the left well. (g) and
(h) Overlap integral �(t ) between the species of the FF mixture
during the evolution within different approximations and varying
postquench interactions (see the legend) for (g) NA = 3 and NB = 1
and (h) NA = 5 and NB = 1.

To infer information about the effect of the majority
species particle number on the nonequilibrium dynamics, we
next consider a mass-balanced FF mixture with NA = 5 and
NB = 1. The corresponding single-particle density evolution
following an interspecies interaction quench from gAB = 0.1
to gAB = 4.0 is shown in Figs. 2(e) and 2(f) within the MB
approach. As it can be deduced, a larger particle number of the
majority component leads to an increased number of filaments
within each well for each of the species as compared to the
case of a smaller particle number [compare Figs. 2(c) and 2(d)
and Figs. 2(e) and 2(f)]. It is also worth mentioning that the
filament formation of both species is washed out for higher
particle numbers [see also the rectangles in Figs. 2(e) and
2(f)]. However, the particle number does not significantly alter
the breathing frequency of each species and their miscible
character.

To expose the degree of spatial phase separation, namely,
the degree of miscibility or immiscibility of the mixture, oc-
curring on the one-body level during the quench dynamics, we
employ the overlap integral function �(t ) [47,84,85] between
the two species

�(t ) =
[ ∫

dx ρ
(1)
A (x; t )ρ (1)

B (x; t )
]2

[ ∫
dx

[
ρ

(1)
A (x; t )

]2][ ∫
dx

[
ρ

(1)
B (x; t )

]2] . (7)

013605-5



J. ERDMANN, S. I. MISTAKIDIS, AND P. SCHMELCHER PHYSICAL REVIEW A 99, 013605 (2019)

This quantity being normalized to unity takes values between
� = 0 and � = 1 corresponding to zero and complete spatial
overlap of the two species on the single-particle level. Fig-
ures 2(g) and 2(h) present �(t ) for the NA = 3 and NB = 1
setup and the NA = 5 and NB = 1 setup, respectively, for dif-
ferent interaction quench amplitudes. Regarding the evolution
in the HF approximation, �(t ) drops close to zero at short
timescales (t > 6) for both systems. After this initial drop the
overlap remains almost constant, exhibiting small-amplitude
oscillations which reflect the breathing motion of each cloud.
Notice that the maxima of these small-amplitude oscillations
appear at time intervals of the contraction of the cloud [see,
e.g., Figs. 2(a) and 2(g) at t ≈ 40]. In sharp contrast to the
above behavior, �(t ) shows small fluctuations around 0.9
within the MB approach during the entire evolution. The
aforementioned evolution of �(t ) reflects the miscible char-
acter of the dynamics on the single-particle level. The same
overall phenomenology in terms of �(t ) holds equally, in
both approaches, for other postquench interaction strengths
[see, e.g., Figs. 2(g) and 2(h) for gAB = 4.0]. We further
remark that for postquench interaction strengths gAB > 2.0
the overlap function features a similar dynamics, while for
quenches to gAB < 2.0 the mixture remains miscible in both
the HF and the MB approach (results not shown here for
brevity).

C. Correlation dynamics

To unveil the underlying correlation mechanisms [39,52]
that lead to the intrawell fragmentation during the MB quench
dynamics, we investigate the one-body g(1)

σ (x, x ′, t ) [Eq. (5)]
and the two-body g

(2)
σσ ′ (x, x ′, t ) [Eq. (6)] intra- and inter-

species correlation functions during evolution (see Fig. 3). As
it is expected, the intraspecies two-body correlation function
for the B species is zero, since this species contains only a sin-
gle particle. Below we examine g(1)

σ (x, x ′, t ) and g
(2)
σσ ′ (x, x ′, t )

following an interaction quench of the FF mixture from gAB =
0.1 to gAB = 4.0.

Figures 3(a i)–3(a iv) and 3(b i)–3(b iv) show g
(1)
A (x, x ′, t )

and g
(1)
B (x, x ′; t ), respectively, for selected time instants of the

MB evolution. Overall, we observe that throughout the evolu-
tion the off-diagonal elements of g(1)

σ (x, x ′, t ) are suppressed.
Indeed, on the one-body level, each filament of both species
is fully coherent with itself [see, e.g., g

(1)
A (x = −2.5, x ′ =

−2.5; t = 24) ≈ 1 in Fig. 3(a i)] and mainly incoherent with
any of the other filaments [see, e.g., g

(1)
A (x = −2.5, x ′ =

2.5; t = 24) ≈ 0 in Fig. 3(a i)]. We note that this behav-
ior of g(1)

σ (x, x ′, t ) is more pronounced for the A species,
while in the B species two distinct filaments appear to be
partially incoherent [e.g., g

(1)
B (x = −2.5, x ′ = 2.5; t = 76) ≈

0.3 in Fig. 3(b iii)], as shown in Figs. 3(b i)–3(b iv). This
structure of g(1)

