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Realizing the Harper model with ultracold atoms in a ring lattice
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We demonstrate that all of the salient features of the Harper-Hofstadter model can be implemented with
ultracold atoms trapped in a bichromatic ring-shaped lattice. Using realistic sinusoidal lattice potentials rather
than assume the idealized tight-binding picture, we determine the optimal conditions necessary to realize the
critical point where the spectrum becomes fractal, and we identify the nature and cause of the departures from
the discrete model predictions. We also show that even with a commensurate ring with a few lattice sites, the
Aubry-André localization transition can be realized. Localized states that behave like edge states with energies
that reside in the band gaps can be generated by introducing a surprisingly small local perturbation within the
ring. Spectrum oscillation arising from complex coupling can be implemented by uniform rotation of the ring,
but with certain significant differences that are explained.
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I. INTRODUCTION

Consideration of electrons in a two-dimensional (2D) lat-
tice subject to a magnetic field led Harper [1] to his epony-
mous model which has since been the subject of a vast number
of studies, which continue unabated till the present day [2,3].
It has been an essential part of the physics of the quantum Hall
effect [4,5] and of recognizing the significance of topology in
quantum physics [6–8], which has been transformational for
our understanding. In recent years there has been tremendous
interest in replicating associated phenomena in designer sys-
tems of ultracold atoms in the context of synthetic gauge fields
and topological structures for neutral atoms [9–11].

The Harper model can be famously reduced to an effective
1D Hamiltonian with nearest-neighbor coupling and a cosine
modulation of the on-site energies,

J1[eiϑψn+1 + e−iϑψn−1] + J2ψn cos(2παn + θ ) = Eψn.

(1)

Here J1 and J2 represent the strengths of the coupling and
the modulation, while the phases θ and ϑ can be related to
the wave numbers in the 2D system. When the parameter α is
irrational, the lattice index n has infinite range [12]. But, when
it is rational, α = p/q with integer p and q, the Hamiltonian
is of period q, in which case, the system can be mapped to a
1D ring-shaped lattice.

Although this mapping with dimensional reduction has
been an intrinsic part of the Harper model, it is yet to be
utilized in a literal sense in experiments, which have remained
anchored in the 2D configuration of its genesis. That applies
to even recent studies with ultracold atoms in optical lattices
[13–15]. However, precisely in this last realm the capability
has now emerged that would enable experimental realization
of this seminal model in its reduced dimensional represen-
tation: Numerous experiments have already been done with
ultracold atoms in ring-shaped traps [16–21], and periodic
lattice structure along the azimuth has also been demonstrated

[22–26]. The ring lattice actually provides a simpler and pos-
sibly better alternative to examine this model. The 2D model
is intrinsically finite with edges, and additional potentials
required for confinement can introduce inhomogeneity not
present in the classic Harper model. In contrast, a ring repre-
sents an infinite 2D system exactly without the complications
of edges (although they can be easily introduced if desired),
without any extra confinement required along the direction of
relevant dynamics.

It is to motivate and anticipate such experiments with
ultracold atoms, this study has been undertaken. The discrete
Hamiltonian above is an idealization in the tight-binding limit,
and therefore well-established results that are derived from it
will certainly be modified and distorted when real potentials
are used. The goal of this paper is thus threefold: (i) to
establish that all the salient features of the Harper model can
indeed be implemented with ultracold atoms on a continuum
ring-shaped lattice with realistic potentials that do not assume
a tight-binding model, (ii) to determine the optimal conditions
under which the discrete model results can be reproduced,
and (iii) to identify the differences from the idealized discrete
model, which emerge and linger in the continuum model.

II. CONTINUUM MODEL AND SPECTRUM

We translate the model represented in Eq. (1) to a ring-
shaped lattice described by a continuum Hamiltonian, H , with
a bichromatic potential involving two independent sinusoidal
modulations, given by

H = H0 + VH cos

(
2παx

a
+ θ

)
,

H0 = − h̄2

2m

d2

dx2
+ VL sin2

(πx

a

)
. (2)

Here, x measures position along the azimuth of the ring that
will contain all relevant dynamics examined here, with the
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assumption of tight confinement along the other 2 degrees of
freedom. The phase θ is set to 0 until Sec. VI, where we de-
scribe some of its influence and we introduce the counterpart
of the phase ϑ of the coupling coefficient in Sec. VII.

