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Observation of atom-number fluctuations in optical lattices
via quantum collapse and revival dynamics
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Using the quantum collapse and revival phenomenon of a Bose–Einstein condensate in three-dimensional
optical lattices, the atom number statistics on each lattice site are experimentally investigated. We observe
an interaction driven time evolution of on-site number fluctuations in a constant lattice potential with the
collapse and revival time ratio as the figure of merit. Through a shortcut loading procedure, we prepare a
three-dimensional array of coherent states with Poissonian number fluctuations. The following dynamics clearly
show the interaction effect on the evolution of the number fluctuations from Poissonian to sub-Poissonian. Our
method can be used to create squeezed states, which are important in precision measurement.
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I. INTRODUCTION

Coherent states with well-defined amplitude and phase [1]
have been widely applied in quantum optics and quantum
electrodynamics, such as in the characterization of superflu-
idity in liquid helium-4 [2,3] and for Bose–Einstein conden-
sation (BEC) in dilute atomic gases [4,5]. As the eigenstate
of the annihilation operator, coherent states are formed by a
superposition of different number states (Fock states). If the
eigenenergy of each Fock state depends only linearly on the
particle number, the states remain coherent states at all times.
However, if the interactions among the underlying particles
are nonlinear with respect to the particle number, a coherent
state does not always remain coherent. Instead, the coherent
states will exhibit a series of collapses and revivals.

An example of the quantum collapse and revival dynamics
has been predicted [6,7] and observed [8,9] in the Jaynes-
Cummings model for a single atom interacting with a coherent
field. For a matter-wave field of a BEC, collapses and revivals
have been observed for ultracold atoms trapped in a three-
dimensional (3D) optical lattice [10,11]. In the latter case, this
nonequilibrium dynamics is mainly governed by the nonlinear
interactions among atoms. Each atom number state acquires a
nonlinear collisional phase shift and the atom number states
start dephasing from each other [12]. This quantum phase
diffusion process is related to quantum fluctuations of the
atom number [13] and has been proposed to be important
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for realizing highly correlated quantum states. Recently, such
collapses and revivals have been also successfully achieved
and observed in quantum many-body systems containing
thousands of particles [14,15].

As demonstrated in previous experiments [10,11,16,17],
adiabatically loading a BEC into the optical lattice would
suppress the on-site number fluctuations of the quantum states
because of the interactions among atoms, which energetically
disfavor such number fluctuations [18,19]. In this paper, we
directly realize a 3D array of coherent states in optical lattices
through coherent control composed by standing-wave laser
pulse sequences within a few tens of microseconds [20,21].
This shortcut loading procedure is three orders of magnitude
faster compared with an adiabatic loading of optical lattices
and is effective for avoiding the atom number squeezing.
The initially prepared state is sufficiently characterized by
a Poissonian atom number distribution with large on-site
fluctuations. We then observe the time evolution of Poissonian
on-site number fluctuations by holding the atoms for various
amounts of time before rapidly increasing the lattice potential
depth to isolate each lattice site. The following quantum col-
lapse and revival dynamics show how the atom number statis-
tics change, which in turn reflects the time evolution of on-site
number fluctuations of ultracold atoms in optical lattices.

II. SHORTCUT LOADING PROCEDURE

Because the classical coherent matter-wave field of a BEC
is characterized by Glauber’s coherent states, it is possible
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to create an array of coherent states by splitting a BEC into
two or more parts. However, the splitting procedure should
be nonadiabatic so that each atom remains delocalized [22].
The shortcut loading method [20] is an effective procedure for
transferring a BEC from the ground state of a harmonic trap
into the ground band of an optical lattice within several tens
of microseconds. It is based on a standing-wave laser pulse
sequence wherein the time duration and interval of each step
are fully optimized to maximize the robustness and fidelity of
the final state with respect to the target state.

