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Light-induced states in the transient-absorption spectrum of a periodically pumped
strong-field-excited system
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The transient-absorption spectrum of a V -type three-level system is investigated, when this is periodically
excited by a train of equally spaced, δ-like pump pulses as, e.g., from an optical-frequency-comb laser. We show
that, even though the probe pulse is not assumed to be much shorter than the pump pulses, light-induced states
appear in the absorption spectrum. The frequency- and time-delay-dependent features of the absorption spectra
are investigated as a function of several laser control parameters, such as the number of pump pulses used, their
pulse area, and the pulse-to-pulse phase shift. We show that the frequencies of the light-induced states and the
time-delay-dependent features of the spectra contain information on the action of the intense pulses exciting the
system, which can thus complement the information on light-imposed amplitude and phase changes encoded in
the absorption line shapes.
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I. INTRODUCTION

With the advent of femto- and attosecond pulses, transient-
absorption spectroscopy (TAS) [1,2] has established itself as
a powerful method to study strong-field quantum dynamics
in atoms [3–8], molecules [9–11], and solids [12–15]. First
experiments employed a traditional pump-probe setup, where
a short pump pulse is used to excite strong-field dynamics in
the system, and its time response is observed by measuring the
absorption spectrum of a probe pulse at different time delays
[4,16]. However, increasing attention has been received in re-
cent years by theoretical studies and experiments in which the
probe pulse either precedes or overlaps with the strong pump
pulse [17–19]. In several attosecond transient-absorption-
spectroscopy (ATAS) experiments, for example, the spectrum
of an attosecond extreme-ultraviolet (XUV) pulse is observed
in the presence of a subsequent strong femtosecond infrared
(IR) pulse dressing the states of the atomic system. In the
absence of the IR pulse, the XUV spectrum consists of lines
centered on the transition energies between the ground state
and the so-called bright states directly excited by the XUV
pulse. However, in the presence of a strong IR pulse coupling
these bright states to other dark levels, light-induced states
(LISs) appear in the spectrum during overlap, associated with
the dressed states of the system.

The modification of the absorption line shapes and the
appearance of LISs in the spectrum have emerged as key
ingredients to understand and control strong-field quantum
dynamics. As recently demonstrated, the line shapes contain
the full information about the temporal response of a strongly
driven quantum system, enabling its reconstruction without
scanning over time delays [20], as long as the dynamics are
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initiated and probed by a sufficiently short pulse. However, for
LISs to appear during overlap, and to enable real-time recon-
struction of dipole responses directly from absorption spectra,
it is necessary that the probe pulse be much shorter than the
timescale of the observed strong-field-induced dynamics.

If the duration of the probe pulse is comparable with that
of the pump pulse, the absorption spectra do not provide the
resolution necessary to access the real-time dynamics taking
place during the pump pulse. This is, for example, the case
when optical transitions have to be studied or controlled with
optical femtosecond pump and probe pulses of equal duration
[21–24]. The Rabi oscillations responsible for the appearance
of LISs take place only within the pump pulse, and a probe
pulse of equal duration does not have the required resolution
to distinguish them. Therefore, no LISs appear in the spectrum
as a signature of strong-field dynamics in such case. However,
the absorption lines of the bright states still carry information
about the total (integrated and non-time-resolved) action of
the pulse on the atomic system, which is imprinted in the
associated line shapes and can be understood in terms of
light-imposed amplitude and phase changes [25–29].

Here, we show that, even when probe and pump pulses
have the same duration, LISs appear in the absorption spec-
trum of the probe pulse if a train of pump pulses is used,
employing the TAS setup shown in Fig. 1. Periodic trains
of intense optical pulses, as provided by optical-frequency-
comb lasers [30–32], have found numerous applications in
precision spectroscopy [33], the development of all-optical
atomic clocks [34], and attosecond science [35]. Furthermore,
by exploiting coherent pulse accumulation and quantum in-
terference effects, they have also been employed for the con-
trol of atomic coherences [36–38] and united time-frequency
spectroscopy [39]. Control of the x-ray transient-absorption
spectrum with an optical frequency comb has also been
put forward for the generation of an x-ray frequency comb
[40,41].

2469-9926/2019/99(1)/013434(26) 013434-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.99.013434&domain=pdf&date_stamp=2019-01-25
https://doi.org/10.1103/PhysRevA.99.013434


JULIANE HAUG AND STEFANO M. CAVALETTO PHYSICAL REVIEW A 99, 013434 (2019)

FIG. 1. Experimental setup for the detection of the optical-
density transient-absorption spectrum of a transmitted probe pulse
(light blue) in the presence of an additional pump field (red) consist-
ing of a train of pulses in a noncollinear geometry.

We investigate the dynamics of a V -type three-level sys-
tem, modeling optical transitions in atomic Rb, when excited
by ultrashort optical pump and probe pulses. We model the
pump field as a periodic train of N identically spaced pulses,
showing that, for sufficiently large values of N , LISs appear
in the absorption spectrum of the probe pulse. The spectra
are investigated as a function of the delay between the probe
and pump fields, in the case of a probe pulse preceding, in
between, or following the pump pulses. We show that the
strong-field action of the pump pulses is encoded in the central
frequencies of the LISs appearing in the spectrum, and in
their time-delay-dependent periodic properties. This enables
the extraction of information about the intensity-dependent
action of the pump pulses on the system directly from the
frequency of the LISs. It can thus be used to complement the
information obtained in the case of a single pump pulse, where
no LISs appear and the action of the intense pump pulse is
exclusively encoded in the line shapes of the bright states.

The paper is organized as follows. Section II introduces
the theoretical model used to describe the V -type three-level
system and its interaction with the pump and probe fields
(Sec. II A), and the transient-absorption spectrum (Sec. II B).
In Sec. II C, the dynamics of the system and the associated
spectra are calculated for a train of N equally distant δ-like
pump pulses, for a probe-pump (Sec. II C 1), pump-probe
(Sec. II C 2), and pump-probe-pump setup (Sec. II C 3), de-
pending on the position of the probe pulse with respect to the
train of pump pulses. The resulting spectra are presented and
discussed in Sec. III for different values of the laser control
parameters. In particular, we investigate the appearance of
LISs for an increasing number of pump pulses (Sec. III A),
focusing on N → ∞ (Sec. III B), for which we highlight the
frequency- and time-delay-dependent features exhibited by
the spectra, in Secs. III B 1 and III B 2, respectively. Addi-
tional mathematical details are included in the Appendices.
Atomic units are used throughout unless otherwise stated.

II. THEORETICAL MODEL

A. Three-level model and equations of motion

The TAS geometry is displayed in Fig. 1. It features a
probe pulse, whose absorption spectrum is detected upon

(a)

(b)

FIG. 2. (a) Time-dependent pump field (light blue) with enve-
lope function (dark blue). (b) Spectrum of a pump-pulse train for
N → ∞.

transmission through the atomic sample, and an additional
pump field, consisting of a train of pulses, which modifies the
dipole response of the atomic system. The pulses considered
in the following have the form [42]

E (t, tc, φ) = E (t, tc, φ) êz

= E0(t − tc) cos[ωc(t − tc) + φ] êz, (1)

where E (t, tc, φ) is the amplitude of the field and êz is the
direction of linear polarization. Here, we have introduced the
central time of the pulse tc, its carrier frequency ωc, envelope
function E0(t ), and carrier-envelope phase (CEP) φ.

The time-dependent pump field [30–32],

Epu(t ) = Epu(t ) êz

=
N−1∑
n=0

E0,pu(t − nTp)

× cos[ωc(t − nTp) + φ0,pu + n�φ] êz, (2)

consists of a train of N equally spaced pulses, centered at
times tn = nTp, n ∈ {0, 1, . . . , N − 1}, separated by a repeti-
tion period Tp, and with envelope function E0,pu(t ) as shown
in Fig. 2(a). In the following, we will refer to a pulse centered
on tn as the nth pulse—for instance, the 0th pulse will always
denote the first-arriving pump pulse centered on t0. The CEP
of the nth pulse is given by φ0,pu + n�φ, where the CEP φ0,pu

of the initial 0th pulse and the constant pulse-to-pulse phase
shift �φ are both φ0, �φ ∈ [0, 2π ].

We define the Fourier transform of a generic time-
dependent function g(t ) as

g̃(ω) =
∫ ∞

−∞
g(t ) e−iωt dt. (3)

For a single pulse, N = 1, the Fourier transform Ẽpu(ω) of
the pump field Epu(t ) is obtained by the Fourier transform
Ẽ0,pu(ω − ωc) of the envelope function shifted by the carrier
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FIG. 3. V -type three-level scheme (blue), with transition ener-
gies ω21 and ω31, used to model Rb atoms interacting with broadband
laser pulses. The red lines on the right display the spectrum of the
pump field in the case of a train of δ pulses equally separated by the
repetition period Tp = 2π/ωr . The black lines on the left introduce
the ωr-dependent effective detuning δr .

frequency ωc. However, for an infinite train of pulses, N →
∞, Ẽpu(ω) consists of a set of equally spaced lines centered
on the frequencies

ωm = ωo + mωr, m ∈ Z, (4)

with the repetition frequency and offset frequency

ωr = 2π

Tp
, ωo = �φ

Tp
, (5)

respectively [30–32]. The strength of the lines is modulated by
Ẽ0,pu(ω − ωc). This is shown in Fig. 2(b) and further discussed
in Appendix A.

In addition to a train of pump pulses, a weak probe pulse is
used,

Epr (t ) = E0,pr (t − τ ) cos[ωc(t − τ ) + φ0,pr] êz, (6)

whose absorption spectrum is measured upon interaction with
the atomic sample, as shown in Fig. 1. The probe pulse is
assumed to be linearly polarized, with envelope E0,pr (t ), CEP
φ0,pr, and is centered on τ . This represents the time delay
between Epr (t ) and the initial pulse in the train of pulses
Epu(t ). A negative time delay τ < 0 models a probe-pump
experimental setup in which the probe pulse precedes the train
of pump pulses. In contrast, positive time delays can either
model a pump-probe-pump setup, in which the probe pulse
is preceded and followed by pump pulses; or a pump-probe
setup, where the probe pulse excites the system after the total
(and finite) number N of pump pulses.

The pulses excite the V -type three level system shown
in Fig. 3, with electric-dipole-(E1-)allowed transitions

|1〉 → |k〉, k ∈ {2, 3}. This is here used to model 5s 2S1/2 →
5p 2P1/2 and 5s 2S1/2 → 5p 2P3/2 transitions in Rb atoms
between the ground state and the fine-structure-split excited
states [43,44], with transition energies ωk1 = ωk − ω1 and
dipole-moment matrix elements D1k = D1k êz. For the Rb
atomic implementation, ω21 = 1.56 eV and ω31 = 1.59 eV,
whereas D1k are well approximated by their nonrelativistic
values [45], D13 = D12

√
2, i.e., D12 = 1.75 a.u. and D13 =

2.47 a.u. [43,44]. The left side of Fig. 3 introduces the effec-
tive detuning

δr = ω21 −
⌊

ω21

ωr

⌋
ωr, (7)

where �x� denotes the floor function. Notice that �ω21/ωr�ωr

is the greatest frequency consisting of a multiple of ωr which,
at the same time, is smaller than or equal to ω21. For compari-
son, the central frequencies of the lines in the spectrum of the
pump-pulse train are shown on the right side of Fig. 3.