σ (x, x ′, t ) indicates the occurrence of Mott-like
correlations [55–57] in the system (see also the corresponding
discussion in Sec. II C) and suggests the tendency of the
observed filaments to be localized structures. Moreover, we
can infer that each σ -species fermion, and especially the
A-species ones, is more likely to be localized in one filament
and do not reside in two or more filaments.
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FIG. 3. One-body correlation function g(1)
σ (x, x ′; t ) shown for

different time instants (see the legends) during the interaction quench
dynamics of a FF mixture for (a i)–(a iv) the A species and (b i)–(b iv)
the B species. (c i)–(c iv) Snapshots of the two-body intraspecies
correlation function g

(2)
AA(x, x ′; t ) and (d i)–(d iv) the interspecies

two-body correlation function g
(2)
AB (x, x ′; t ). In all cases, the FF

mixture consists of NA = 3 and NB = 1 particles and it is initialized
in the weakly interacting ground state gAB = 0.1 of the double well.
To induce the dynamics we perform an interaction quench from
gAB = 0.1 to gAB = 4.0.

We next study the two-body intraspecies correlation func-
tion g

(2)
AA(x, x ′; t ) [see Figs. 3(c i)–3(c iv). A strongly anticor-

related behavior within each filament (see the depleted diag-
onal behavior) occurs for every time instant [e.g., g

(2)
AA(x =

−2.5, x ′ = −2.5; t = 24) ≈ 0 in Fig. 3(c i)], while two
different filaments appear to be correlated [e.g., g

(2)
AA(x =

−2.5, x ′ = 2.5; t = 24) ≈ 1.3 in Fig. 3(c i)]. As a conse-
quence, two particles of the A species cannot reside in the
same filament, but they are more likely to be found in any
pair of distinct filaments. The corresponding interspecies cor-
relation function g

(2)
AB (x, x ′), shown in Figs. 3(d i)–3(d iv),

displays similar characteristics to g
(2)
AA(x, x ′; t ). Namely, a cor-

relation hole exists [see, e.g., g
(2)
AB (x = −2.5, x ′ = −2.5; t =

24) ≈ 0 in Fig. 3(d i)] which excludes the possibility of an
A and a B particle being in the same filament. However,
the off-diagonal elements of g

(2)
AB (x, x ′; t ) exhibit a correlated

behavior [see, e.g., g(2)
AB (x = −2.5, x ′ = 2.5; t = 24) ≈ 2.2 in

Fig. 3(d i)], providing the possibility for an A- and a B-species
fermion to be located at different filaments. We remark that
similar correlation structures have also been observed for the
NA = 5, NB = 1 case (not shown here for brevity).

An important conclusion that can be extracted from the
above analysis is that on the MB level phase separation
between the species can be inferred only on the two-body level
and not by simply observing the corresponding single-particle
densities. Recall that the single-particle density evolution does
not exhibit any phase separation within the MB approach [see
Figs. 2(c) and 2(d)], which is in sharp contrast to the HF
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approximation where the fermionic components are evidently
immiscible [see Figs. 2(a) and 2(b)]. Combining also the
results of g(1)

σ (x, x ′, t ) and g
(1)
σσ ′ (x, x ′, t ), it becomes appar-

ent that all NA + NB fermions reside in distinct filaments.
Therefore, regarding the spatially resolved distribution of the
system, a superposition state consisting of all permutations
of possible fermionic configurations concerning the four fil-
aments formed, i.e., (B − A − A − A), (A − B − A − A),
(A − A − B − A), and (A − A − A − B ), is permitted. This
latter behavior suggests the tendency towards an antiferro-
magneticlike state of the few-body system [19,53].

D. Single-shot images

In order to offer further possible experimental evidence
of the correlated quantum quench dynamics of the FF mix-
ture we simulate in situ single-shot absorption measurements
[47,86,87]. These measurements essentially probe the spatial
configuration of the atoms and they are based on the MB
probability distribution which is available within the ML-
MCTDHX [54]. To simulate the corresponding experimental
procedure we perform a convolution of the spatial particle
configuration with a point spread function being determined
by the corresponding experimental resolution. For more de-
tails regarding the numerical implementation of this procedure
in binary systems, we refer the interested reader to Ap-
pendix A, while more elaborated discussions are provided in
Refs. [33,47]. The point spread function used here possesses
a Gaussian shape with width wPSF = 1 � l ≈ 3.2, where l =√

1/ω defines the corresponding harmonic oscillator length.
We note that in few-body experiments [7,8] fluorescence
imaging is another promising technique to probe the state of
the system since it eliminates unavoidable noise sources that
might destroy the experimental signal [6]. However, the sim-
ulation of this experimental technique lies beyond our current
scope. Here, by simulating single-shot measurements we aim
to show how in situ imaging can be used to adequately monitor
the nonequilibrium quantum dynamics of the aforementioned
few-body particle-imbalanced FF mixture.