Such a bichromatic model was utilized in an experiment
demonstrating a localization transition for a Bose-Einstein
condensate in a harmonically confined lattice with incom-
mensurate periods [27] and was recently studied to examine
mobility edges and localization properties in an open incom-
mensurate lattice [28]. In contrast, due to the ring geometry,
the two potentials here are chosen to be commensurate. While
there is flexibility depending on the physical configuration,
for the sake of having a concrete picture, we assume a torus
of cylindrical cross section with the lattice potentials along
its major axis. Unless otherwise specified, the lattice constant
a and ε0 = 2ER/π2 will set the length and energy units,
with ER = h̄2π2/(2ma2) being the recoil energy. We ne-
glect any nonlinearity due to atom-atom interaction, assuming
low density or scattering length manipulation by Feshbach
resonance [29].

The amplitude of the potential that creates the base lattice
structure is denoted VL, with the separation between the
minima, a, corresponding to the lattice constant in the discrete
model. The parameter VH is the coefficient of the Harper
modulating potential and can be identified with J2 in Eq. (1).
However, to find the counterpart for J1, we need to compute
the overlap integral of localized states in adjacent sites. For
this purpose we neglect the modulating potential since it
varies with α, but more importantly, as we will see, it will be
relatively much smaller for cases of interest. Thus, we define
the on-site energy and the nearest-neighbor overlap integral as

E = 〈φn|H0|φn〉, � = 〈φn|H0|φn+1〉, (3)

where φn denotes the state localized at lattice n, which in our
calculations corresponds to the Wannier state for the lowest
band for the unmodulated Hamiltonian H0.

Comparison of the spectrum of the continuum Hamiltonian
with that of the discrete Hamiltonian therefore entails the
following transformation,

H → (H − E )/�, Ei → (Ei − E )/�, (4)

for the Hamiltonian and its eigenenergies. In our plots, we
present the eigenenergies as transformed above.

The most well-known feature of the Harper model is a
fractal spectrum known as the Hofstadter butterfly [12] which
corresponds to a special case of the Harper Hamiltonian,
with the ratio λd = J2/J1 = 2 in the discrete (subscript “d”)
model. With our definition above, the equivalent for that ratio
in the continuum (subscript “c”) model is λc = VH /�, and so
we computed the spectrum of the Hamiltonian in Eq. (2) for
the special value λc = 2.

With an optimal choice of lattice parameters, discussed
below, the continuum Hamiltonian in Eq. (2) on a ring-shaped
lattice can reproduce the Hofstadter butterfly spectrum, almost
indistinguishable from that generated with the discrete Hamil-
tonian in Eq. (1), as we show in Fig. 1. Here, as well as in
the rest of the paper unless otherwise mentioned, the number
of lattices sites, or potential minima of the primary lattice
used, is N = 100, so the spectrum has a domain of α = n/N ,
n ∈ [1, 100].
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FIG. 1. The Hofstadter butterfly spectrum is found to be almost
identical as generated with (a) the usual discrete Hamiltonian in
Eq. (1) and (b) with the continuum Hamiltonian using the sinusoidal
bichromatic potential in Eq. (2). The parameter α is dimensionless
and the energy is scaled in units of the nearest-neighbor couplings,
J1 in panel (a) and � in panel (b).

III. PARAMETRIC TRADE-OFF

Given the greater degrees of freedom available, obtaining
a well-defined fractal spectrum with the continuum Hamilto-
nian depends significantly on the lattice parameters. For this
purpose, we computed the on-site energy E and the hopping
energy � as a function of the depth VL of the primary lattice,
using the lowest-band Wannier functions. For comparison, we
also computed the same by approximating the well bottom of
the primary lattice by a harmonic oscillator (HO) of frequency
ω = (π/a)