The time evolution of the state of the system |ψ (t )〉 =∑3
i=1 ci (t )|i〉 is determined by the Schrödinger equation

i
d|ψ (t )〉

dt
= Ĥ (t )|ψ (t )〉, (8)

with the total Hamiltonian Ĥ (t ) = Ĥ0 + Ĥ tot
int (t ) consisting

of the unperturbed atomic Hamiltonian Ĥ0 = ∑3
i=1 ωi |i〉〈i|

and the total E1 light-matter interaction Hamiltonian Ĥ tot
int (t )

in the rotating-wave approximation [46–48]. For a single pulse
as described by Eq. (1), the interaction Hamiltonian reads

Ĥint (t, tc, φ) = −1

2

3∑
k=2

�k (t − tc) eiωc(t−tc ) eiφ |1〉 〈k| + H.c.,

(9)

where we have introduced the time-dependent Rabi frequen-
cies

�k (t ) = D1k E0(t ). (10)

The total interaction Hamiltonian

Ĥ tot
int (t ) = Ĥpr (t ) +

N−1∑
n=0

Ĥpu,n(t ), (11)

including the action of the probe and pump pulses,

Ĥpr (t ) = −1

2

3∑
k=2

�pr,k (t − τ ) eiωc(t−τ ) eiφ0,pr |1〉〈k| + H.c.,

(12)

Ĥpu,n(t ) = − 1

2

3∑
k=2

�pu,k (t − nTp) eiωc(t−nTp )

× eiφ0,pu ein�φ |1〉〈k| + H.c., (13)

respectively, can then be defined in terms of the probe and
pump Rabi frequencies �pr/pu,k (t ) = D1kE0,pr/pu(t ).

The time evolution of |ψ (t )〉 = Û (t, t0)|ψ (t0)〉 from an
initial state at time t0, t > t0, can be expressed as the action
of an evolution operator Û (t, t0) = ∑3

i,j=1 Uij (t, t0)|i〉〈j |, of
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elements Uij (t, t0), which is a solution of

i
dÛ (t, t0)

dt
= Ĥ (t )Û (t, t0), Û (t0, t0) = Î , (14)

where Î is the identity matrix. In the absence of external fields,
Û (t, t0) reduces to the free-evolution operator

V̂ (t ) = e−iĤ0t = diag(1, e−iω21t , e−iω31t ). (15)

As we mentioned above, however, the quantum dynamics
taking place during a pump pulse cannot be resolved in
TAS experiments in which pump and probe pulses of similar
duration are used. In such a case, the transient-absorption
spectrum still contains information about the transformation
undergone by the system when excited by a pulse of finite
duration T in the interval [−T/2, T /2], but this is quantified
by the matrix elements of the time-independent interaction op-
erator ˆ̃U = e−iĤ0(−T/2) Û (T/2,−T/2) eiĤ0 (T/2) [23,24]. This
operator describes the action of the pulse on the system as
if it took place instantaneously, |ψ+〉 = ˆ̃U |ψ−〉, connecting
the effective initial and final states of the system, |ψ∓〉 =
e∓iĤ0T/2|ψ (∓T/2)〉, immediately preceding and following
the central time of the pulse, respectively. This can thus be
used to model the evolution of the system as a sequence
of intervals of free evolution, separated by the instantaneous
action of a time-independent pump- or probe-pulse interaction
operator. Thereby, experimental transient-absorption spectra
in atomic Rb could be quantified and interpreted [21].

In the following, we will analytically study the case of
ultrashort pulses approximated by Dirac δ peaks acting in-
stantaneously on the system [49]. In such a case, the Rabi
frequencies reduce to

�k (t ) = ϑk δ(t ), (16)

with pulse areas

ϑk =
∫

�k (t ) dt. (17)

For the three-level system of interest, we introduce the effec-
tive pulse area

ϑ =
√

ϑ2
2 + ϑ3

3 (18)

and the angle

α = arctan(ϑ2/ϑ3), (19)

such that

ϑ2 = ϑ sin(α), ϑ3 = ϑ cos(α). (20)

The pump- and probe-pulse interaction operators describing
the instantaneous action of a δ pulse can be obtained after
rewriting the interaction Hamiltonian in Eq. (9) for a single
pulse as

Ĥint (t, tc, φ) = F̂ †(φ) B̂(ϑ, α) F̂ (φ) δ(t − tc), (21)

in terms of the unitary matrix

F̂ (φ) = diag(1, eiφ, eiφ ), (22)

accounting for the phase of the pulse, and the operator

B̂(ϑ, α) = −ϑ

2

⎛
⎝ 0 sin(α) cos(α)

sin(α) 0 0
cos(α) 0 0

⎞
⎠, (23)

including the dependence upon the pulse strength. An explicit
solution of Eq. (14) in this single-pulse case provides the
probe- and pump-pulse interaction operators

Ûpr (ϑpr, α, φ0,pr ) = F̂ †(φ0,pr ) Â(ϑpr, α) F̂ (φ0,pr ), (24)

Ûpu,n(ϑpu, α, φ0,pu,�φ)

= F̂ †(φ0,pu)[F̂ †(�φ)]nÂ(ϑpu, α)[F̂ (�φ)]nF̂ (φ0,pu), (25)

respectively, both modeling the instantaneous action of the
associated δ pulse and defined in terms of [49]

Â(ϑ, α) = e−iB̂(ϑ,α) =
⎛
⎝ cos(ϑ/2) i sin(α) sin(ϑ/2) i cos(α) sin(ϑ/2)

i sin(α) sin(ϑ/2) sin2(α) cos(ϑ/2) + cos2(α) sin(α) cos(α) [cos(ϑ/2) − 1]
i cos(α) sin(ϑ/2) sin(α) cos(α) [cos(ϑ/2) − 1] sin2(α) + cos2(α) cos(ϑ/2)

⎞
⎠. (26)

Although the operator Â(ϑ, α) was obtained for a δ pulse,
it represents a useful approximation of the time-independent
interaction operator ˆ̃U one could associate with a short finite-
duration pulse of equal pulse area ϑ and angle α. We verified
this property numerically and could ensure that the shorter the
pulse is, the better the associated operator ˆ̃U is approximated
by our results for Dirac δ pulses. However, while a δ pulse has
an infinitely broad bandwidth, rendering its action insensitive
to the carrier frequency ωc, in the case of a finite-duration
pulse the matrix elements of the associated time-independent
interaction operator would feature additional, nontrivial phase
terms, dependent on the detuning of the carrier frequency
from the transition energies of the system [24].

As described in the following, for the calculation of the ab-
sorption spectrum it is convenient to introduce the associated

density matrix ρ̂(t ) = ∑3
i,j=1 ρij |i〉〈j |, of elements ρij and

given by ρ̂(t ) = |ψ (t )〉〈ψ (t )| = Û (t, t0)ρ(t0)Û †(t, t0) in the
case of a pure state. By defining the nine-dimensional column
vector �R = (ρ11, ρ12, ρ13, ρ21, ρ22, ρ23, ρ31, ρ32, ρ33)T,
i.e., the row-ordered vectorization of the density matrix, with
elements Ri (t ), i ∈ {1, . . . , 9}, its time evolution �R(t ) =
Û (t, t0) �R(t0) can be written in terms of the 9 × 9 matrix

Û (t, t0) = Û (t, t0) ⊗ Û ∗(t, t0), (27)

where Û ∗ is the complex conjugate of Û and where ⊗ denotes
the Kronecker product [50],

Û =
⎛
⎝U11Û

∗ U12Û
∗ U13Û

∗

U21Û
∗ U22Û

∗ U23Û
∗

U31Û
∗ U32Û

∗ U33Û
∗

⎞
⎠.
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Due to the mixed-product property, (Û1Û2) ⊗ (Û ∗
1 Û ∗

2 ) =
(Û1 ⊗ Û ∗

1 )(Û2 ⊗ Û ∗
2 ), whenever the evolution operator

Û = Û1Û2 is equal to the product of two terms Û1 and Û2,
then Û = Û ⊗ Û ∗ = Û1Û2 is also equal to the product of the
associated matrices Û1 = Û1 ⊗ Û ∗

1 and Û2 = Û2 ⊗ Û ∗
2 .

B. Transient-absorption spectrum

Experimental optical-density absorption spectra can be
simulated via calculation of the single-particle dipole re-
sponse of the system [2],

S(ω̄, τ ) ∝ −ωIm

[∑3
k=2D

∗
1k

∫ ∞
−∞ ρ1k (t, τ ) e−iω̄t dt∫ ∞

−∞ E (+)
pr (t ) e−iω̄t

]
, (28)

with the probe-pulse positive-frequency complex electric field
[42]

E (+)
pr (t ) = 1

2 E0,pr (t − τ ) ei[ωc (t−τ )+φ0,pr]. (29)

For a probe pulse modeled by a δ peak centered on τ and
with vanishing CEP φ0,pr, as we will assume in the following
[Eq. (59)], the denominator in Eq. (28) is equal to∫ ∞

−∞
E (+)

pr (t ) e−iω̄t = ϑpr

2
√

D2
12 + D2

13

e−iω̄τ . (30)

This, however, would also be valid for an ultrashort probe
pulse of finite duration, as long as its spectral intensity can
be considered approximately constant in the frequency range
in which the transient-absorption spectrum is measured. We
can therefore write the absorption spectrum as

S(ω̄, τ ) ∝ −ωIm

[
3∑

k=2

D∗
1k

∫ ∞

−∞
ρ1k (t, τ ) e−iω̄(t−τ ) dt

]
,

(31)
with the Fourier transform centered on the arrival time of the
measured probe pulse. Absorption strengths will be displayed
in arbitrary units in the following, since they depend on the
gas pressure, which we do not include in our calculations. For
this same reason, we omitted the factor 2

√
D2

12 + D2
13/ϑpr in

Eq. (31). The above equation is valid for low densities and
small medium lengths, where the effect of the propagation
of the pulses through the medium can be neglected. The
transient-absorption spectrum provides access to the dipole
response of the system via the coherences ρ1k (t, τ ), i.e., off-
diagonal terms of the density matrix.