Utilizing the MB wave function of the system, obtained
within the ML-MCTDHX, we simulate in situ single-shot
images at each time instant t of the MB evolution.
Consecutively imaging first the A and then the B species
at time t ≡ tim, these images are designated by AA(x̃; tim) and
AB (x̃ ′|AA(x̃); tim) for the A and B species, respectively.
In the following, we focus on the dynamics of a FF
mixture with NA = 3 and NB = 1 within the double well
upon quenching the interspecies interaction strength from
gAB = 0.1 to gAB = 4.0. Figures 4(a) and 4(e) show the
first simulated in situ single-shot images for each species,
AA(x̃; t ) and AB (x̃ ′|AA(x̃); t ), at two distinct time instants
during evolution, namely, at t1 = 8 and t2 = 25. As it can be
seen, the images for both species, and especially the AA(x̃; t ),
exhibit a filamentized structure resembling this way the
overall tendency observed in the one-body density evolution
[see also Figs. 2(c) and 2(d)]. Moreover, let us comment that
the spatial position of these images is in accordance with our
previous discussion, regarding the spatial distribution of the
particles of each species, based on the correlation functions
(Fig. 3). For instance, AB (x̃ ′|AA(x̃); t2) shows a population of

(a) (b) (c) (d)

(e) (f ) (h)(g)

FIG. 4. Single-shot images of each species, at distinct time in-
stants of the interaction quench dynamics (see the legends), obtained
by averaging over (a) and (e) Nshots = 1, (b) and (f) Nshots = 50, and
(c) and (g) Nshots = 500. (d) and (h) The corresponding ρ (1)

σ (t ) is
evaluated within the MB approach. In all cases the system consists
of NA = 3 and NB = 1 fermions confined in a double-well potential
and the dynamics is induced by quenching the interspecies interac-
tion from gAB = 0.1 to gAB = 4.0.

a right well filament [Fig. 4(e)] which does not contradict the
analysis obtained from the correlation function that a possible
particle configuration is (A − A − A − B ). Furthermore,
we should emphasize that a direct correspondence between
the one-body density and one single-shot image is not
possible due to the small particle number of the considered
FF mixture, NA = 3 and NB = 1, and the presence of
multiple orbitals in the system. In particular, the MB state
is a superposition of multiple orbitals [see Eqs. (2) and
(3)] and thus imaging an atom alters the MB state of the
remaining atoms and consequently the relevant one-body
density. For a more elaborate discussion on this topic see
[47,88,89]. To obtain the one-body density of the system
we average over several single-shot images for each of the
species, namely, ĀA(x̃; t ) = (1/Nshots )

∑Nshots
k=1 AA

k (x̃; t ) and
ĀB (x̃

′ |AA(x̃); t ) = (1/Nshots )
∑Nshots

k=1 AB
k (x̃

′ |AA(x̃); t ) [see
also Eq. (A3) in Appendix A]. In particular, Figs. 4(b) and
4(c) and Figs. 4(f) and 4(g) present, respectively, ĀA(x̃; t )
and ĀB (x̃

′ |AA(x̃); t ) at time instants t = t1 and t = t2 for an
increasing number of single shots Nshots. It becomes evident
that upon increasing Nshots the averaged images ĀA(x̃; t )
and ĀB (x̃

′ |AA(x̃); t ) display progressively the actual profile
of the one-body density ρ

(1)
A (x) and ρ

(1)
B (x) obtained within

ML-MCTDHX [Figs. 4(d) and 4(h)].

IV. INTERACTION QUENCH DYNAMICS
OF A PARTICLE-BALANCED MIXTURE

A. Ground state

To further elaborate on the interaction quench dynamics
of FF mixtures trapped in a double-well potential we next
examine particle-balanced systems. In particular, we study a
FF mixture with NA = NB = 2 fermions and follow the same
quench scenario as in Sec. III. To this end, we first obtain the
ground state of the system described by the Hamiltonian of
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(a) (b)

FIG. 5. One-body densities ρ (1)
σ (x ) of the σ -species ground state

of a FF mixture for different interspecies interaction strengths gAB

(see the legend) within (a) the MB approach and (b) the HF ap-
proximation. The mixture consists of NA = NB = 2 fermions and
is trapped in a double-well potential. The rectangle in (a) indicates
the intrawell fragmentation (filamentation) of ρ (1)

σ (x ) for strong
interactions.

Eq. (1) with interspecies interaction gAB = 0.1. The dynamics
is subsequently induced by performing an interaction quench
to the strongly interacting regime gAB = 4.0. The double well
possesses a frequency ω = 0.1, barrier height V0 = 2, and
width w = 1.

The corresponding single-particle density ρ (1)
σ (x; t ) of the

σ -species ground state [see also Eq. (5)] of the FF mixture
is shown in Figs. 5(a) and 5(b) for different interspecies
repulsions gAB for both the MB and the HF approaches.
Note that since the FF mixture is particle balanced both equal
mass species exhibit exactly the same one-body density, i.e.,
ρ

(1)
A (x; t ) = ρ

(1)
B (x; t ), for both approaches. For weak interac-

tions, ρ (1)
σ (x; t ) populates the two wells in a symmetric man-

ner (with respect to reflections at x = 0), while ρ
(1)
A (x; t ) and

ρ
(1)
B (x; t ) are miscible in both approaches [see Figs. 5(a) and

5(b)]. Turning to the strong interspecies interaction regime,
we observe that a broadening of ρ (1)

σ (x; t ) occurs in the
HF approximation as a result of the enhanced repulsion. In
contrast, within the MB approach ρ (1)

σ (x; t ), besides being
broadened, shows an intrawell fragmentation, indicated by the
dashed rectangle in Fig. 5(a). Let us also mention at this point
that a symmetry breaking of ρ (1)

σ (x; t ) by means of the Stoner
instability does not take place in the current setup, since both
species, besides being mass balanced, contain the same num-
ber of particles NA = NB and therefore exhibit exactly the
same behavior. As a consequence, phase separation between
the species is not favored on the one-body level. To induce
the nonequilibrium dynamics, in the following, we quench the
interspecies repulsion from gAB = 0.1 to gAB = 4.0.