We first consider the 1D lattice case for simplicity. The
atoms in a light field can experience a scalar potential whose
strength is proportional to the intensity of the laser, when
neglecting atom-atom interactions because the loading time is
very short, the single-atom Hamiltonian in the optical lattice
constructed by the standing-wave laser is then given by

ĤL = − h̄2∇2

2m
+ VL cos2(kLx) , (1)

where h̄ is the reduced Planck constant, m is the atom mass,
VL is the lattice depth and kL the lattice laser wave number.
The eigenstates of the Hamiltonian ĤL can be expressed as
the Bloch states (h̄ = 1),

|n, q〉 = u(n)
q e−iqx =

∑
�

cn,�|2�kL + q〉 , (2)

with the band index n, the quasimomentum q, and � =
0, ±1, ±2 · · · . For transferring a BEC with initial wave-
function |ψi〉 into the ground band with |n = 0, q = 0〉 as
the target state |ψt〉, we apply a M-step lattice laser pulse
sequence on the initial state |ψi〉 before switching on the
optical lattice with the potential depth of VL. The state after
applying the lattice laser pulse sequence is

|ψf〉 =
M∏

j=1

Ûj|ψi〉 , (3)

where Ûj = e−iĤjtj/h̄ is the evolution operator in the j th step,
Ĥj is the Hamiltonian corresponding to the lattice depth Vj,
and tj is the pulse duration. For the target state |ψt〉, the
parameters Ĥj and tj can be determined by maximizing the
fidelity:

F = |〈ψt|ψf〉|2 . (4)

F is the efficiency of transforming initial state |ψi〉 into
target state |ψt〉 after applying the lattice laser pulse sequence
and 1 − F is the higher bands excitation rate. In practical
application, we usually fix the lattice depth to Vj = VL or
0 and adopt a four-step lattice laser pulse sequence, where
[t1, t2, t3, t4] corresponds to the lattice depth [VL, 0, VL, 0].
By properly choosing the values of [t1, t2, t3, t4], the BEC
can be transferred into the ground band of the 1D lattice with
different potential depth without exciting higher Bloch bands
[21].

The shortcut loading method can be extended to the 3D
cubic optical lattice because the potential is simply the sum
of three superimposed 1D lattice potentials. In this case,
the wave functions can be separated in the form of ψ (�r ) =
ψx (x)ψy (y)ψz(z) and the evolution operator can be separated

as Ûψ = ÛxψxÛyψyÛzψz. To transfer a BEC into the ground
band of a cubic optical lattice, we just need to apply the same
lattice laser pulse sequence in the 1D lattice case from x̂, ŷ,
and ẑ directions simultaneously.

In our experiment, an atomic BEC of 1 × 105 weakly
repulsive 87Rb atoms is produced in the |F = 1, mF = −1〉
state with no discernible thermal fraction. Here, F and mF

denote the total angular momentum and the magnetic quantum
number, respectively, of the atom’s hyperfine state. The BEC
is prepared in a crossed-beam optical dipole trap with a
nearly isotropic trapping frequency 2π × 20 Hz [23]. A cubic
optical lattice comprises three mutually orthogonal retrore-
flected laser beams each with a beam waist of ∼145 μm. The
light intensity of the lattice laser is stabilized by a prestage
feedback loop to reduce the laser power fluctuation to less than
0.05%. A poststage switch is used to ensure the sharp rising
and falling edges of each lattice laser pulse duration are within
100 ns, limited by the acousto-optic modulator. After the
shortcut loading procedure, we instantaneously switch off the
dipole trap to minimize the additional harmonic confinement
of the atoms. In this configuration, up to 63 000 lattice sites
are populated with an ensemble-averaged filling of n̄ ≈ 1.5
per lattice site, which remains almost constant when the lattice
depth is changed.

III. QUANTUM COLLAPSE AND REVIVAL DYNAMICS

A coherent state is defined to be the eigenstate of the
annihilation operator â associated with the eigenvalue α, in
the form â|α〉 = α|α〉. Because â is not Hermitian, the eigen-
value of the coherent state is a complex number α = |α|eiθ ,
where |α| and θ are the amplitude and phase, respectively, of
the coherent state. Generally, a coherent state is given by a
coherent superposition of Fock states as follows:

|α〉 = e−|α|2/2
∞∑

n=0

αn

√
n!

|n〉 . (5)

Apparently, the coherent state follows a Poissonian number
distribution P (n) = e−|α|2 |α|2n/n!. The mean atom number
of the coherent state is 〈n̂〉 = |α|2 = n̄ with large number
fluctuations as 〈δn̂2〉 = 〈n̂〉 = n̄.

For a homogeneous system with N atoms and M lattice
sites, the initial state prepared by the shortcut loading method
can be written as a product of identical single-particle Bloch
waves with zero quasimomentum

|�〉 ∝ 1√
N !