To effectively account for broadening effects in the exper-
iment, which determine the finite linewidth of the absorption
lines, the Fourier transform in Eq. (31) will be evaluated
at the complex frequency ω̄ = ω − iγ /2. Here, ω is the
real frequency of the photons detected by the spectrometer,
while γ accounts for the experimental linewidth. Evaluating
Eq. (31) at this complex frequency is equivalent to calculating
the Fourier transform of ρ1k (t, τ ) e−γ (t−τ )/2, i.e., of an effec-
tively decaying dipole. This is also equivalent to convolving
S1(ω, τ ) with a Lorentzian function of width γ /2. It is also
important to stress that the poles of S(ω̄, τ ) lie on the real
axis, as we will show in Sec. II C and Appendix E. If we
evaluated S(ω̄, τ ) for ω̄ = ω ∈ R, the spectrum would diverge
at the frequencies corresponding to these poles. By evaluating

the spectra at the complex frequency ω̄ = ω − iγ /2, however,
these divergences reduce to peaks of width γ /2. The poles of
S(ω̄, τ ) are then associated with the central frequencies of the
peaks appearing in the spectrum.

In the following, we will set γ � �k , i.e., much smaller
than the spontaneous decay rates �k of the excited states to
the ground state. As a result, during the timescales of interest
as defined by the exponential function e−γ (t−τ )/2, spontaneous
decay can be safely neglected in the equations of motion, thus
justifying the pure-state approach used to derive the equations
of motion of ρ̂(t, τ ). At the same time, we will set γ τ � 1,
γ Tp � 1, such that the dipole response of the system can be
controlled by the sequence of pump pulses within its decay.

Alternatively, one could have effectively included broad-
ening effects via an atomic Hamiltonian Ĥ0 with complex
eigenenergies ωk − iγk/2, i.e., by including the effective de-
cay of the coherences ρ1k (t, τ ) directly in the equations of
motion. However, for the parameters chosen, and in partic-
ular when γ τ � 1, we tested that there is no appreciable
difference between results obtained with these two alternative
approaches. Using Eq. (31) with a complex frequency ω̄

will allow us to significantly simplify the presentation of the
analytical calculations in Sec. II C and Appendix E.

We finally notice that in the following we will calculate and
show spectra S (ω̄, τ ) assuming the noncollinear geometry
depicted in Fig. 1. In transient-absorption spectroscopy exper-
iments, this geometry is employed to measure the spectrum
of the probe pulse independent of the pump pulse, and thus
separate the contributions from pulses with the same laser
frequency. In this geometry, however, fast oscillations of the
absorption spectrum as a function of time delay are effectively
averaged out in an experiment [21,24]. We will account for
this by identifying and selectively removing fast time-delay-
dependent oscillating terms in the resulting single-particle
absorption spectra S(ω̄, τ ),

S (ω̄, τ ) = 〈S(ω̄, τ )〉τ , (32)

where 〈· · · 〉τ denotes averaging over τ .

C. Dynamics of the system and associated spectrum

In the following, we will obtain analytical expressions for
the time evolution of the state �R(t ), when it is excited by
a probe pulse centered on τ and by a sequence of N pump
pulses centered on tn = nTp, n ∈ {0, . . . , N − 1}, up to the
limit of N → ∞. The initial state of the system is

�R0 = (1, 0, 0)T ⊗ (1, 0, 0)T

= (1, 0, 0, 0, 0, 0, 0, 0, 0)T, (33)

i.e., the system is initially in its ground state. These analytical
expressions will then be used to calculate the associated
transient-absorption spectrum via Eq. (31), after eliminating
fast oscillations in τ . For this purpose, we introduce the 9 × 9
operators

Â(ϑ, α) = Â(ϑ, α) ⊗ Â∗(ϑ, α) (34)
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and

F̂ (φ) = F̂ (φ) ⊗ F̂ ∗(φ)

= diag(1, e−iφ, e−iφ, eiφ, 1, 1, eiφ, 1, 1). (35)

The instantaneous interaction with the pump and probe δ

pulses can then be modeled by the interaction operators

Ûpr = Ûpr ⊗ Û ∗
pr = F̂†

0,pr Âpr F̂0,pr (36)

and

Ûpu,n = Ûpu,n ⊗ Û ∗
pu,n = F̂†

0,pu (F̂†
�)n Âpu (F̂�)n F̂0,pu,

(37)

where we have simplified the notation by introducing

F̂0,pr/pu = F̂ (φ0,pr/pu), (38)

F̂� = F̂ (�φ), (39)

Âpr/pu = Â(ϑpr/pu, α). (40)

The free evolution of the system between two consecutive
pulses is modeled by the 9 × 9 free-evolution operator

V̂ (t ) = V̂ (t ) ⊗ V̂ ∗(t )

= diag(1, eiω21t, eiω31t, e−iω21t, 1, eiω32t, e−iω31t, e−iω32t, 1);
(41)

to describe the free-evolution in the period Tp between two
pump pulses we define

V̂p = V̂ (Tp). (42)

Depending on the position of the probe pulse, three exper-
imental setups can be distinguished. When τ < 0, the probe
pulse completely precedes the sequence of pump pulses, while
it fully follows the train of pump pulses when τ > (N − 1)Tp.
The general structure of the absorption spectrum for these two
experimental setups was previously investigated for a single
pump pulse [21,23], also in the presence of an intense probe
pulse [24]. In the following, we will show how the formulas
presented therein can be modified to account for a sequence
of pump pulses, and how this is imprinted in the shape of
the absorption spectra for increasing values of N . For the
case of a train of pump pulses, a new pump-probe-pump
setup also exists for 0 < τ < (N − 1)Tp, i.e., whenever the
probe pulse lies in between two pump pulses. We will show
that the structure of the spectrum in this general case shares
several elements with the pump-probe and probe-pump setups
mentioned previously. For all the above cases, we will show
that the pulse-to-pulse phase shift �φ provides an important
additional degree of freedom to shape the absorption spectrum
and gain understanding of the evolution of the system in the
presence of a periodic external excitation from absorption line
shapes.

1. Probe-pump setup (τ < 0)

For negative time delays, when the probe pulse precedes
the train of pump pulses, the evolution of the system �R(t )
from the initial state �R0 [Eq. (33)] in the presence of a finite
number N of pump pulses reads

�R(t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�R0, t < τ,

V̂ (t − τ ) Ûpr �R0, τ < t < 0,

V̂ (t − lTp) F̂†
0,pu (F̂†

�)l Âpu (F̂� V̂p Âpu)l F̂0,pu V̂ (−τ ) Ûpr �R0, lTp < t < (l + 1)Tp,

V̂ (t − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 Âpu (F̂� V̂p Âpu)N−1 F̂0,pu V̂ (−τ ) Ûpr �R0, t > (N − 1)Tp,

(43)

where the third line describes the dynamics of the system in the interval [tl, tl+1], l ∈ {0, . . . , N − 2}, in between the lth and
the (l + 1)th pulse. In Appendix B, we present the evolution of a system between a general ath and a general bth pulse, with
0 � a � b � N − 1. The third (fourth) line in Eq. (43) is thus obtained from Eq. (B1) with a = 0 and b = l (b = N − 1). The
last two lines are affected by the number N of pump pulses. The third line is only present for N > 1, since it describes the
dynamics of the system in between two pump pulses. The fourth line is only present for a finite number of pulses, since it
describes the free evolution of the system following interaction with the last pulse centered on tN−1.

The two density-matrix elements ρ1k (t ) = Rk (t ) = �vk
�R(t ), k ∈ {2, 3} of interest for the calculation of the absorption

spectrum are then obtained by multiplying the row-vector

�vk = (1, 0, 0) ⊗ (0, δk2, δk3) = (0, δk2, δk3, 0, 0, 0, 0, 0, 0) (44)

with �R(t ), as shown in Eq. (C1). The integral in Eq. (31) can then be performed in each one of the intervals identified in Eq. (43),
leading to

SN (ω̄, τ ) ∝ − ωIm

{
3∑

k=2

D∗
1k

i(ω̄ − ωk1)
�vk [(1 − ei(ω̄−ωk1 )τ ) + (1 − e−i(ω̄−ωk1 )Tp ) Âpu [Î − (e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−1]

× (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1 eiω̄τ Ĝ(τ ) + Âpu (e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−1 eiω̄τ Ĝ(τ )] Ûpr �R0

}
, (45)
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where we have introduced Î = Î ⊗ Î and used the fact that
N−2∑
l=0

(e−i(ω̄Tp−�φ) F̂� V̂p Âpu)l = [Î − (e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−1] (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1, (46)

where ω̄ = ω − iγ /2. The subscript N in SN (ω̄, τ ) and SN (ω̄, τ ) indicates their dependence upon the number of pulses. In
SN (ω̄, τ ) we have also averaged over fast oscillations as a function of τ , i.e., removed fast time-delay oscillating terms e±iωk1τ

appearing in SN (ω̄, τ ) for the frequencies of interest ω̄ ≈ ωk1 − iγ /2. This is accounted for by the operator

eiω̄τ Ĝ(τ )
.= 〈eiω̄τ V̂ (−τ )〉τ = eiω̄τ diag(0, e−iω21τ , e−iω31τ , 0, 0, 0, 0, 0, 0). (47)

We notice that the resulting spectrum is independent of the initial-pump-pulse CEP φ0,pu due to

eiφ0,pu F̂0,pu Ĝ(τ ) = Ĝ(τ ).

By introducing the operator

D̂N (ω̄)=Âpu {Î−(e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N − e−i(ω̄−ωk1 )Tp [Î−(e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−1]} (Î−e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1,

(48)

the spectrum can be written as

SN (ω̄, τ ) ∝ −ωIm

{
3∑

k=2

D∗
1k

i(ω̄ − ωk1)
�vk [(1 − ei(ω̄−ωk1 )τ ) + D̂N (ω̄) eiω̄τ Ĝ(τ )] Ûpr �R0

}
, (49)

with the second term in the sum highlighting how the sequence of N pump pulses acts on the system and shapes the resulting
absorption spectrum. For a single pump pulse, D̂N (ω̄) reduces to D̂1(ω̄) = Âpu, whereas for an infinite train of pump pulses it
reads

D̂∞(ω̄) = (1 − e−i(ω̄−ωk1 )Tp ) Âpu (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1. (50)

For large numbers of pump pulses, and particularly in the limit N → ∞, the frequency-dependent operator D̂N (ω̄) causes
the appearance of LISs in the spectrum. These additional peaks are due to the presence of the inverse operator (Î −
e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1 and are therefore centered on frequencies which are determined by the eigenvalues of F̂� V̂p Âpu.
The appearance of these additional lines is the main signature of the pump-pulse-induced periodic excitation of the system in the
probe-pump setup: in this case, the initial dipole generated by the probe pulse is subsequently modified by the periodic sequence
of pump pulses, and these strong-field periodic dynamics are imprinted into the spectrum via the appearance of LISs.