√
2VL and using its ground state φn → φHO

n in
Eq. (3) to analytically evaluate counterparts EHO and �HO. We
plot them all in Fig. 2. It is clear that the harmonic oscillator
approximation works well for the on-site energy E , but is
inaccurate for the more relevant overlap integral, �. On the
semilog plots it is evident that for � the difference remains
significant for all values of the lattice depth. We therefore only
use the Wannier functions in our calculations.
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FIG. 2. (a) The overlap integral and (b) the on-site energy plot-
ted as a function of the amplitude of the primary lattice potential
VL computed using Eq. (3). The solid blue line uses the lowest
Wannier states for φn at neighboring sites and the dashed red line
represents analytical computation using the ground state φHO

n of the
harmonic oscillator approximation of a well bottom of the primary
lattice. Semi-log plots of the same are shown in panels (c) and (d),
respectively.

As the lattice gets deeper, the system approaches the
discrete limit as the tight-binding picture gets increasingly
precise, so it may seem that the deeper the base lattice is, the
better it is. However, there is a trade-off, because the nearest-
neighbor coupling measured by � decreases exponentially at
higher lattice depths as is evident from Fig. 2(c). Considering
the criterion for the Hofstadter spectrum, in the regime of
interest, VH ∼ �, which means the modulating potential VH

has to decrease in sync with �. At high lattice depths, this
would result in a huge difference in the magnitudes of VL and
VH which could be challenging in experiments, particularly if
the mean magnitude of the latter becomes comparable to the
fluctuations of the former.

In Fig. 1 we used VL = 100 which yielded � = 0.012
and VH = 2� = 0.024. This is already a difference of
log(VL/VH ) � 3.6 orders of magnitude. There, we pushed
the limits to demonstrate the reproducibility of the discrete
model, and that may not always be a priority. Even reducing
the primary lattice depth by a factor of 2, to VL = 50, leads
to critical VH = 0.092 and log(VL/VH ) � 2.4, a one-third
reduction in the order of magnitude gap. Certainly this creates
more deviation from the discrete spectrum, but not markedly.
But, if VL gets too small, the tight-binding approximation is
no longer a good one and the spectrum deviates significantly
from that of the discrete model spectrum, a matter we address
in the next section. So, some intermediate value of the primary
lattice will have to be chosen, which provides the desirable
balance between these opposing factors.

IV. DISTORTIONS IN SHALLOW WELLS

It is evident in Fig. 1 that even though the spectra match
quite well, there is a lingering bilateral asymmetry in the
continuum case, particularly prominent near the right edge
towards α = 1. This gets more pronounced for lower values
of VL when the primary lattice gets shallower as evident in
Fig. 3 where we use VL = 10. That is because the discrete
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FIG. 3. (a) Distorted butterfly when the primary lattice depth
is low, VL = 10. (b) When the same is plotted with the correction
potential Vcorr in Eq. (6) added to the Hamiltonian H0, the bilateral
symmetry is partially restored. The uncorrected net potentials for
(c) α = 1/N and (d) α = (N − 1)/N (with N = 100 lattice sites)
are clearly different, but they acquire the same form shown in panel
(e) when Vcorr is added.

Hamiltonian contains a symmetry absent in the continuum
Hamiltonian: The Hamiltonian in Eq. (1) is unchanged by
α = n/N → (N − n)/N , but that is not so in the continuum,

cos

(
2πx

a

(N − n)

N

)
= cos

(
2πx

a
− 2πx

a

n

N

)
. (5)

The continuous dependence on the position x modulates
the overall potential differently for α = n/N and α =
(N − n)/N as can be clearly seen upon comparing Figs. 3(c)
and 3(d), where α = 1/100 and α = 99/100, respectively.
Note that for both cases, the overall modulation of the bottom
edge is the same, and that is precisely what would be manifest
as modulation of the on-site energies in the discrete model.
But the difference in their upper edges indicates that the lattice
amplitude has different behavior among the two. There can be
variation of the lattice depth, and hence the nearest-neighbor
coupling, across the lattice, evident particularly in Fig. 3(d),
a feature clearly absent in the discrete model, where only the
on-site energy is modulated.