(
1√
M

M∑
i=1

â
†
i

)N

|0〉 . (6)

In the limit of large N and M at fixed N/M , the state becomes
indistinguishable in a local measurement from a coherent
state [24] and factorizes into a product of single-site states
|φi〉, such that |�〉 � ∏M

i=1 |φi〉. The atom number distribution
of |φi〉 is Poissonian as |φi〉 = e−|α|2/2 ∑∞

n=0
αn√
n!

|n〉, where

|α|2 = N/M = n̄ is the average atom number per lattice site.
Using the shortcut loading method, coherent states can

be prepared in a 3D optical lattice with any potential depth.
If the lattice potential is deep enough, the tunnel coupling
between neighboring sites becomes very small compared with
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the repulsive interactions among atoms. The Hamiltonian
governing the system is determined mainly by the on-site
interaction energy among atoms and an energy offset to each
lattice site:

Ĥ = U

2

M∑
i=1

n̂i (n̂i − 1) +
M∑
i=1

εi n̂i , (7)

where n̂i = â
†
i âi counts the number of atoms on lattice site

i, U is the on-site interaction matrix element, and εi denotes
the energy offset of lattice site i due to an external harmonic
confinement of the atoms. The interaction energy per atom
pair is given by U = 4πh̄2as/m

∫ |ρ(r)|4d3r, where as is
the s-wave scattering length. Here

∫ |ρ(r)|4d3r quantifies
the overlap of the atomic densities with n(r) = |ρ(r)|2. The
energy of a Fock state |n〉i is then approximated by the total
interaction energy E(i)

n = Un(n − 1)/2 and an energy offset
εin. Given that the lattice depth is nearly uniform over the
atom cloud, we assume E(i)

n = En for each occupied lattice
site i.

Now the global many-body state |�〉 in the optical lattice,
which can be expressed as a product of single-site wave
functions, evolves as

|�(t )〉 =
M∏
i=1

|φi (t )〉

=
M∏
i=1

(
e−|α|2/2

∞∑
n=0

αn

√
n!

e−i(En+εin)t/h̄|n〉
)

. (8)

The Fock states |n〉 are the eigenstates of the system and each
Fock state evolves individually according to its eigenenergy.
The dynamical evolution of the system can be probed by an-
alyzing the atomic interference pattern observed after switch-
ing off the lattice potential. For a 3D array of coherent states
|φi〉, the time-dependent momentum distribution is generally
linear with respect to the ensemble average of |〈â〉(t )|2, where
〈â〉(t ) = 〈φi (t )|â|φi (t )〉,

n(k, t ) ∝ Mn̄ + |〈â〉(t )|2
∑
i �=j

e−ik·(rj −ri )e−i(εj −εi )t/h̄ . (9)

For a coherent state,

|〈â〉(t )|2 = n̄e2n̄(cos(Ut/h̄)−1) , (10)

which shows the quantum dynamics with periodic collapses
and revivals expected. Different phase shifts of each atom
number state result in a collapse at first, for short times (t 
h/U ) it can be approximated by |〈â〉(t )|2 � n̄e−2n̄U 2t2/h̄2

, the
width of this Gaussian decay defines the collapse time tcol =
h̄/(

√
n̄U ). At the revival time trev = h/U , each number state

acquires a collisional phase shift of an integer multiple of 2π ,
leading to the revival of the initial coherent state.

By holding the atoms in the optical lattice for different
lengths of time t (see Fig. 1 inset), we switch off all trapping
potentials and observe the resulting atomic interference pat-
terns after a time of flight (TOF) period of 18 ms. An example
of the dynamical evolution can be seen in Fig. 1(a), which
shows the collapse and revival of the interference patterns
over 2000 μs in a 3D lattice with a potential depth of 35Er ,

0 500 1000 1500 2000

t (μs)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

mot
A tnereho

C
noitroporP

)
m

( x
μ 0

-200

200

0.01 0.02 0.03 0.04 0.05(a)

(b)

n ( m )μ

0 2ms~
Shortcut
<60 sμ

s (   )

t

35

Er

TOF
Image

FIG. 1. Quantum collapse and revival dynamics of coherent
states. (a) Dynamical evolution of atomic interference pattern after
the coherent states are prepared in a 3D lattice with a potential depth
of 35Er and a subsequent variable hold time t . After the hold time, all
trapping potentials are shut off and absorption images are captured
after a time of flight (TOF) period of 18 ms. The interference picture
is integrated along one direction with the normalized atomic density
nD. (b) shows the proportion of coherent atoms, i.e., the ratio of
the number of atoms in the interference peaks to the total number
of atoms in the interference pattern, and it is monitored over the
hold time of the optical lattice. The solid line is the fit to data,
comprising Gaussian curves with different widths but constant time
separation, an exponential damping and a linear background. Each
error bar is the standard deviation of five images. The inset shows
the experimental time sequence.

where Er = h2/2mλ2 is the recoil energy and λ = 1064 nm.
The depth of the optical lattice is calibrated with a calibration
uncertainty of less than 0.6% via a method that we have used
previously [25].