2. Pump-probe setup [τ > (N − 1)Tp]

For a finite number N of pump pulses, a pump-probe setup is possible, in which the probe pulse encounters the atomic system
at τ > (N − 1)Tp, following the complete pump-pulse sequence. In this case, the evolution of the system is given by

�R(t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�R0, t < 0,

V̂ (t − lTp) F̂†
0,pu (F̂†

�)l Âpu (F̂� V̂p Âpu)l F̂0,pu �R0, lTp < t < (l + 1)Tp,

V̂ (t − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 Âpu (F̂� V̂p Âpu)N−1 F̂0,pu �R0, (N − 1)Tp < t < τ,

V̂ (t − τ ) Ûpr V̂ (τ − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 Âpu (F̂� V̂p Âpu)N−1 F̂0,pu �R0, t > τ,

(51)

where the second line, describing the dynamics of the system in the interval [tl, tl+1], l ∈ {0, . . . , N − 2}, is present only if
N > 1. We first observe that F̂0,pu �R0 = �R0 for the initial state in Eq. (33). By further multiplying the row-vector �vk with �R(t ),
as shown in Eq. (C2), the integral in Eq. (31) can then be performed in each one of the intervals identified in Eq. (51). Integrals
in [tl, tl+1] and in [tN−1, τ ] feature fast time-delay-dependent oscillations for ω̄ ≈ ωk1 − iγ /2, due to the fast oscillating factor
eiω̄τ , and therefore do not contribute to SN (ω̄, τ ). The spectrum thus results from the dynamics of the system only for t > τ ,
with the periodic sequence of pump pulses determining the state of the system encountered by the probe pulse at τ−. This
is a typical feature of the spectra in a pump-probe setup for a noncollinear geometry, which was already recognized for the
single-pump-pulse case [23,24]. In contrast to the probe-pump case, where the periodic excitation of the system following the
probe pulse causes the appearance of LISs, here the train of pulses preceding the probe pulse only determines the state in which
the system is prepared. The spectrum thus reads

SN (ω̄, τ ) ∝ −ωIm

[
3∑

k=2

D∗
1k

i(ω̄ − ωk1)
�vk Ûpr Ŵ (τ − (N − 1)Tp) Âpu (F̂� V̂p Âpu)N−1 �R0

]
, (52)

where we have removed the fast time-delay-dependent oscillations by introducing

Ŵ (τ )
.= 〈V̂ (τ )〉τ = diag(1, 0, 0, 0, 1, eiω32t , 0, e−iω32t , 1) (53)
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and where we have taken advantage of

Ŵ (τ − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 = Ŵ (τ − (N − 1)Tp),

i.e., the resulting spectrum is also in this case independent of the initial-pump-pulse CEP φ0,pu.
The pump-probe setup described above is present only if the pump field consists of a finite number of pulses. In this case, the

operator Âpu (F̂� V̂p Âpu)N−1 in Eq. (52) contains all the information on the action of the train of pump pulses which is encoded
in the absorption spectrum. This operator clearly reduces to the single-pump-pulse operator Âpu for N = 1. We stress again that
the above formulas can be used only if γ τ � 1, i.e., for time delays that allow one to neglect the amplitude change of the dipole
response due to the decay rate γ .

3. Pump-probe-pump setup [0 < τ < (N − 1)Tp]

The final setup we are going to consider, present only for N > 1, consists of a probe pulse exciting the system in between
two pump pulses in Epu(t ). This pump-probe-pump setup shares features with both cases discussed above: as in the pump-probe
case, also here the action of the pump pulses preceding the probe pulse is encoded in the state of the system encountered by
the probe pulse; in analogy with the probe-pump term, the pump pulses following the probe pulse actively modify the dipole
response of the system and shape the absorption spectrum into additional LISs.

To highlight these properties, we first consider the dynamics in a pump-probe-pump system, which can be divided into
different intervals as follows:

�R(t )=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�R0, t < 0,

V̂ (t − pTp) F̂†
0,pu (F̂†

�)p Âpu (F̂� V̂p Âpu)p F̂0,pu �R0, pTp < t < (p + 1)Tp,

V̂ (t − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 F̂0,pu �R0, (Mτ − 1)Tp < t < τ,

V̂ (t − τ ) Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 F̂0,pu �R0, τ < t < MτTp,

V̂ (t − qTp) F̂†
0,pu (F̂†

�)q Âpu (F̂� V̂p Âpu)q−Mτ (F̂�)Mτ F̂0,pu

× V̂ (MτTp − τ ) Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 F̂0,pu �R0,

}
qTp < t < (q + 1)Tp,

V̂ (t − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 Âpu (F̂� V̂p Âpu)N−Mτ −1 (F̂�)Mτ F̂0,pu

× V̂ (MτTp − τ ) Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 F̂0,pu �R0,

}
t > (N − 1)Tp.

(54)

In Eq. (54), we have introduced

Mτ − 1 = �τ/Tp� (55)

with the floor function �x�. The first four lines in Eq. (54) are identical to the pump-probe case analyzed previously. Here,
however, the second line is present only if N > 2 and τ > Tp, since it describes the dynamics of the system in the interval
[tp, tp+1], with p ∈ {0, . . . , Mτ − 2}. The fifth line accounts for the dynamics of the system in the interval [tq , tq+1], where
now the index q ∈ {Mτ, . . . , N − 2} is associated with one of the pump pulses following the probe pulse, provided that N > 2
and τ < (N − 2)Tp. The sixth line describes the free evolution of the system after interaction with the whole train of pump
pulses, present only if N is finite. The fifth (sixth) line has been obtained from Eq. (B1) with a = Mτ and b = q (b = N − 1).
The dipole response of the system is provided in Eq. (C3).

For the same reasons described for the pump-probe setup, the integral of Eq. (31) in t < τ does not contribute to the absorption
spectrum after averaging over fast time-delay-dependent oscillations, while the contribution for t ∈ [τ, tMτ

] can be obtained by
following the same steps leading to Eq. (52). To account for the terms in the spectrum resulting from the integrals in [tq , tq+1]
and for t > tN−1, we first introduce the operator

e−iω̄(Tp−τ ′ ) Ẑ (τ ′) .= 〈e−iω̄(Tp−τ ′ ) V̂ (Tp − τ ′) Ûpr V̂ (τ ′)〉τ ′ , (56)

where τ ′ = τ − (Mτ − 1)Tp = τ − �τ/Tp�Tp, τ ′ ∈ [0, Tp]. Due to averaging over fast time-delay-dependent oscillations,
several matrix elements of Ẑ (τ ′) vanish, as shown in Appendix D explicitly. Using Eq. (46), the spectrum finally reads

SN (ω̄, τ ) ∝ −ωIm

{
3∑

k=2

D∗
1k

i(ω̄ − ωk1)
�vk [(1 − e−i(ω̄−ωk1 )(Tp−τ ′ ) ) Ûpr Ŵ (τ ′)

+ (1 − e−i(ω̄−ωk1 )Tp ) Âpu [Î − (e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−Mτ −1] (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1 e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂�

+ Âpu (e−i(ω̄Tp−�φ) F̂� V̂p Âpu)N−Mτ −1 e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂�] Âpu (F̂� V̂p Âpu)Mτ −1 �R0

}
, (57)
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where we have used the fact that

eiφ0,pu eiMτ �φ (F̂�)Mτ F̂0,pu Ẑ (τ ′) F̂†
0,pu (F̂†

�)Mτ −1 = Ẑ (τ ′) (F̂†
�)−1 = Ẑ (τ ′) F̂�,

such that also in this case the CEP φ0,pu does not influence the absorption spectrum in a noncollinear geometry.
In analogy to the pump-probe case, the operator Âpu (F̂� V̂p Âpu)Mτ −1 describes the state of the system prepared by the initial

sequence of Mτ pump pulses preceding the probe pulse. The term in the first line of Eq. (57) has then the same structure as the
pump-probe spectrum of Eq. (52), with the factor (1 − e−i(ω̄−ωk1 )(Tp−τ ′ ) ) due to the finite duration of the interval [τ, tMτ

]. The
second and third lines in Eq. (57) clearly show a structure similar to the probe-pump spectrum of Eq. (45), which becomes even
more apparent by using the operator D̂N (ω̄) defined in Eq. (48) to write the pump-probe-pump spectrum as

SN (ω̄, τ ) ∝ − ωIm

{
3∑

k=2

D∗
1k

i(ω̄ − ωk1)
�vk [(1 − e−i(ω̄−ωk1 )(Tp−τ ′ ) ) Ûpr Ŵ (τ ′)

+ D̂N−Mτ
(ω̄) e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂�] Âpu (F̂� V̂p Âpu)Mτ −1 �R0

}
. (58)

Similar to the probe-pump case, also here the periodic exci-
tation of the system by N − Mτ pulses following the probe
pulse shapes the absorption spectrum, causing the appearance
of LISs. We stress again that the above formulas can be
used only if γ τ � 1 and γ Tp � 1, i.e., for time delays and
repetition periods that allow one to neglect the amplitude
change of the dipole response due to the decay rate γ .

III. RESULTS AND DISCUSSION

The formulas obtained in the previous section will be
used in the following to characterize the main features of
the transient-absorption spectra in the presence of a periodic
pump excitation for different setups, i.e., different values of
the time delay τ . We assume a repetition frequency of the
train of pulses ωr = ω32/2, corresponding to a period Tp

.=
2π/ωr = 4π/ω32 = 280 fs, and pulse areas ϑ ∈ [0, 2π ]. We
also notice that, for a δ pulse, the spectrum Ẽ0,pu(ω) is a
constant function, so that the spectrum of a train of δ pulses
is given by a set of equally spaced, equally intense lines as
shown in Fig. 3. The modulation of the spectrum around ωc

displayed in Fig. 2(b) is absent in our case, which explains
why the formulas obtained in Sec. II are independent of the
carrier frequency. The results, however, do depend explicitly
on δr and ωo. If Gaussian pulses with a duration of 30 fs were
considered instead of δ pulses, then a pulse area of 2π would
correspond to a peak intensity of ≈ 4 × 1010 W/cm2.

The spectra are studied in the interval τ ∈ [−1 ps, 2 ps],
assuming an experimental width of γ = 0.2 ps−1, such that
both γ τ � 1 and γ Tp � 1 hold. For the atomic implemen-
tation in Rb, where D1k are well approximated by their
nonrelativistic values [45], D13 = D12

√
2, it follows that α =

arctan(
√

2/2). We assume a weak probe pulse with vanishing
CEP, i.e., ϑpr � 1 and φ0,pr = 0, described by the interaction
operator

Ûpr =

⎛
⎜⎝ 1 i

ϑpr

2 sin(α) i
ϑpr

2 cos(α)
i

ϑpr

2 sin(α) 1 0
i

ϑpr

2 cos(α) 0 1

⎞
⎟⎠, (59)

where we have neglected terms of second or higher order in
ϑpr. Since there is no ambiguity, in the following and in the

Appendices we drop the subscript in ϑpu, so that ϑ always
refers to the pump-pulse area.