Notably, the spectrum in Fig. 3(a) shows that the features
on the right side of the spectrum are more degraded compared
to those the left side. The reason why becomes apparent upon
comparing Figs. 3(c) and 3(d). For lower values of α there
is little modulation of the lattice depth since the top and the
bottom edges rise and fall in sync, and the nearest-neighbor
coupling remains uniform across the lattice. On the other hand
the lattice depth clearly varies significantly for the higher
values of α. The underlying reason resides in the fact that, in
the Harper modulation cos(2παx/a), for low values of α its
period α−1a is much longer than the period 2a of the primary
lattice, whereas for higher values of α the two periods become
comparable, leading to a beating effect which modulates the
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FIG. 4. The Hofstadter butterfly spectrum generated with the continuum Hamiltonian in Eq. (2). As predicted for the discrete model, the
fractal structure is most pronounced for the critical ratio (b) λc = VH /� = 2 in the center panel and deteriorates for values (a) lower and
(c) higher.

net lattice depth, and hence the coupling strength, across the
lattice. This suggests that using low values of α would be
preferable for studies that are not α specific.

When VL 	 VH the distortion is minimal, but it is pro-
nounced when VL is smaller due to the greater relative im-
pact of the cosine term, for instance, in Fig. 3, VL = 10,
VH = 0.70, and log(VL/VH ) � 0.85. To underscore the
points made above, we partially compensate for the asymme-
try with a correction term added to the potential:

Vcorr = −VH cos

(
2παx

a

)
sin2

(πx

a

)
. (6)

This amounts to subtracting the Harper modulation, but fur-
ther modulated by the periodicity of the primary lattice. It
levels out the upper edge of the net lattice potential as shown
in Fig. 3(e) and substantially reduces the asymmetry in the
vertical spread of the eigenvalues between the left and the
right sides of the butterfly. On the other hand, this extra
potential also reduces the clarity and resolution of the fractal
pattern on the left side by causing lattice depth modulation
there as well. As such, such a term may not offer any practical
advantage. But, it serves to demonstrate how some of the
unwanted features could be selectively neutralized, as well as
illustrating some of the limitations and differences and their
causes that mark the continuum implementation.

V. CRITICALITY AND LOCALIZATION

The fractal pattern of the Hofstadter butterfly is specific
to the critical case of the Harper Hamiltonian, when the
ratio λd = 2 and deteriorates away from the value. Utilizing
the continuum counterpart of the ratio λc = VH/�, we find
that this critical behavior can be faithfully replicated on the
bichromatic ring lattice. This is shown in Fig. 4 where we
plot the spectra for the cases λc = 1, 2, and 4, and we can
confirm that the most well-defined fractal pattern results when
λc = 2 and the pattern gets smudged for values both lesser and
greater.

In the Harper Hamiltonian, the value λd = 2 has a signif-
icance beyond the nature of the spectrum. It has been proven
by Aubry and André [30] that in the infinite lattice limit,
when α is irrational, this value marks a localization transition,
all eigenstates being localized for λd > 2 and extended for

λd < 2. But, rigorous proof is lacking for commensurate finite
lattice periods. Here we show that the transition does exist
even for a ring-lattice of few sites with intrinsically commen-
surate periods. Infinite range lattice corresponds to irrational
values of α and strictly irrational values are unfeasible in
practice. A common choice for a rational alternative has been
to pick a ratio of a pair of adjacent Fibonacci numbers α =
Fn/Fn+1 because the limit of the sequence as n → ∞ is a
well-known irrational number, (

√
5 − 1)/2, the inverse of the

golden mean.
Thus, we considered a discrete Hamiltonian of period 8 and

choose α = 5/8, where the numerator and the denominator
belong to the Fibonacci sequence, and computed the inverse
participation ratio, given by

IPR =
∑

n |φn|4( ∑
n |φn|2

)2 , (7)

the sum being over the lattice sites of the discrete Hamil-
tonian. Higher values of the IPR indicate localization and
lower values correspond to the extended state. We plot the
IPR for the ground state of the system as a function of J1

and J2 in Figs. 5(a) and 5(c). There is clearly a localization
transition along a line representing the ratio λ = J2/J1 = 2.
We found that the transition becomes sharper as the lattice size
is increased. Although not reproduced here, we also computed
the IPR averaged over all the states in the band, and it showed
a similar localization behavior, albeit a bit more gradual.