We evaluate the ratio of the number of atoms in the interfer-
ence peaks to the total number of atoms in the TOF images as
the coherent atom proportion, which is monotonically related
to |〈â〉(t )|2 [10]. Figure 1(b) shows the proportion of coherent
atoms monitored over the hold time of the optical lattice under
the same experimental sequence as in Fig. 1(a). The first and
second revivals clearly occur at the expected times, which
are multiples of trev. The overall damping is mainly due to
the inhomogeneous dephasing that arises from the different
potentials of the lattice sites. The Gaussian beam profile of
the lattice laser leads to additional harmonic confinement
with a trapping frequency of 60 Hz for a lattice potential
depth of 35Er . The additional harmonic confinement and the
inhomogeneous density profile of the BEC both result in the
change of the revival signals [26], and we take the initial decay
time before the first revival as the collapse time tcol.
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IV. TIME EVOLUTION OF ON-SITE NUMBER
FLUCTUATIONS

The on-site number fluctuations are characterized by the
width of the distribution of the atom number per site σ . As
given in Eq. (10), at integer multiples of the revival time trev =
h/U , each number state acquires a collisional phase shift that
is an integer multiple of 2π , leading to revivals of the initial
coherent state. The collapse time tcol depends on the width
σ of the atom number distribution [27–30], such that tcol =
h̄/(σU ). Thus,

1

σ
= 2π

tcol

trev
. (11)

The on-site number fluctuations can be probed by measuring
the ratio of collapse time tcol to revival time trev. In the
following experiments, we use tcol/trev as the figure of merit
to reflect the width of the atom number distribution.

In the first series of experiments, we use the quantum col-
lapse and revival dynamics to verify that the initial prepared
state is a coherent state with Poissonian number fluctuations.
We start by preparing 3D arrays of coherent states via the
shortcut loading method with a lattice depth ranging from
30Er to 5Er , where a Mott insulator should form for an
adiabatic loading. As we change the depth of the optical lattice
in which the initial state is prepared, the atom number distri-
bution in each potential well is expected to remain Poissonian.

Figure 2(a) shows the data of the initial collapse and first
revival for lattice depths of 35Er (open circles) and 45Er

(filled circles). The collapse time and revival time clearly de-
crease for a deeper lattice depth, which is due to the increased
interaction energy U . In our case, one expects a Poissonian
atom number distribution on each lattice site, exhibiting a
corresponding variance in atom number as σ 2 = n̄. Given an
uncertainty of ∼15% in the total atom number, the average
atom number per lattice site n̄ has an uncertainty of ∼ ±3%.
According to Eq. (11), the theoretically predicted collapse and
revival time ratio for a Poissonian atom number distribution is
0.128(2) ± 0.002(1). This value will be much larger if there is
an atom number squeezing of the coherent states. The collapse
time tcol relative to the revival time trev for different lattice
depths is shown in Fig. 2(b). The collapse and revival time
ratio does not change with the lattice depth s0, remaining
consistent with the theoretically expected value for a Poisson
atom number distribution in each potential well.

Next, we demonstrate how the on-site number fluctuations
evolve over time in a shallow lattice. From the above discus-
sion, the revival time trev in a deep lattice clearly depends on
the interactions among atoms. Atom–atom interactions can
also affect the number fluctuations of atoms in a shallow lat-
tice. Here, we prepare two initial states with different on-site
number fluctuations, namely, Poissonian and sub-Poissonian,
through shortcut loading and adiabatic loading, respectively.
The initial states are prepared in a 3D optical lattice with a
potential depth of 10Er. The lattice potential depth is in the
superfluid regime so that (i) the lattice sites are not isolated
but (ii) the finite repulsive interactions among atoms can lead
to the emergence of the atom number squeezing [18,31–35].
After holding the atoms for various amounts of time t at the
lattice depth of 10Er , we rapidly increase the lattice potential
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FIG. 2. Realization of coherent states in optical lattices with
different potential depths and the following quantum collapse and
revival dynamics. (a) Initial collapse and first revival observed for
lattice depths of 35Er (open circles) and 45Er (filled circles). The
dashed and solid lines are fits to the data, consisting of Gaussian
curves with different widths but constant time separations, corre-
sponding to the revival time trev for each lattice depth. The collapse
time tcol is measured as the initial decay time before the first revival,
which is the first 1/e half width of the corresponding fitted curve.
The error bars denote the standard deviation for the average taken
over five images. (b) The ratio of collapse time tcol to revival time trev