A. Appearance of light-induced states
for an increasing number of pump pulses

In Fig. 4, the time-delay-dependent absorption spectra are
displayed for fixed values of the pulse area ϑ = 3π/2 and
pulse-to-pulse phase shift �φ = 0, for an increasing number
N of pump pulses. For a single δ-like pump pulse centered on
t = 0, Fig. 4(b) shows the modification of the absorption line
shapes of a probe pulse centered on t = τ . The main features
in this single-pulse case were already thoroughly described in
Refs. [21,24]. In particular, the two absorption lines, centered
on the atomic transition energies ω21 = 1.56 eV and ω31 =
1.59 eV, respectively, exhibit oscillations as a function of time
delay, with a periodicity of 2π/ω32 = 140 fs determined by
the beating frequency ω32. At negative time delays, when the
evolution of the atomic dipole between the first-arriving probe
pulse and the subsequent pump pulse influences the spectrum,
perturbed free-induction-decay sidebands appear [2], which
become more significant for increasing values of |τ | [see also
the first line in Eq. (45)].

Two main features emerge for increasing values of N . First,
a pump-probe-pump region appears for positive time delays,
where the periodic excitation due to the pump pulses, at a
repetition period of Tp = 2 × 2π/ω32 = 280 fs, can be recog-
nized in the time-delay dependence of the absorption spectral
lines. Furthermore, the spectra in this positive-time-delay
region also present perturbed free-induction-decay sidebands
similar to the negative-time-delay case [see also the first line
in Eq. (57)], which can be identified in Figs. 4(d) and 4(f) for
a finite number of pump pulses. Second, for τ < (N − 1)Tp,
the periodic excitation of the atomic dipole, resulting from the
N − Mτ pump pulses which follow the probe pulse, induces
the appearance of LISs. This becomes increasingly significant
for larger values of N , up to the limit of infinitely many pulses
shown in Fig. 4(h). The onset and clear appearance of these
additional lines is highlighted in the left column of Fig. 4,
which displays absorption spectral lines at a fixed value of the
time delay.
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FIG. 4. Transient-absorption spectra for different numbers N of pump pulses, for fixed pulse area ϑ = 3π/2 and pulse-to-pulse phase shift
�φ = 0. The number of pump pulses is (a), (b) N = 1, (c), (d) N = 4, (e), (f) N = 10, and (g), (h) N → ∞. The left column (a), (c), (e), (g)
presents spectral line shapes evaluated at a time delay of τ = 3π/ω32 = 210 fs, while the two-dimensional spectra on the right column (b), (d),
(f), (h) are exhibited as a function of frequency ω and time delay τ .

The appearance of LISs is associated with the dynamics
of the system following the probe pulse and periodically
modified by a train of N or N − Mτ pump pulses, for a
probe-pump and pump-probe-pump setup, respectively. The
larger the number of pump pulses following the probe pulse,
the more defined and intense these additional lines will be. For
this reason, at positive time delays and for a fixed total number
N of pump pulses, the additional spectral lines gradually fade
out for increasing values of Mτ , i.e., when one approaches the
end of the pump-pulse train. This appears clearly in Fig. 4(f)
for large positive values of τ .

The width of the absorption spectral lines is determined
by the parameter γ , accounting for experimental linewidths.

By setting γ τ � 1, we ensure sufficiently narrow lines,
such that different LISs can be distinguished. Furthermore,
we notice that the spectra would exhibit a smooth depen-
dence of their features upon time delay if finite-duration
pulses were employed, in contrast to the sudden changes
displayed in Fig. 4 at time delays τ = nTp. However, key
properties of the spectra, such as the presence of LISs,
are a result of the periodic excitation of the system and
are not a consequence of the δ-like nature of the pulses
studied here. Therefore, these features would still appear in
the spectra, even if periodic trains of finite-duration pulses
were employed, as provided by, e.g., optical-frequency-comb
lasers.
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B. Dependence on laser control parameters
for infinitely many pump pulses

In this section, we explicitly focus on the case of infinitely
many pump pulses, although it is apparent from the above dis-
cussion that the main spectral features exhibited by the spectra
for N → ∞ are already present for finite, sufficiently large
numbers of pulses. We investigate the information encoded
in the frequency of the LISs appearing in the spectrum as a
function of control parameters such as the pulse area ϑ and
pulse-to-pulse phase shift �φ. As discussed in Sec. II, LISs at
N → ∞ are due to the action of the infinite sequence of pump
pulses following the probe pulse, reflected by the operator
D̂∞(ω̄) in Eq. (50). At the same time, we also investigate
the time-delay-dependent features of the spectra, especially
for τ > 0, focusing on the influence of the Mτ pump pulses
preceding the probe pulse. Mathematical details are presented
in the Appendices E–G.

1. Frequency-dependent features of the light-induced states

To gain an intuitive understanding of the origin of the
LISs displayed in Fig. 4, we can for instance focus on the
probe-pump setup (τ < 0) and look at the time evolution of
the atomic dipoles for t > 0, i.e., following the first excitation
from the pump-pulse train. Without loss of generality, we can
then write

ρ1k (t, τ ) =
∞∑

j=0

ρ1k (jT +
p ) e−iωk1(t−jTp )

× {θ (t − jTp) − θ [t − (j + 1)Tp]}, (60)

where ρ1k (jT +
p ) is the dipole immediately following the

interaction with the j th pump pulse and where θ (x) is the
Heaviside step function. The spectrum in Eq. (31) will then
be related to∫ ∞

0
ρ1k (t, τ ) e−iω̄(t−τ ) dt

= eiω̄τ e−i(ω̄−ωk1 )Tp/2Tp sinc

[
(ω̄ − ωk1)

Tp

2

]

×
∞∑

j=0

ρ1k (jT +
p ) e−iω̄jTp . (61)

Let us then suppose that the train of pulses, acting on the sys-
tem with repetition frequency ωr , will periodically generate
the same atomic state with a frequency ν, i.e., ρ1k (jT +

p ) ∝
eiνjTp is a periodic function. In such a case,

∞∑
j=0

ρ1k (jT +
p ) e−iω̄jTp ∝ lim

N→∞

N−1∑
j=0

e−i(ω̄−ν)jTp

= lim
N→∞

1 − e−i(ω̄−ν)NTp

1 − e−i(ω̄−ν)Tp
(62)

has a comblike shape, with peaks centered on ω̄s = ν + sωr,
s ∈ Z [see also Eq. (A15)]. Already from this discussion, we
can expect that the spectrum will consist of a series of lines,
separated by the repetition frequency ωr and modulated by
sinc[(ω̄ − ωk1)Tp/2]. If ρ1k (jT +

p ) contains several frequency
components eiνnjTp at frequencies νn, then they will appear

in the spectrum as groups of lines centered on the associated
frequencies ω̄ns = νn + sωr. This is thoroughly discussed in
Appendix E.

For N → ∞, Fig. 5 displays the dependence of the central
frequencies of the absorption lines on the phase shift �φ for
different values of τ and ϑ . Here, in particular, we focus
on the behavior around the transition energy ω31 = 1.59 eV.
Some general features can be recognized in Figs. 5(a)–5(c)
for ϑ = π/2. First, we notice that, for values of the phase shift
�φ > 3π/2, the absorption line present at ω31 is now shaped
into five LISs, as highlighted in the blue boxes. As introduced
in the above discussion, the frequencies of these five lines are
associated with the frequency components of the evolution of
ρ13(jT +

p ). In particular, and as discussed thoroughly in Ap-
pendix E 1, when ωo = δr, i.e., at �φ = δrTp (dashed lines),
the five lines are equally spaced, separated by a frequency
gap of �ω = ϑ/(2Tp), which here is equal to π/(4Tp) =
2 meV. Several five-line structures appear in the spectrum,
as expected from the above discussion: The structures are
separated by the repetition frequency ωr = 2π/Tp = 15 meV,
with the sth structure thus centered on ω = ω31 + sωr, s ∈ Z.
We notice that the pulse-to-pulse phase shift and the time
delay both affect the shape of the lines, which turn from a
Lorentzian to a Fano-like shape depending on the value of �φ

and τ .
As a second general feature of the spectra, we notice that

the spacing between the five lines changes with �φ, with
the lines forming groups as shown in Figs. 5(a)–5(c). In
particular, when ωo = δr − π/Tp, such that �φ = δrTp − π

(dot-dashed line), the lines merge into single lines centered on
ω = ω31 or ω = ω31 ± ωr/2, as discussed in Appendix E 2.
When decreasing �φ even further, the lines ungroup again, to
newly approach a five-line structure—the results are periodic
in �φ mod 2π .

This line merging takes place also for higher values of
the pulse area, as one can see by comparing Figs. 5(a), 5(d),
and 5(g) [for the 2π -area case of Fig. 5(j), no merging takes
place, as we will discuss below]. In particular, the frequencies
at which the lines merge, ω = ω31 or ω = ω31 ± ωr/2, do
not depend on ϑ , as shown in Appendix E 2. Other lines
tend to group toward single lines centered on ω = ω31 ± ωr,
but their intensities decrease for �φ → δrTp − π so that no
spectral line appears at ω31 ± ωr when �φ is exactly equal to
δrTp − π .

With the increase in the pulse area, the frequency gap
�ω = ϑ/(2Tp) between individual lines in each five-line
structure also grows. This can lead to the intersection or
merging of lines belonging to different structures. ϑ = π is
the smallest pulse area for which such intersections take place:
in this case and for �φ = δrTp − π , the central frequency of
the top line in the sth structure, ω31 + sωr + 2�ω, and that of
the bottom line in the (s + 1)th structure, ω31 + (s + 1)ωr −
2�ω, coincide and are equal to ω31 + 2sπ/Tp + π/Tp.

This can be recognized in Figs. 5(d)–5(f) for ϑ = π . The
behavior of the spectrum and the position of the LISs for ϑ =
π are described in detail in Appendix E 3. First, we notice that
the position of all absorption lines depends linearly upon �φ

for this value of the pulse area. Furthermore, it is now more
difficult than in the previous π/2-area case to identify groups
consisting of five lines in the spectrum, because two lines
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FIG. 5. Transient-absorption spectra for an infinite number of pump pulses as a function of frequency ω and pulse-to-pulse phase shift �φ,
for pulse areas (a)–(c) ϑ = π/2, (d)–(f) ϑ = π , (g)–(i) ϑ = 3π/2, and (j)–(l) ϑ = 2π , and time delays (a), (d), (g), (j) τ = −3Tp/4, (b), (e),
(h), (k) τ = 3Tp/4, and (c), (f), (i), (l) τ = 7Tp/4. The dashed lines are centered at �φ = δrTp, the dot-dashed lines at �φ = δrTp − π . The
blue boxes in panels (a)–(c) highlight the five-level structures exhibited by the spectra.

belonging to different groups are here completely merged. It
is interesting to see in Fig. 5(e) how some of the above lines
do not appear at all when t0 < τ < t1. This dependence is a
direct result of the action of the π -area pump pulses preceding
the arrival of the probe pulse. These Mτ pulses prepare
the system in the state which is then encountered by the
probe pulse, and which determines the shapes of the lines in
the spectrum, as explained in Appendix F. This is a first
example of the dependence of the spectra on time delay, which
will be more clearly visible in Figs. 7 and 8.