B. Evolution on the single-particle level

The spatially resolved quench dynamics of the FF mix-
ture can be investigated via the σ -species one-body density
ρ (1)

σ (x; t ) [see Figs. 6(a)–6(d)]. Within the HF approximation
the quenched one-body density evolution [Figs. 6(a) and 6(b)]
exhibits an overall breathing motion comprising both wells.
This breathing motion of the fermionic cloud is of course
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FIG. 6. Time evolution of the one-body density ρ (1)
σ (x; t ) for the

σ species for (a), (c), and (e) the A species and (b), (d), and (f) the
B species of the FF mixture within (a) and (b) the HF approximation
and (c)–(f) the MB approach following an interaction quench from
gAB = 0.1 to gAB = 4.0. The FF mixture consists of (a)–(d) NA =
NB = 2 atoms and (e) and (f) NA = NB = 5 fermions. At t = 0 it is
prepared in the ground state of the double well for gAB = 0.1. The
rectangles in (a) and (b) indicate a contraction event of the fermionic
cloud and the resulting interference patterns, while in (c)–(f) they
mark the number of filaments formed in the left well during the
evolution.

characterized by an expansion and contraction of the symmet-
ric density branches located in each well. Notice that during
the contraction process these density branches collide on top
of the barrier, i.e., at x = 0, giving rise to several interference
patterns [see the dashed rectangles in Figs. 6(a) and 6(b)].
These interference patterns become even more pronounced for
stronger interactions (not shown here). Inspecting ρ (1)

σ (x; t )
within the MB approach [Figs. 6(c) and 6(d)], we observe that
both species undergo a breathing mode comprising the double
well but most importantly an intrawell fragmentation of the
fermionic cloud takes place within each well. In particular,
for the NA = NB = 2 case two filaments appear in each well
[see the dashed rectangles in Figs. 6(c) and 6(d)]. It is worth
mentioning at this point that the existence of these filaments
is a consequence of beyond HF correlations that are built
in the system.3 To conclude upon the dependence of the
above-described MB dynamics on the number of fermions
in particle-balanced FF mixtures, Figs. 6(e) and 6(f) present
ρ (1)

σ (x; t ) for the same quench amplitude as before (i.e., from
gAB = 0.1 to gAB = 4.0) but for a system containing NA =

3For instance, inspecting the corresponding orbital densities, we
observe that the filaments building upon higher than the second
populated orbitals used (not shown here) are much more pronounced
than those developed in the first two orbitals.
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FIG. 7. (a i)–(a iv) One-body correlation function g
(1)
A (x, x ′; t )

of the A species for different time instants (see the legends) during
the interaction quench dynamics from gAB = 0.1 to gAB = 4.0 of
the particle-balanced FF mixture. (b i)–(b iv) Corresponding in-
traspecies two-body correlation function g

(2)
AA(x, x ′; t ) and (c i)–(c iv)

interspecies two-body correlation function g
(2)
AB (x, x ′; t ). The mixture

consists of NA = NB = 2 fermions and is initially prepared in the
weakly interacting, gAB = 0.1, ground state of the double well.

NB = 5 fermions. Note that ρ (1)
σ (x; t ) possesses a broader

distribution when compared to the NA = NB = 2 case and
performs an overall breathing motion with the same frequency
as in the case NA = NB = 2. Strikingly enough, the emer-
gent intrawell fragmentation results in five distinct filaments
[see the rectangles in Figs. 6(e) and 6(f)] of the σ -species
fermionic cloud within each well. Therefore, we can infer
that the number of filaments formed Nf is proportional to the
particle number Nf = Nσ . We note that we have checked this
conclusion also for other particle numbers, e.g., Nσ = 3, 6
(results not shown here).

C. Correlation properties

In order to expose the role of correlations in the above-
discussed interaction quench dynamics of particle-balanced
FF mixtures we resort to the corresponding g(1)

σ (x, x ′; t )
[Eq. (5)] and g

(2)
σσ ′ (x, x ′; t ) [Eq. (6)] correlation functions

(see Fig. 7). Since the considered FF mixture is parti-
cle balanced it holds that g

(1)
A (x, x ′; t ) = g

(1)
B (x, x ′; t ) and

g
(2)
AA(x, x ′; t ) = g

(2)
BB (x, x ′; t ). To this end, below we discuss

only g
(1)
A (x, x ′; t ), g

(2)
AA(x, x ′); t , and g

(2)
AB (x, x ′; t ) following

an interaction quench of the NA = NB = 2 FF mixture from
gAB = 0.1 to gAB = 4.0.