We next did the same for our continuum model, where we
pick a bichromatic lattice with eight minima for the primary
lattice and α = 5/8, so that the periods are commensurate,
a necessity in a continuum-ring configuration. Likewise we
compute the IPR, where now the sums are replaced by inte-
grals, and plot it for the ground state in Figs. 5(b) and 5(d).
Differently from the discrete case, we plot versus the ratio
λc = VH /� and the primary lattice depth VL. The localization
transition is manifest along the line λc = 2. At very low values
of VL, as is to be expected, the localization is lost.

VI. PERTURBATION AND EDGE STATES

Edge states with energies that exist in the band gaps have
been of particular relevance in the physics associated with
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FIG. 5. The inverse participation ratio (IPR) of the ground state
is plotted for α = 5/8 and N = 8 lattice sites, for (a) the discrete
Hamiltonian, Eq. (1), as a function of strengths of the coupling J1 and
the modulation J2, and (b) for the continuum Hamiltonian, Eq. (2),
as a function of the primary lattice amplitude VL and the continuum
equivalent VH /� of the ratio J2/J1. Panels (c) and (d) show a top
view of the same. The localization transition is clearly visible in
the change in the IPR, with higher values corresponding to greater
localization.

the Harper model, particularly in the context of the quantum
Hall effect [6,31], and in recent years have been intrinsic to
exciting developments associated with topological insulators
[32,33]. Counterparts of such edge states in the Aubry-André
model in an open lattice have been discussed in the literature
[34,35] and the localization of the states near the edges has
been noted. But, by its very nature the 1D ring configuration
corresponds to electrons in an infinite 2D lattice with no
edges. However, edges can be mimicked in the lattice simply
by “cutting” the ring. Though this could be done in various
ways [36], here we assume the simple expedient of a localized
repulsive perturbation which for large enough strengths would
amount to cutting the ring and creating an edge. Modeling a
barrier on a tightly focused blue-detuned laser we use a narrow
Gaussian barrier potential,

Vpert = VP e−(x−x0 )2/σ 2
, (8)

with the width σ chosen to be comparable to the lattice period.
Doing so introduces eigenvalues in the band gaps exactly as
is the case with edge states. This is demonstrated in Fig. 6
which shows the appearance of stripes of eigenenergies in the
gaps as the phase θ of the Harper modulation in Eq. (2) is
varied. Here, we used a perturbation centered at the bottom of
a well, specifically x0 = 0, and of width σ = 0.02a, narrow
compared to the lattice period and therefore well-localized
within a well.

Just like with edge states, the states corresponding to
those eigenvalues in the gap are sharply localized around
the position of the perturbation, as shown in the right-hand
panels in Fig. 6. This is in stark contrast to the states with
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FIG. 6. The left-hand panels show spectra with a Gaussian per-
turbation, Eq. (8), localized at the bottom of one of 99 wells of the
primary lattice in a ring configuration. The large blue dot on each
stripe marks the energy corresponding to the localized “edge” state
plotted in the corresponding right-hand panel. The right-hand panels
also show a pair of extended states (one being in dotted line) that
have energies immediately adjacent to the edge state, in the bands
just above and below.

energies just above and below in value, which are shown to be
completely delocalized in the same plots.

We have used 99 sites with α = 1/3, which allows the
modulation to be commensurate. Even for moderate perturba-
tion, the spectrum from the continuum-ring model, including
the stripe pattern, resembles that for an open 1D lattice for
the discrete model in Ref. [35], where the same value of
α was used, but with 100 sites. But, if we use 100 sites
on a continuum ring, the two potentials in Eq. (2) become
incommensurate, and other stripe features appear since the
mismatch of the lattice around the ring acts like an additional
perturbation.