While intersections of different lines appear only at �φ =
δrTp − π for ϑ � π , lines will intersect also at additional
values of �φ for larger pulse areas. This is exhibited in
Figs. 5(g)–5(i) for ϑ = 3π/2. However, these intersections
render it also more difficult to distinguish five-line structures
in the spectrum, although it would still be possible to for-
mally group the lines as in the case of ϑ = π/2. Finally,
when ϑ = 2π , as in Figs. 5(j)–5(l), only three lines can be
distinguished, whose positions and shapes do not depend on
the pulse-to-pulse phase shift �φ. The lines are centered
on ω31 and ω31 ± ϑ/(2Tp). For ϑ = 2π , these frequencies
are equal to ω = ω31 and ω = ω31 ± ωr/2, and thus corre-
spond to the above-mentioned ϑ-independent frequencies at
which the spectral lines are centered when �φ = δrTp − π .
Appendix E 4 presents the details of this 2π -area case.

Also the absorption spectral line centered at ω = ω21 is
shaped into several five-line structures when N → ∞. To
render this apparent, in Fig. 6 we display transient-absorption
spectra as a function of frequency and pulse area, evaluated
at the two values of the pulse-to-pulse phase shift �φ which
were recognized to be important in the above discussion,
and for the same discrete values of the time delay τ already
used in Fig. 5. The left column [Figs. 6(a)–6(c)] displays
results evaluated at �φ = δrTp. Here, the expansion of the
five-level structures as a function of ϑ , with already described
intersections for values of the pulse area larger than π , can
be clearly recognized (see also Appendix E 1). The right
column [Figs. 6(d)–6(f)], with the results evaluated at �φ =
δrTp − π , shows once more that the position of the lines is not
influenced by the value of ϑ for this particular choice of the
pulse-to-pulse phase shift (see also Appendix E 2).

The central frequencies of the LISs appearing in the spec-
trum are related to the action of the intense pump pulses:
this is immediate for �φ = δrTp, where the spacing between
the lines in the same five-level structure is given by �ω =
ϑ/(2Tp) and is thus due to the amplitude and phase action
of each single pump pulse. For N = 1, a light-imposed am-
plitude and phase change would modify the dipole decay,
and would therefore lead to a change of the absorption line
shapes from Lorentzian to Fano-like. By acting on the system
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FIG. 6. Transient-absorption spectra for an infinite number of pump pulses as a function of frequency ω and pulse area ϑ , for pulse-to-pulse
phase shifts (a)–(c) �φ = δrTp and (d)–(f) �φ = δrTp − π , and time delays (a), (d) τ = −3Tp/4, (b), (e) τ = 3Tp/4, and (c), (f) τ = 7Tp/4.

several times, however, the repeated amplitude and phase
changes imposed by the pulses lead to the appearance of
several LIS structures. Information on the action of the pulses
can therefore be directly extracted from the central frequency
of the LISs, complementing the information which could be
obtained by a detailed analysis of the absorption line shapes.

2. Time-delay-dependent features and periodicity of the spectra

To focus on the time-delay-dependent features of the spec-
trum, especially in the pump-probe-pump region at τ > 0, in
Fig. 7 we display transient-absorption spectra as a function
of frequency and time delay for given values of the pulse-
to-pulse phase shift �φ and pulse area ϑ . The left column
[Figs. 7(a)–7(d)] presents spectra at �φ = δrTp for increasing
values of the pulse area ϑ . Several five-level structures are
recognizable in Fig. 7(a), separated by the repetition fre-
quency ωr . Furthermore, Figs. 7(a)–7(c) highlight the increase
in the frequency spacing between lines belonging to the same
structure for growing values of ϑ , with the above-described
intersections and merging for pulse areas ϑ � π . For 2π -
area pulses, as shown in Fig. 7(d) and already discussed for
Figs. 5(j)–5(l), a lower number of spectral lines appear.

The results displayed in the right column [Figs. 7(e)–7(h)]
are obtained for �φ = δrTp − π . In this case, the central
frequencies of the lines appearing in the spectrum do not
depend on ϑ , and are the same in all four panels. They also
coincide with the �φ-independent central frequencies of the
spectra evaluated at ϑ = 2π . We notice that the two spectra in

Figs. 7(d) and 7(h), evaluated at different values of �φ and for
ϑ = 2π , show identical frequency- and time-delay-dependent
features: this is a general feature of the spectra for ϑ = 2π ,
which are independent of �φ as we show in Appendix G 4.

Figure 7 also allows one to focus on the time-delay-
dependent features of the spectrum in the pump-probe-pump
region at positive delays. Figures 7(a)–7(c) show that certain
lines, otherwise present in the spectrum, are suppressed for
given time-delay intervals. While the position of the lines is,
in general, determined by the periodic action of the pump-
pulse sequence following the probe pulse [and in particular
by the poles of the operator D̂∞(ω̄) in Eq. (50)], the shape of
the spectral lines is determined by the state encountered by
the probe pulse, resulting from the action of the sequence of
Mτ pump pulses which precede it. A change of Mτ causes
a modification in the resulting prepared state, and for given
values of ϑ there exists a number of pulses Mτ for which some
of the lines in the spectrum are suppressed. Although this is
a general property of the time-delay-dependent spectra dis-
played here, in Appendix F we explain the disappearance of
the spectral lines in the particular case exhibited in Fig. 7(b),
i.e., for ϑ = π and for an odd number Mτ of pump pulses
preceding the probe pulse.

Figure 7 exhibits the periodic features of the spectrum as
a function of time delay for τ > 0. For instance, for �φ =
δrTp, one can recognize a periodicity of 4Tp at ϑ = π/2 and
ϑ = 3π/2 [Figs. 7(a) and 7(c), respectively], 2Tp at ϑ = π

[Fig. 7(c)], and Tp at ϑ = 2π [Fig. 7(d)]. In contrast, all the
spectra evaluated at �φ = δrTp − π [Figs. 7(e)–7(h)] have
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FIG. 7. Transient-absorption spectra for an infinite number of pump pulses as a function of frequency ω and time delay τ , for pulse-to-pulse
phase shifts (a)–(d) �φ = δrTp and (e)–(h) �φ = δrTp − π , and pulse areas (a), (e) ϑ = π/2, (b), (f) ϑ = π , (c), (g) ϑ = 3π/2, and (d), (h)
ϑ = 2π .

a periodicity of 2Tp, including the particular case of the
spectrum at ϑ = 2π with a periodicity of Tp. This is discussed
in detail in Appendices G 1 and G 2.

These periodic features are further highlighted in Fig. 8,
showing time-delay-dependent spectra as a function of the
pulse area ϑ for given values of pulse-to-pulse phase shift
�φ = δrTp and �φ = δrTp − π , and evaluated at frequencies
equal to the transition energies ω21 and ω31. In previous
works of transient-absorption spectroscopy in the presence
of a single intense pump pulse [21], it was shown that the
line shapes encode amplitude and phase information about
the action of the pulse on the atomic system. In particular,
the spectra feature, both at positive and negative time delays,
oscillations in τ at the beating frequency ω32, whose phases
were shown to be directly related to the intensity-dependent
atomic-phase change imposed by the pump pulse. In the case
investigated here for δ pulses, however, the phases of the
matrix elements of the operator Â(ϑ, α) in Eq. (26) are not
affected by the intensity of the pulse, i.e., by the value of
ϑ—only a change of amplitude is possible, including a change
of sign. As a result, the phase of the time-delay-dependent

oscillations exhibited by the spectrum at the beating frequency
ω32 is independent of ϑ . This clearly appears in Fig. 8.

At positive time delays, the spectra display a modulation
of their intensity as a function of ϑ . This modulation reflects
the action of the Mτ pump pulses preceding the probe pulse,
and therefore strongly depends on τ as well. This is further
discussed in Appendix G. The properties of this modulation
can be more precisely investigated for the two values of �φ

used in Fig. 8, as discussed in Appendices G 1 and G 2 and as
shown below.

For �φ = δrTp as in Figs. 8(a) and 8(b), one can show that
the dipoles generated by Mτ1 pulses of area ϑ1 and Mτ2 pulses
of area ϑ2 are equal if there exists an integer K for which

Mτ1ϑ1 = Mτ2ϑ2 + 2πK. (63)

When this condition is fulfilled and the generated state is
the same, then also the associated spectra coincide. This
can be recognized by inspecting the position of the minima
in Figs. 8(a) and 8(b) at positive time delays, which lie
on the hyperbolic curves ϑ = (2K + 1)π/Mτ in agreement
with Eq. (63). For 0 < ϑ < 2π , as exhibited in the figure,
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FIG. 8. Transient-absorption spectra for an infinite number of pump pulses as a function of pulse area ϑ and time delay τ , for pulse-to-pulse
phase shifts (a), (b) �φ = δrTp and (c), (d) �φ = δrTp − π , and frequencies (a), (c) ω = ω21 and (b), (d) ω = ω31.

there exist exactly Mτ possible integers K for which the
above condition is satisfied. This explains why the number
of minima increases with τ and matches the associated value
of Mτ = �τ/Tp� + 1. Furthermore, by applying Eq. (63) with
ϑ1 = ϑ2 = ϑ , one obtains that two sequences of identically
intense pulses prepare the system in the same state if �Mτ =
2πK/ϑ , where �Mτ and K are both integers. This explains
the periodicity of the spectra as a function of time delay,
which we already noticed in Figs. 7(a)–7(d). For a given pulse
area ϑ and at positive time delays, the spectra have namely a
periodicity of �τ = XϑTp, where Xϑ is the smallest integer
which is also a multiple of 2π/ϑ . This agrees with the values
we have already identified while discussing the spectra in
Figs. 7(a)–7(d) for the pulse areas used therein.

In contrast, when �φ = δrTp − π as in Figs. 8(c) and 8(d),
the spectra have a periodicity of 2Tp, as already identified in
Figs. 7(e)–7(h). Also in this case, this reflects the action of the
Mτ preparatory pump pulses preceding the probe pulse, and
in particular the fact that, for this value of the pulse-to-pulse
phase shift, an even number of pulses acting on the ground
state brings the system back to it, independent of the pulse
area ϑ . Consequently, any odd number of pulses will prepare
the system in the same excited state. As a result, the ensuing
spectra have a periodicity of 2Tp for any value of the pulse
area.

By using a train of pump pulses, the evolution of the
transient-absorption line shapes as a function of time delay
thus exhibits periodic features, with a periodicity which can
be directly related to the properties of the pump pulses used.
The time-delay-dependent features of the spectra, as well as
the frequency of the LISs, can therefore be used to access the
intensity-dependent action of each pump pulse on the atomic
system.

IV. CONCLUSION

In conclusion, we have investigated the dynamics and the
transient-absorption spectrum of a V -type three-level system

excited by a train of δ-like pulses and probed by a short
pulse at different delays. In particular, we have shown that
the periodic modification of the dipole response induces the
appearance of LISs in the absorption spectrum of the probe
pulse, in spite of the fact that each pump pulse was assumed
to be as short as the probe pulse.