for different lattice depths. The error bars reflect the 95% confidence
bounds of each fit to the data. The grey shading indicates the
theoretically expected value for a Poisson atom number distribution
with an ensemble-averaged filling of n̄ ≈ 1.5 per lattice site.

depth to 35Er in 50 μs, suppressing the tunnel coupling to
a negligible level and freezing the atom number distribution.
This ramp rate from 10Er to 35Er is chosen to preserve the
atom number statistics on each lattice site [36] and ensure that
all atoms remain in the ground band.

Corresponding to the adiabatic case in Fig. 3, when the
3D optical lattice potential is exponentially ramped up to
the depth of 10Er in 80 ms, with a time constant of 20 ms,
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FIG. 3. Time evolution of on-site number fluctuations (open
circles) in a 3D lattice with a potential depth of 10Er . As illustrated
in Eq. (11), tcol/trev is proportional to the inverse of the standard
deviation of the atom number distribution. The solid line interpolates
the data and the error bars reflect the 95% confidence bounds of each
fit to the corresponding collapse time. The filled circles are the results
when we prepare the initial state by adiabatic loading a BEC into the
optical lattice with a potential depth of 10Er .

the many-body ground state of the system is a superfluid with
long-range phase coherence across the lattice sites. During the
ramp time, the finite repulsive interactions among atoms lead
to a number squeezing of the quantum state on each lattice
site. Immediately after the loading process, the atom number
distribution on each lattice site is already narrowed. The on-
site number fluctuations remain unchanged as sub-Poissonian
over the lattice hold time t , i.e., the width σ of the atom
number distribution remains the same. This is consistent with
the result of the ratio of collapse time tcol to revival time trev,
as can be seen from the filled circles in Fig. 3.

Unlike the adiabatic case, the initially prepared states of
the shortcut case are coherent states with Poissonian number
fluctuations. This nonadiabatic loading method avoids the
number squeezing caused by the atom–atom interactions, and
the many-body state after the loading process factorizes into
a product of states with Poissonian number fluctuations on
each lattice site. The initial Poissonian number fluctuations

allow us to focus on the dynamics for narrowing the atom
number distribution. As we hold the atoms in the optical
lattice at 10Er , the atom number statistics are still Poisso-
nian in the beginning. The collapse and revival time ratio is
consistent with the theoretically expected value for a Poisson
atom number distribution as illustrated in Fig. 2(b). With
the extension of the lattice hold time t , the on-site number
fluctuations tend to be suppressed because of the repulsive
interactions among atoms. The on-site number fluctuations
evolve gradually from Poissonian atom number statistics to
sub-Poissonian atom number statistics, and the width σ of the
atom number distribution decreases with the lattice hold time
t . The evolution of on-site number fluctuations over the lattice
hold time is shown in Fig. 3 as open circles, and the ratio of
collapse time tcol to revival time trev increases as we continue
to hold the atoms in the optical lattice. During a time of
∼1 ms, the data asymptotically approach the results obtained
in the adiabatic case. The final value of σ is determined by
the ratio of the on-site repulsive interaction energy U to the
hopping energy J at the current lattice depth [19,37,38]. With
the observation of on-site number fluctuation evolution, the
number squeezing in optical lattices can be controlled without
changing the potential depth, which may lead to enhanced
sensitivity for atomic interferometry [39–41].

V. CONCLUSIONS

We have observed the continuous suppression of on-site
number fluctuations in a constant lattice potential via quan-
tum collapse and revival dynamics. One key merit of the
measurement is the initial coherent states with Poissonian
number fluctuations prepared by the shortcut loading method.
The on-site number fluctuations evolve from Poissonian to
sub-Poissonian atom number statistics in a timescale of ∼1 ms
driven by the interactions among atoms. The ability to analyze
and manipulate the atom-number fluctuations affords further
potential in creating quantum states with different degrees of
number squeezing.
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