Figure 6 illustrates a surprising feature: The strength of
the perturbation can be very weak compared to the depth
of the primary lattice. Here we used VL = 100, and even
for VP /VL = 10−4, the stripes and localization are already
emergent. Furthermore, from VP /VL = 10−3 as the pertur-
bation strength is increased by several orders of magnitude,
those features are remarkably invariant, with very little change
even quantitatively. The small perturbation strength required
makes sense in one way; it is of the same order of magnitude
as the Harper modulation used here, VH = 0.024. Yet, the
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FIG. 7. The spectrum is plotted with a Gaussian perturbation
similarly to Fig. 6 but now located at one of the crests (x0 = 0.5a) of
the primary lattice. The stripe pattern shows much greater sensitivity
to the strength of the perturbation as it is changed from (a) Vp = 1 to
(b) Vp = 10, with width fixed at σ = 0.02, as well as to the width as
it is changed from (a) σ = 0.02 to (c) σ = 0.2. However, increasing
the strength while reducing the width simultaneously appears to
somewhat mutually cancel the effects as seen by comparing panel
(d) with panel (a).

strong similarity in behavior with edge states raises questions
about the nature of the latter since, with such a weak per-
turbation, the ring can hardly be considered “cut” and by no
means creates the analog of an edge since that would imply
the presence of an infinite potential. It appears that certain
features like localization and intraband energies associated
with edge states can actually be induced with a very tiny
perturbation.

There is another interesting effect that emerges from an
additional freedom in the continuum model not present in the
discrete model: The position of the perturbation can be varied
within the span of a single period of the primary lattice and
specifically it can be positioned at one of its crests so that the
perturbation is actually between two lattice sites, something
not literally possible in the discrete model. We find that the
stripe pattern generated for this midway location is much
more sensitive to the strength of the perturbation, Figs. 7(a)
and 7(b) show that the pattern changes completely when the
perturbation strength is increased from VP = 1 to VP = 10.
This is in stark contrast with Fig. 6 where the perturbation is
at the well bottom and the pattern hardly changes over several
orders of magnitude variation of VP .

To probe this farther, in Fig. 7(c) we kept the strength fixed
at VP = 1 and instead increased the width σ by a factor of 10,
and that led to a pattern similar to increasing the strength by a
factor of 10. On the other hand, reducing σ while increasing
VP seems to compensate for each other, as seen in Fig. 7(d)
which appears qualitatively similar to Fig. 7(a). It appears that
the midway location acts as if in the discrete limit there is a
perturbing potential at two adjacent sites, a fact accentuated
by strengthening or widening the perturbation.

VII. COMPLEX COUPLING AND ROTATION

So far we have neglected the phase ϑ that can lead to the
complex coupling coefficient J1e

±iϑ in the Harper equation in
Eq. (1). The phase can originate from one of the wave numbers
k in the 2D problem, with ϑ = ka. Assuming this dependence
on the lattice parameter a in the continuum limit of a → 0, a
Taylor expansion readily establishes the correspondence:

eiϑψ (x + a) + e−iϑψ (x − a) − 2ψ (x)

� − a2

h̄2

(
p̂ − h̄ϑ

a

)2

ψ (x). (9)

This suggests that in the continuum we simply need to modify
the kinetic energy by the minimal coupling that is the standard
approach for introducing gauge fields in quantum mechanics.
This amounts to the following modification in the continuum
Hamiltonian, Eq. (2):

− h̄2

2m

d2

dx2
→ − h̄2

2m

d2

dx2
+ iϑ

h̄2

ma

d

dx
+ h̄2ϑ2

2ma2
. (10)

The second term can be written as ih̄R�dx , with R being
the radius of the ring, � = h̄ϑ/(maR) would be the angular
velocity of the ring rotating around its symmetry axis through
its center. Thus, the effect of this term can be simulated by
simply rotating the ring. This is to be expected from the well-
known analogy of rotation and magnetic vector potential [10].
The square term has the form of a centripetal contribution,
mR2�2, but has no clear counterpart in the 1D dynamics.
For constant angular momentum it would simply provide an
energy shift, but it has a more significant effect when the
angular momentum is varied, as we will see.