Inspecting g
(1)
A (x, x ′; t ), we deduce that each filament is

fully coherent with itself throughout the evolution, since
g

(1)
A (x, x ′ ≈ x; t ) ≈ 1 (with x varying on the spatial scale of

each filament) as shown in Figs. 7(a i)–7(a iv). Regarding the
coherence of two distinct filaments, we discern between the
cases of expansion [e.g., at t1 = 34 and t2 = 98 in Figs. 6(c)
and 6(d)] and contraction [e.g., at t3 = 56 and t4 = 73 in
Figs. 6(c) and 6(d)] of the fermionic cloud. Referring to
contraction events [see Figs. 7(a i) and 7(a ii)], we observe that
two filaments residing in distinct wells are fully incoherent
with each other [see, e.g., g(1)

A (x = −5.5, x ′ = 2.5; t = 34) ≈
0 in Fig. 7(a i)]. However, two filaments located within the

same well are partially coherent [see, for instance, g
(1)
A (x =

−5.5, x ′ = −2.5; t = 34) ≈ 0.5 in Fig. 7(a i)]. In contrast,
during the expansion of the cloud [see Figs. 7(a iii)–7(a iv)],
every two filaments, independently of their location, appear to
be fully incoherent with each other [e.g., g

(1)
A (x = −7.0, x ′ =

−2.0; t = 56) ≈ 0.1 in Fig. 7(a iii)]. Concluding, we can infer
that during the particle-balanced FF quench dynamics Mott-
like one-body correlations [55–57] emerge either for filaments
located at distinct wells (contraction events of the fermionic
cloud) or for all filaments formed (expansion events of the
fermionic cloud).

To gain insight into the two-body character of the dy-
namics we first study the second-order intraspecies correla-
tion function g

(2)
AA(x, x ′); t depicted in Figs. 7(b i)–7(b iv).

Overall, strong anticorrelations occur within each well [e.g.,
g

(2)
AA(x = −5.5, x ′ = −5.5; t = 34) ≈ 0 in Fig. 7(b i)], while

between the different wells a correlated behavior takes place
[e.g., g

(2)
AA(x = −5.5, x ′ = 2.5; t = 34) ≈ 1.3 in Fig. 7(b i)]

in the course of the evolution. Moreover, the probability of
two fermions of the same species populating nonsymmet-
ric (with respect to x = 0) filaments is favored when com-
pared to the probability of occupying symmetric ones [com-
pare g

(2)
AA(x = −7.5, x ′ = 2.5; t = 56) ≈ 2.4 and g

(2)
AA(x =

−2.5, x ′ = 2.5; t = 56) ≈ 1.8, respectively, in Fig. 7(b iii)].
To obtain a further understanding of the FF mixture dy-

namics, we finally inspect the interspecies correlation function
g

(2)
AB (x, x ′; t ) [see Figs. 7(c i)–7(c iv)]. A correlation hole

emerges on the diagonal elements of g
(2)
AB (x, x ′; t ) [see, e.g.,

g
(2)
AB (x = −2.5, x ′ = −2.5; t = 56) ≈ 0.1 in Fig. 7(c iii)] in-

dicating that fermions of different species cannot populate
the same filament. Furthermore, two filaments within the
same well are found to be strongly correlated [e.g., g

(2)
AB (x =

−7.5, x ′ = −2.5; t = 56) ≈ 2.0 in Fig. 7(c iii)], which means
that it is likely to be occupied by fermions of A and B species.
On the other hand, regarding filaments located at different
wells, it is preferable for two fermions of different species
to reside in symmetric (with respect to x = 0) filaments
[g(2)

AB (x = −2.5, x ′ = 2.5; t = 56) ≈ 1.2 in Fig. 7(c i)] rather
than nonsymmetric ones [g(2)

AB (x = −7.5, x ′ = 2.5; t = 56) ≈
0.8 in Fig. 7(c iii)]. Combining the knowledge gained from
the one- and two-body correlations, we can conclude that
the spatial distribution of the system in terms of the A- and
B-species fermions in the four emerging filaments is either
A − B − A − B or B − A − B − A. The above is a few-body
precursor of antiferromagnetic order.

D. Single-shot simulations

To showcase further experimental links of the above-
discussed MB quench dynamics of particle-balanced FF mix-
tures we next briefly discuss the outcome of the correspond-
ing single-shot simulations. Notice that more details of this
procedure can be found in Sec. III D, in Appendix A, and
in [19,33,47]. In particular, we consider the setup contain-
ing NA = NB = 5 fermions in each component and perform
single-shot simulations during the dynamics induced by a
quench from gAB = 0.1 to gAB = 4.0 [see also Figs. 6(e) and
6(f)]. The first single-shot images for both species at t1 = 8
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(a) (b) (c) (d)

(e) (f ) (g) (h)

FIG. 8. Single-shot images of each species, at distinct time in-
stants (see the legends) of the interaction quench dynamics from
gAB = 0.1 to gAB = 4.0, obtained by averaging over (a) and (e)
Nshots = 1, (b) and (f) Nshots = 50, and (c) and (g) Nshots = 500.
(d) and (h) Corresponding ρ (1)