We modeled the pump and probe pulses as δ-like peaks,
whose action on the V -type three-level system is fully quan-
tified by the associated pulse area ϑ and by the angle α as
in Eq. (26). This provides a useful approximation, suitable
for analytical calculations, of the time-independent interaction
operator one could associate with a short finite-duration pulse
of equal ϑ and α. For δ-like pulses, we have shown that the
transient-absorption spectrum of a periodically excited system
encodes information about the action of an intense pump
pulse, e.g., in the central frequency of the LISs and in their
time-delay-dependent features. For instance, in the presence
of an infinite train of δ-like pulses and for a pulse-to-pulse
phase shift of �φ = δrTp, we have shown that the spectra
consist of structures of five LISs spaced by ϑ/(2Tp). These
spectra, evaluated at positive time delays, exhibit periodic
features with a periodicity �τ also determined by the pulse
area ϑ .

Our results based on δ-like pump pulses point to the
possibility of experimentally measuring the frequency- and
time-delay-dependent features of the LISs, in addition to
the shape of the absorption lines, to access the underlying
quantum dynamics and extract information about the action
of intense, ultrashort pump pulses on the atomic system.
The pulse area ϑ =

√
D2

12 + D2
13

∫
E0(t ) dt , quantifying this

action and determining the LIS features, depends both on
the properties of the atomic system and of the pump pulses
used, via the dipole-moment matrix elements D1k and the
integral

∫
E0(t ) dt , respectively. Accessing ϑ via the exper-

imental measurement of the LISs would be advantageous
when addressing complex, poorly characterized systems, e.g.,
when pulses are utilized, whose intensities and shapes cannot
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be exactly determined, or in the presence of inaccurately
known atomic structures. For example, for experiments in
which the properties of the pump pulses are well known,
the frequency- and time-delay-dependent features of the LISs
could be measured to precisely determine

√
D2

12 + D2
13. The

absorption spectral lines of a weak probe pulse in the absence
of pump pulses could then enable the extraction of the an-
gle α necessary to determine D12 = sin(α)

√
D2

12 + D2
13 and

D13 = cos(α)
√

D2
12 + D2

13 independently, since the strengths
of the absorption lines are proportional to these dipole-
moment matrix elements for weak probe pulses in the linear
regime.

Additional information could be encoded in the frequency-
and time-delay-dependent features of the LISs when consid-
ering pump and probe pulses of finite duration. In contrast
to the δ-like pulses assumed here, the action of an intense
finite-duration pulse is not modeled by the operator Â(ϑ, α)
in Eq. (26), and additional amplitude and phase changes are
imposed on the state of the system, which depend on the
duration and carrier frequency of the pulse. For a single pump
pulse, these light-imposed amplitudes and phases have been
shown to be encoded in the absorption line shapes and in
the time-delay-dependent properties of the spectrum [21,24].
Understanding how these atomic phases can be accessed from
the spectrum of a periodically pumped system would be an
interesting extension of the work presented here. Furthermore,
while the dynamics and spectra presented in this paper were
calculated assuming a fixed ratio between the repetition fre-
quency ωr = ω32/2 and the beating frequency ω32, further
studies could investigate the dependence of the transient-
absorption spectra on ωr .

Toward an experimental realization of the scheme with
Rb atoms, an atomic-system description could be considered
beyond the three-level model used here. Control schemes
in Rb [51], also with shaped optical-frequency combs [38],
have considered a closed-loop four-level model, including the
coupling of the two excited states |2〉 and |3〉 to the more
highly excited state |4〉 = 5d 2D3/2. However, this coupling
is weaker than that to the ground state, and these studies
explicitly aimed at shaping the pulses to optimize population
transfer to this more highly excited state. This is not the case
for the TAS experiments considered here, and studies of TAS
with Rb atoms for a single pump pulse have already shown
that a V -type three-level model well describes the frequency-
and time-delay-dependent features of the absorption spectra
for different pump-pulse intensities [21].

Experimental pulse-to-pulse variations in the envelope
function or the intensity of the pump field will influence the
properties of the LISs, resulting in an additional source of

broadening of the absorption lines. To observe LISs emerging
due to the periodic excitation of the system, one will have
to ensure experimentally that the periodicity and coherence
of the train of pump pulses from an optical-frequency-comb
laser are maintained for timescales comparable with or larger
than the inverse width 1/γ of the system. By simulating
numerically small pulse-to-pulse variations in the intensity
and phase of the pump pulses, future work could investigate
the effect of these fluctuations on the features of the transient-
absorption spectrum. Finally, one could further study the
influence of propagation effects on the resulting transient-
absorption spectra beyond the single-atom response [52], e.g.,
toward the experimental investigation of media which are not
optically thin due to large densities or medium lengths.
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APPENDIX A: SPECTRAL FEATURES
OF A TRAIN OF PUMP PULSES

To study the spectral features of the train of equally
spaced pump pulses in Eq. (2), we first introduce the positive-
frequency part of the field,

E (+)
pu (t ) = eiφ0,pu

2

N−1∑
n=0

E0,pu(t − nTp) eiωc(t−nTp ) ein�φ, (A1)

such that

Epu(t ) = E (+)
pu (t ) + [E (+)

pu (t )]∗ (A2)

and

Ẽpu(ω) = Ẽ (+)
pu (ω) + [Ẽ (+)

pu (−ω)]∗. (A3)

By defining the convolution of two functions

f (t ) ∗ g(t ) =
∫

f (t − t ′) g(t ′) dt ′, (A4)

whose Fourier transform is given by∫ ∞

−∞
f (t ) ∗ g(t ) e−iωt dt = f̃ (ω) g̃(ω), (A5)

the positive-frequency part of the pump field can be written as

E (+)
pu (t ) = eiφ0,pu

2
[E0,pu(t ) eiωct ] ∗

N−1∑
n=0

δ(t − nTp) ein�φ, (A6)

whose Fourier transform is given by

Ẽ (+)
pu (ω) = eiφ0,pu

2
Ẽ0,pu(ω − ωc)

N−1∑
n=0

e−i(ω−ωo )nTp = eiφ0,pu

2
Ẽ0,pu(ω − ωc)

1 − e−i(ω−ωo )NTp

1 − e−i(ω−ωo )Tp
. (A7)

To render the peak structure of Ẽ (+)
pu (ω) more apparent, one can write E (+)

pu (t ) as

E (+)
pu (t ) = eiφ0,pu

2
[E0,pu(t ) eiωct ] ∗

[ ∞∑
n=−∞

δ(t − nTp) ein�φ{θ (t − aTp) − θ [t − (N − a)Tp]}
]
, (A8)
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with the Heaviside step function θ (x) and with 0 < a < 1. Notice that the field is independent of the explicit value of a. Thereby,
the field can be written in terms of an infinite train of δ pulses, whose Fourier transform is given by an infinite comb of δ peaks,∫ ∞

−∞

∞∑
n=−∞

δ(t − nTp) ein�φ e−iωt dt = ωr

∞∑
m=−∞

δ(ω − ωm), (A9)

where we have used the definitions in Eqs. (4) and (5). By recalling that∫ ∞

−∞
f (t ) g(t ) e−iωt dt = 1

2π
f̃ (ω) ∗ g̃(ω), (A10)

the Fourier transform of E (+)
pu (t ) is given by

Ẽ (+)
pu (ω) = eiφ0,pu

2
Ẽ0,pu(ω − ωc)

[
ωr

2π

(
eiωaTp

1 − e−iωNTp

i ω

)
∗

∞∑
m=−∞

δ(ω − ωm)

]

= eiφ0,pu

2
Ẽ0,pu(ω − ωc) N

∞∑
m=−∞

ei(ω−ωm )aTp e−i(ω−ωm )NTp/2 sinc

[
NTp

2
(ω − ωm)

]
. (A11)

One can therefore recognize that the Fourier transform of a train of N pulses is given by peaks centered at the frequency
ωm = mωr + ωo. The strength of the peaks is modulated by the Fourier transform Ẽ0,pu(ω − ωc) of a single pulse, while the
width of each peak is associated with the width of sinc[NTp(ω − ωm)/2], which is much smaller than the separation frequency
ωr if N � 1.

The Fourier transform Ẽ (+)
pu (ω) is independent of a. The second line in Eq. (A11) can namely be written as

ωr

2π

(
eiωaTp

1 − e−iωNTp

i ω

)
∗

∞∑
m=−∞

δ(ω − ωm)

= ωr

2π

∞∑
m=−∞

ei(ω−ωm )aTp
1 − e−i(ω−ωm )NTp

i (ω − ωm)
= ei(ω−ωo )aTp (1 − e−i(ω−ωo )NTp )

ωr

2π

∞∑
m=−∞

e−i2πma

i (ω − ωm)
, (A12)

due to the fact that

1 − e−i(ω−ωm )NTp = 1 − e−i(ω−ωo )NTp (A13)

is independent of m. By recognizing that [53]

ωr

2π

∞∑
m=−∞

e−i2πma

i (ω − ωm)
= 1

2πi

∞∑
m=−∞

e−i2πma

ω−ωo
ωr

− m

= 1

2πi

(
1

ω−ωo
ωr

+ 2i

∞∑
m=1

m sin(2πam)

m2 − (
ω−ωo

ωr

)2 − 2
ω − ωo

ωr

∞∑
m=1

cos(2πam)

m2 − (
ω−ωo

ωr

)2

)
= e−i(ω−ωo )aTp

1 − e−i(ω−ωo )Tp
(A14)

for 0 < a < 1, one can conclude that

ωr

2π

(
eiωaTp

1 − e−iωNTp

i ω

)
∗

∞∑
m=−∞

δ(ω − ωm) = 1 − e−i(ω−ωo )NTp

1 − e−i(ω−ωo )Tp
, (A15)

independent of a and in agreement with Eq. (A7).