In Fig. 8 we show that with the introduction of these extra
terms, the effect of the complex coupling can be reproduced
faithfully. In these particular plots, we have further scaled all
lengths by R. When the Harper modulation is absent, the
results for the discrete plot in Fig. 8(a) and the continuum
plot with the two added terms in Fig. 8(b) are practically
identical. The different colors mark the six different energy
levels in the first band, due to using N = 6 cells here, and
that is also reflected in the periodicity of the oscillation of the
energies as a function of the phase ϑ and the angular velocity
�, respectively, in plots Figs. 8(a) and 8(b). However, when
the �2 term is left out in Fig. 8(c), the spectrum acquires an
overall curvature proportional to �2, although other features
of the spectrum are preserved. This would be the form of the
spectrum if the ring-shaped lattice is simply rotated, without
any mechanism to simulate the square term.

With the phase and its continuum counterparts in place, if
we now include the Harper modulation, the first band breaks
into subbands, two of them in this case since we use α = 1/2.
The result for the discrete model is shown in Fig. 8(d) and
the continuum model with and without the square terms is
shown in Figs. 8(e) and 8(f), both of which show qualitatively
similar structure. Apart from the emergence of the subbands
the behavior is similar to when the modulation is absent, just
as discussed above. Notably, there is a difference in the widths
of the two subbands in the continuum plots, which arises
from the fact that we have used a low value of lattice depth
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FIG. 8. The complex coupling J1e
iϑ in the Harper Hamiltonian

creates oscillations in the spectrum as shown here for the lowest
band with N = 6 lattice sites and J1 = 1. The spectrum for the
discrete Hamiltonian is shown (a) with no modulation J2 = 0 and
(d) with modulation at the critical strength J2 = 2 with α = 1/2.
This behavior is reproduced in the continuum lattice by modifying
the momentum operator with a minimal coupling gauge potential
term as done in Eqs. (9) and (10) and plotted here in panels (b) and
(e). The oscillations in the spectrum can be generated by rotating the
lattice as seen in panels (c) and (f), but with a curvature arising from
leaving out the square term in Eq. (10). The colors and alternating
solid and dotted lines differentiate the different energy levels.

here, VL = 10, and that difference diminishes at higher lattice
depths.

VIII. CONCLUSIONS AND OUTLOOK

We have examined the continuum version of the Harper
model as mapped to a 1D ring-shaped lattice with two
commensurate sinusoidal potentials. We have demonstrated

that all the salient features of the model can indeed be realized
just as well as in the 2D lattice systems, which have had
primacy in experiments. By not assuming a tight-binding
model, we have identified departures from the idealizations in-
trinsic in the standard form of the Harper model. Specifically,
we observed deviations from bilateral symmetry and general
distortions of the signature Hofstadter butterfly spectrum and
found the conditions necessary to approach the idealized
picture.

We demonstrated that the localization transition predicted
by Aubry and André, proven for incommensurate lattice
periods, can also be realized on a ring even though the
lattice periods are commensurate with rational α = p/q and
even when the integers p and q have single-digit values. By
introducing even a small perturbation, we also found that
analogs of localized edge states can be created with much
flexibility, possessing the features of the edge states in open
systems. Rotating the lattice allows modeling the complex
nearest-neighbor couplings in the general Harper model, but
with a curved spectrum.

Introducing nonlinearity due to atom-atom interaction for
bosons in this model will certainly lead to additional features.
Some aspects can be surmised from generalization of the
discrete 2D model to include a two-body interaction term in
a Hofstadter-Hubbard model [37]. Extending such considera-
tions to a continuum-ring system as examined here, can be a
fruitful line of future research.

The technology for realizing the physics discussed here
already exists. Ring-shaped lattices have been demonstrated
with interfering Laguerre-Gaussian (LG) beams that carry
opposite angular momentum (OAM). Using beams with two
different OAM can create the bichromatic azimuthal lattice
structure necessary. Trapping ultracold atoms in LG beams
has also been successfully demonstrated in experiments.
Therefore, it is primarily a matter of bringing the relevant
capabilities together, and we hope this paper can provide
some motivation towards that. Considering how significant
the Harper model has been and continues to be in physics,
the ability to examine it experimentally in a feasible alternate
configuration with some decided advantages will certainly be
a valuable addition to the arsenal of ultracold atomic systems
for probing fundamental physics.
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