σ (t ) calculated within the MB approach.
In all cases the system consists of NA = NB = 5 fermions trapped in
a double-well potential.

and t2 = 32 [see Figs. 8(a) and 8(e)] resemble the filamentized
structure of ρ (1)

σ (x; t ) [see Figs. 8(a) and 8(e)] within the dou-
ble well at both time instants. However, as also discussed in
Sec. III D, an adequate correspondence between a single-shot
image and the corresponding one-body density is not possible
due to the small particle number. To capture the structures
building upon ρ (1)

σ (x) we average over several single-shot
realizations depicted in Figs. 8(b), 8(c), 8(f), and 8(g) for each
time instant. As it can be seen, the averaged images ĀA(x̃; t )
and ĀB (x̃

′ |AA(x̃); t ) gradually approach ρ (1)
σ (x; t ) [Figs. 8(d)

and 8(h)] as Nshots is increased.

V. CONCLUSION

We have investigated the nonequilibrium quantum dynam-
ics of a spin-polarized FF mixture confined in a double-well
potential upon quenching the interspecies repulsion from the
weak to the strong interaction regime and for both particle-
imbalanced and -balanced mixtures. Comparing the dynamics
within the HF approximation and the MB level enabled us to
infer information about the crucial role of correlations on both
the one- and two-body level in the course of the dynamics.
In particular, we revealed a variety of interesting phenomena
with MB origin such as phase-separation processes, alteration
of the Stoner instability, and filamentation of the single-
particle density.

Regarding the ground state of particle-imbalanced species,
a symmetry breaking of the single-particle density occurs for
strong interspecies interactions within the HF approximation
being related to the Stoner instability that renders the two
fermionic clouds immiscible. Alteration of this instability is
observed at the MB level due to the existence of higher-
order correlations, rendering the two components miscible
and leading to a prominent intrawell fragmentation of the
one density. To induce the dynamics we suddenly changed
the interspecies interaction from weak to strong values. It
was found that within the HF approximation the σ -species

single-particle density filamentizes, i.e., the initial Gaussian-
like density profile breaks into several localized density
branches called filaments while the two species exhibit a
dynamical phase separation. In sharp contrast, when correla-
tions are included the filamentation of the one-body density
becomes more faint and the two species show a miscible
behavior on the one-body level. To provide further insight into
the MB character of the dynamics we utilized the one- and
two-body correlation functions. On the one-body level Mott-
like correlations between the filaments were revealed, indi-
cating their tendency for localization. Most importantly, both
the intra- and interspecies correlation functions show a cor-
relation hole in their diagonal elements, suggesting that two
fermions of the same or different species cannot populate the
same filament. However, the occurrence of strong correlations
between two distinct filaments indicates that two fermions of
the same or different species can reside in distinct filaments. It
is these observations that unveil the phase-separated character
of the MB dynamics on the two-body level while consisting
of a precursor of antiferromagnetic order.

Turning our attention to particle-balanced FF mixtures
and their relevant ground-state properties, we were able to
showcase that while intrawell fragmentation occurs at the
MB level within the HF approach, only a broadening is
present. In this case the species remain miscible both for
weak and strong interspecies interactions independently of the
considered approach. Performing an interspecies interaction
quench from weak to strong coupling, we observed that in the
HF approximation the two fermionic clouds remain miscible
throughout the evolution. Furthermore, they undergo an over-
all breathing motion over the double well, while in the course
of the contraction events of this motion prominent interference
patterns appear. Within the MB approach the two species
are miscible and perform an overall breathing mode. Most
importantly and in sharp contrast to the HF approximation,
the clouds exhibit an intrawell fragmentation (filamentation)
visible in their single-particle density with the number of fil-
aments formed being proportional to the number of fermions
of each species. Inspecting the one-body correlation function
in the course of the evolution, we deduced that Mott-like
one-body correlations appear either for filaments located at
distinct wells (contraction events) or for all filaments (ex-
pansion events of the fermionic cloud). Referring to the two-
body correlations, we found that two fermions of the same or
different species exhibit an anticorrelated behavior in a single
filament, while they are strongly correlated when residing in
distinct filaments, with the nonsymmetric ones (with respect
to the center) being more favorable. The above indicate that
the two species phase separate, suggesting the formation of
antiferromagneticlike order in the few-body system.

Finally, we provided possible experimental realizations for
both the particle-imbalanced and the particle-balanced cases
by simulating single-shot measurements. In particular, we
showed how an averaging process of the obtained in situ
images can be used to adequately retrieve the MB fermionic
quench dynamics.

There are several promising research directions that are
of interest for future investigations along the lines of the
current effort. An imperative prospect is to simulate the
corresponding radio-frequency spectrum [29] in the case of
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particle-imbalanced FF mixtures in order to reveal possi-
bly emerging polaronic states and subsequently examine
their properties. Another straightforward direction in particle-
imbalanced setups would be to consider a larger particle num-
ber for the minority species, e.g., NA = 5 and NB = 3, and
reveal whether phase-separation processes and magnetization
effects occur in such systems. Certainly the study of the
interspecies interaction quench dynamics of mass-imbalanced
FF mixtures in order to induce a dynamical phase separation
of the two species and showcase the role of correlations is an
intriguing perspective.
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APPENDIX A: SINGLE-SHOT ALGORITHM

The numerical simulation of the single-shot procedure
relies on a sampling of the MB probability distribution
[47,86,88,89]. We remark that the implementation of this
experimental measurement process has already been reported
for single-component bosons and fermions [19,33,86,88,89]
as well as for binary bosonic and fermionic mixtures [47]. Be-
low we provide a brief sketch of the corresponding numerical
procedure, but for more details we refer the interested reader
to [19,33,86,88,89].

The single shots for binary mixtures depend strongly on
the system-specific inter- and intraspecies correlations [47].
For a MB system the presence of entanglement [see Eq. (2)]
between the species is very important for the image ordering.
In the following, we analyze the corresponding numerical
process when the imaging is performed first on the A and then
on the B species, providing in this way the absorption images
AA(x̃) and AB (x̃ ′|AA(x̃)). An important remark here is that
in order to image first the B and then the A species we need
to follow the same procedure, obtaining the corresponding
images AB (x̃) and AA(x̃ ′|AB (x̃)).

To achieve the imaging of the A and subsequently of the
B species we sequentially annihilate all A-species fermions.
In particular, at a certain time instant of the imaging, for
instance tim, a random position is drawn satisfying ρ

(1)
NA

(x ′
1) >

q1, with q1 being a random number belonging to the interval
[0, max{ρ (1)

NA
(x; tim)}]. To proceed, the (NA + NB)-body wave

function is projected onto the (NA − 1 + NB)-body one by
the virtue of the projection operator 1

N [�̂A(x ′
1) ⊗ ÎB]. Here

�̂A(x ′
1) denotes the fermionic field operator annihilating an

A-species fermion at position x ′
1, while N is the normalization

constant. As it can be easily deduced, this process directly
affects the Schmidt weights λk . In this way both ρ

(1)
NA−1(tim)

and ρ
(1)
NB

(tim) are changed. Recall that the B species has not
been imaged yet. Indeed, the Schmidt decomposition of the
MB wave function after this first measurement reads∣∣�̃NA−1,NB

MB (tim)
〉

=
∑

i

√
λ̃i,NA−1(tim)

∣∣�̃A
i,NA−1(tim)

〉 ∣∣�B
i (tim)

〉
. (A1)

The (NA − 1)-species wave function is |�̃A
i,NA−1〉 =

1
Ni

�̂A(x ′
1) |�A

i 〉 and the normalization factor Ni =√
〈�A

i | �̂†
A(x ′

1)�̂A(x ′
1) |�A

i 〉. Also the Schmidt coefficients of

the (NA − 1 + NB)-body wave function read λ̃i,NA−1 =
λiNi/

∑
i λiN

2
i . To complete the imaging process we

repeat the above steps NA − 1 times and then obtain the
distribution of positions (x ′

1, x
′
2, . . . , x

′
NA−1). The latter

is subsequently convoluted with a point spread function
resulting in the single-shot image of the A species
AA(x̃) = 1√

2πwPSF

∑NA

i=1 e−(x̃−x ′
i )2/2w2

PSF . In this expression
the x̃ denote the spatial coordinates within the image and
wPSF is the width of the employed point spread function.

The MB wave function, after annihilating all NA fermions,
reads

∣∣�̃0,NB

MB (tim)
〉

= |0A〉 ⊗
∑

i

√
λ̃i,1(tim)

〈
x ′

NA

∣∣�A
i,1

〉
∑

j

√
λ̃j,1(tim)|〈x ′

NA

∣∣�A
j,1

〉|2 |�B
i (tim)〉 .

(A2)

In this expression 〈x ′
NA

|�A
j,1〉 ≡ 〈0A|�̂A(x ′

NA
)|�A

j,1〉 is the
single-particle orbital of the j th mode, while the B-species
wave function, i.e., |�NB

MB(tim)〉, is the second term in the cross
product of the right-hand side. As it can be seen, |�NB

MB(tim)〉
refers to a nonentangled NB-particle wave function. There-
fore, the subsequent single-shot procedure of the B species
is the same as for a single-species ensemble [86,88,89]. This
procedure has been extensively tested for different single-
component setups (see, for more details, [86,88,89] and ref-
erences therein). Therefore, we only briefly discuss it below.
Referring to t = tim, i.e., the imaging time, we compute
ρ

(1)
NB

(x; tim) from |�NB

MB〉 ≡ |�(tim)〉 and a random position x ′′
1

is drawn obeying ρ
(1)
NB

(x ′′
1 ; tim) > q2, where q2 is a random

number in the interval [0, ρ
(1)
NB

(x; tim)]. Consequently, one

particle is annihilated at x ′′
1 and we calculate ρ

(1)
NB−1(x; tim)

from |�NB−1
MB 〉. Then a new random position x ′′

2 is drawn from
ρ

(1)
NB−1(x; tim). Repeating the above procedure NB − 1 times,

we obtain the distribution of positions (x ′′
1 , x ′′

2 , . . . , x ′′
NB−1).

This distribution is finally convoluted with a point spread
function providing a single-shot image AB (x̃ ′|AA(x̃)).

Finally, it can be shown that the average image of the σ

species, i.e., Āσ (x̃), over several (Nshots) single-shot images
[Aσ (x̃)] is directly related to the σ -species one-body density
ρ (1)

σ (x ′
σ ) since

Āσ (x̃) = Nσ√
2πwPSF

∫
dx ′

σ e−(x̃−x ′
σ )2/2w2

PSFρ (1)
σ (x ′

σ ). (A3)

Here the x̃ denote the spatial coordinates within the image and
x ′

σ is the spatial coordinate of the σ species. Also, wPSF is the
width of the employed point spread function and Nσ refers to
the particle number of the σ species.
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APPENDIX B: CONVERGENCE AND FURTHER DETAILS
OF THE MANY-BODY SIMULATIONS

Let us briefly discuss the ingredients of our MB simula-
tions and showcase their numerical convergence. As it has
been already argued in Sec. II B, the ML-MCTDHX [54]
is a variational method for solving the time-dependent MB
Schrödinger equation for atomic mixtures consisting either
of bosonic [47,57,90] or fermionic [19,29,33,91] species.
Within this approach, the MB wave function is expanded
in terms of a time-dependent variationally optimized MB
basis. Such a treatment allows us to take into account the
relevant intra- and interspecies correlation effects utilizing a
computationally feasible basis size. In this way, the number
of basis states can be significantly reduced as compared to
methods which rely on a time-independent basis. The latter
is achieved by choosing the relevant subspace of the Hilbert
space at each time instant of the evolution in a more efficient
manner.

The Hilbert space truncation refers to the employed numer-
ical configuration space designated by C = D − (mA,mB ).
In this notation D = DA = DB and mA and mB correspond
to the number of species and single-particle functions, re-
spectively, for each of the species [see also Eqs. (2) and
(3)]. For our simulations we invoke a primitive basis based
on a sine discrete-variable representation including 400 grid
points. To conclude upon the convergence of our MB simula-
tions, we ensure that variations of the numerical configuration
space C = D − (mA,mB ) do not essentially affect the ob-
servables of interest. Note that all MB calculations presented
in the main text are based on the numerical configuration
space C = 6 − (6, 6) for NA = 3 and NB = 1; on C = 10 −
(10; 10) in the case of NA = 5, NB = 1, and NA = NB =
5; and on C = 10 − (8; 8) when NA = NB = 2. Therefore,
the available Hilbert space for the corresponding simulation
includes 4992 (10 720) and 13 140 (7060) coefficients for the
NA = 3, NB = 1 (NA = 5, NB = 1) and the NA = NB = 5
(NA = NB = 2) cases, respectively. This is in sharp contrast
to an exact diagonalization procedure which should take into
account 4.2 × 109 (3.3 × 1013) and 6.9 × 1021 (6.3 × 109)
coefficients for the NA = 3, NB = 1 (NA = 5, NB = 1) and
the NA = NB = 5 (NA = NB = 2) cases, rendering these
simulations infeasible.

Finally, let us briefly showcase the convergence of our
results for a varying number of species and single-particle

0 20 40 60 80 100
0

1

2

3

4 10 -3

FIG. 9. Evolution of the one-body density deviation �ρ
(1)
A;C,C′ (t )

between the C ′ = 10 − (8, 8) and other orbital configurations C =
M − (mA, mB ) (see the legend). The FF mixture consists of NA =
NB = 2 fermions and to induce the dynamics we perform a quench
from gAB = 0.1 to gAB = 4.0.

functions. For this investigation we resort to the σ -species
one-body density ρ

(1)
σ ;C (x; t ) during the nonequilibrium dy-

namics and calculate its spatially integrated absolute deviation
for each of the species between the C ′ = 10 − (8, 8) and other
numerical configurations C = D − (mA,mB ), namely,

�ρ
(1)
σ ;C,C ′ (t ) = 1

2Nσ

∫
dx

∣∣ρ (1),σ
C (x; t ) − ρ

(1),σ
C ′ (x; t )

∣∣. (B1)

Figure 9 presents �ρ
(1)
A;C,C ′ (t ) for a FF mixture with NA =

NB = 2 fermions following an interspecies interaction quench
from gAB = 0.1 to gAB = 4.0. We remark that �ρ

(1)
B;C,C ′ (t ) =

�ρ
(1)
A;C,C ′ (t ) at all times and for all configurations due to

the particle-balanced mixture. Therefore, the results of the A

species are representative for both species. Inspecting Fig. 9, it
becomes evident that a systematic convergence of �ρ

(1)
σ ;C,C ′ (t )

can be achieved. More specifically, comparing �ρ
(1)
A;C,C ′ (t )

between the C = 8 − (8, 8) and C ′ = 10 − (8, 8) approxima-
tions, we observe that the corresponding relative difference
is below 0.15% throughout the evolution. Finally, we remark
that a similar analysis has been performed for all other particle
configurations, i.e., particle-number-imbalanced systems as
well as higher particle numbers, discussed within the main
text and has been found to be adequately converged (not
shown here for brevity).
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