APPENDIX B: EVOLUTION OF THE SYSTEM BETWEEN TWO GENERIC PUMP PULSES a AND b

The interaction with two or more consecutive pump pulses explicitly depends on their position in the train of pulses as a
result of the phase-dependent term [F̂ (�φ)]n. We will show this here explicitly, by considering the evolution of �R(t ) between
t−a and t+b , where a and b are two integers, 0 � a � b � N − 1, associated with the ath and bth pump pulses, respectively, and
where t−n (t+n ) denotes the time tn approached from the left (right), preceding (following) the interaction with the nth pump pulse.
We assume that τ �∈ [ta, tb], such that the evolution of the system results from the interaction with (b − a + 1) pump pulses,
separated by (b − a) intervals of free evolution. The state reached by the system is then given by

�R(t+b ) = Ûpu,b V̂p Ûpu,b−1 · · · V̂p Ûpu,a
�R(t−a )

= F̂†
0,pu (F̂†

�)b Âpu (F̂�)b F̂0,pu V̂p F̂†
0,pu (F̂†

�)b−1 Âpu (F̂�)b−1 F̂0,pu · · · V̂p F̂†
0,pu (F̂†

�)aÂpu (F̂�)a F̂0,pu �R(t−a )

= F̂†
0,pu (F̂†

�)b Âpu (F̂� V̂p Âpu)b−a (F̂�)a F̂0,pu �R(t−a ), (B1)

where we have used the fact that the diagonal matrices V̂ (t ) and F̂ (φ) commute.
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APPENDIX C: EVOLUTION OF THE DIPOLE RESPONSE ρ1k(t )

The off-diagonal matrix elements ρ1k = Rk (t ) = �vk
�R(t ) used for the calculation of the absorption spectrum are displayed

below for the probe-pump [Eq. (C1)], pump-probe [Eq. (C2)], and pump-probe-pump setup [Eq. (C3)]:

Rk (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, t < τ,

eiωk1(t−τ ) �vk Ûpr �R0, τ < t < 0,

eiωk1(t−lTp ) eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)l F̂0,pu V̂ (−τ ) Ûpr �R0, lTp < t < (l + 1)Tp,

eiωk1[t−(N−1)Tp] eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)N−1 F̂0,pu V̂ (−τ ) Ûpr �R0, t > (N − 1)Tp;

(C1)

Rk (t ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, t < 0,

eiωk1(t−lTp ) eiφ0,pu eil�φ �vk Âpu (F̂� V̂p Âpu)l �R0, lTp < t < (l + 1)Tp,

eiωk1[t−(N−1)Tp] eiφ0,pu ei(N−1)�φ �vk Âpu (F̂� V̂p Âpu)N−1 �R0, (N − 1)Tp < t < τ,

eiωk1(t−τ ) �vk Ûpr V̂ (τ − (N − 1)Tp) F̂†
0,pu (F̂†

�)N−1 Âpu (F̂� V̂p Âpu)N−1 �R0, t > τ ;

(C2)

Rk (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < 0,

eiωk1(t−pTp ) eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)p �R0, pTp < t < (p + 1)Tp,

eiωk1[t−(Mτ −1)Tp] eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)Mτ −1 �R0, (Mτ − 1)Tp < t < τ,

eiωk1(t−τ ) �vk Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 �R0, τ < t < MτTp,

eiωk1(t−qTp ) eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)q−Mτ eiMτ �φ (F̂�)Mτ F̂0,pu

× V̂ (MτTp − τ ) Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 �R0,

}
qTp < t < (q + 1)Tp,

eiωk1[t−(N−1)Tp] eiφ0,pu �vk Âpu (ei�φ F̂� V̂p Âpu)N−Mτ −1 eiMτ �φ (F̂�)Mτ F̂0,pu

× V̂ (MτTp − τ ) Ûpr V̂ (τ − (Mτ − 1)Tp) F̂†
0,pu (F̂†

�)Mτ −1 Âpu (F̂� V̂p Âpu)Mτ −1 �R0,

}
t > (N − 1)Tp.

(C3)

APPENDIX D: THE OPERATOR Ẑ (τ ′ )

By averaging over the fast time-delay-dependent oscillations in Eq. (56), several matrix elements of Ẑ (τ ′) vanish. The 9 × 9
matrix Ẑ (τ ′) can then be written in terms of a sum of Kronecker products,

Ẑ =
⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠ ⊗

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ∗

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

+
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠ ⊗

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ∗

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

+
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠ ⊗

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ∗

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

+
⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠ ⊗

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ∗

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠, (D1)

involving the operator

Ẑ(τ ′) = V̂ (Tp − τ ′) Ûpr (ϑpr, α, φ0,pr ) V̂ (τ ′). (D2)

Written explicitly, the operator reads

Ẑ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 Z14 0 0 Z17 0 0
Z21 0 0 0 Z25 Z26 0 Z28 Z29

Z31 0 0 0 Z35 Z36 0 Z38 Z39

0 0 0 0 0 0 0 0 0
0 0 0 Z54 0 0 Z57 0 0
0 0 0 Z64 0 0 Z67 0 0
0 0 0 0 0 0 0 0 0
0 0 0 Z84 0 0 Z87 0 0
0 0 0 Z94 0 0 Z97 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (D3)
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with nonvanishing elements equal to Zij (τ ′) = Vii (Tp − τ ′)Upr,ij Vjj (τ ′). Notice that some of the nonvanishing matrix elements
of Ẑ (τ ′) may be negligibly small compared to others for small intensities of the probe pulse, since they are of different orders in
ϑpr, and may thus vanish if we use the probe-pulse interaction operator given in Eq. (59).

APPENDIX E: CENTRAL FREQUENCIES OF THE LIGHT-INDUCED STATES APPEARING IN THE SPECTRUM

To quantify the central frequencies of the LISs appearing in the spectrum, we show that they are determined by the poles of the
operator [�vk D̂N (ω̄)]/[i(ω̄ − ωk1)] in Eq. (49). The same can be used to explain the spectra at positive time delays, determined
by the term [�vk D̂N−Mτ

(ω̄)]/[i(ω̄ − ωk1)] in Eq. (58). It is important to notice that the poles are real, so that a divergence in the
spectrum would appear if ω̄ were real. Since we evaluate the spectrum at the complex frequency ω̄ = ω − iγ /2, no divergences
appear in the spectrum, as these reduce to peaks with a width of γ /2 and centered on the corresponding real poles.

For N = 1, [�vk D̂N (ω̄)]/[i(ω̄ − ωk1)] reduces to [�vk Âpu]/[i(ω̄ − ωk1)], whose only poles are ω̄ = ωk1. However, when N →
∞, this operator reads

�vk D̂∞(ω̄)

i(ω̄ − ωk1)
= −i

Tp

2
e−i(ω̄−ωk1 )

Tp
2 sinc

[
(ω̄ − ωk1)

Tp

2

]
�vk Âpu (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1. (E1)

First, due to the presence of sinc[(ω̄ − ωk1)Tp/2], the pole at ωk1 present for a finite number of pump pulses is here removed,
unless it appears explicitly as a pole of the inverse operator (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1. We also notice the zeros at

ω̄ = ω̄zero
r = ωk1 + rωr, r �= 0, (E2)

for any r ∈ Z other than 0. To identify the poles of Eq. (E1), we need to focus on the inverse operator (Î −
e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1. In particular, we notice that

F̂� V̂p Âpu = [F̂� V̂p Âpu] ⊗ [F̂� V̂p Âpu]∗,

where we have introduced F̂� = F̂ (�φ), V̂p = V̂ (Tp), and Âpu = Â(ϑ, α). The product

F̂� V̂p =
⎛
⎝1 0 0

0 e−i(δr−ωo )Tp 0
0 0 e−i(δr−ωo )Tp

⎞
⎠ (E3)

is a diagonal matrix describing the change in the atomic phases of the two excited states during one period. Since F̂� V̂p Âpu is a
unitary operator, its eigenvalues eiλj , j ∈ {1, 2, 3}, lie on the unit circle. After introducing the phases

β = (δr − ωo)Tp (E4)

and

ε = arccos

[
cos

(
ϑ

2

)
cos

(
β

2

)]
, (E5)

the eigenvalues eiλj and associated eigenvectors �Pj can be calculated exactly as

eiλ1 = e−iβ , eiλ2 = e−iβ/2+iε, eiλ3 = e−iβ/2−iε, (E6)

and

�P1 =
⎛
⎝ 0

−cos(α)
sin(α)

⎞
⎠, �P2 =

⎛
⎜⎜⎜⎜⎝

sin (ϑ/2)√
sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2

i
cos (ϑ/2)−e−iβ/2+iε√

sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2
sin(α)

i
cos (ϑ/2)−e−iβ/2+iε√

sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2
cos(α)

⎞
⎟⎟⎟⎟⎠, �P3 =

⎛
⎜⎜⎜⎜⎝

i
cos (ϑ/2)−eiβ/2−iε√

sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2
sin (ϑ/2)√

sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2
sin(α)

sin (ϑ/2)√
sin2 (ϑ/2)+| cos (ϑ/2)−eiβ/2−iε |2

cos(α)

⎞
⎟⎟⎟⎟⎠. (E7)

By introducing the diagonal matrix �̂ = diag(eiλ1 , eiλ2 , eiλ3 ) and the matrix P̂ = ( �P1, �P2, �P3), whose j th column is the
eigenvector �Pj of F̂� V̂p Âpu, we obtain that

F̂� V̂p Âpu = P̂ �̂ P̂ −1. (E8)

Notice that the eigenvectors in Eq. (E7) have been determined such that P̂ −1 = P̂ †. As a result, the inverse operator
(Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1 in Eq. (E1) reduces to

(P̂ ⊗ P̂ ∗) [Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1 (P̂ ⊗ P̂ ∗)−1,
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where [Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1 is a 9×9 diagonal matrix of elements (1 − e−i(ω̄Tp−�φ) ei(λj −λj ′ ) )−1, j, j ′ ∈ {1, 2, 3}, with
poles at ω̄ = ωo + (λj − λj ′ )/Tp + s ′ωr , for any s ′ ∈ Z. However, from Eq. (E8), we also notice that

Âpu P̂ = (F̂� V̂p)−1 P̂ �̂, (E9)

such that

�vk Âpu (P̂ ⊗ P̂ ∗) = [(1, 0, 0) Âpu P̂ ] ⊗ [(0, δk2, δk3) Â∗
pu P̂ ∗]

=
3∑

k′,k′′=2

3∑
j ′=1

δkk′′ P1k′ P ∗
k′′j ′ [(0, δk′2, δk′3) ⊗ (δj ′1, δj ′2, δj ′3)] [e−iβ�̂ ⊗ �̂∗], (E10)

where we have explicitly used the fact that P11 = 0. It follows that

�vk Âpu (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1 =
3∑

k′,k′′=2

3∑
j ′=1

δkk′′ P1k′ P ∗
k′′j ′ [(0, δk′2, δk′3) ⊗ (δj ′1, δj ′2, δj ′3)]

× [Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1[e−iβ�̂ ⊗ �̂∗] (P̂ ⊗ P̂ ∗)−1. (E11)

Due to the term [(0, δk′2, δk′3) ⊗ (δj ′1, δj ′2, δj ′3)], not all matrix elements of the diagonal operator [Î − e−i(ω̄Tp−�φ) (�̂ ⊗
�̂∗)]−1 contribute to the spectrum, but only (1 − e−i(ω̄Tp−�φ) ei(λk′ −λj ′ ) )−1, with k′ ∈ {2, 3} and j ′ ∈ {1, 2, 3}. The only poles
determining the peaks in the spectrum are thus

ω̄ = ω̄
pole
k′j ′sk

= ωo + λk′ − λj ′

Tp
+ s ′ωr

= ωk1 + λk′ − λj ′ − β

Tp
+ skωr, (E12)

for k, k′ ∈ {2, 3}, j ′ ∈ {1, 2, 3}, and for any sk ∈ Z (in the above equality, sk = s ′ − �ωk1/ωr�, with s3 = s2 − 2 since ω32 =
2ωr).

For a fixed value of sk , this provides the central frequencies of the five-line structures appearing in the spectrum for N → ∞
and discussed in Sec. III:

ω̄
pole
k′k′sk

= ωk1 − β

Tp
+ sk ωr, ω̄

pole
k′1sk

= ωk1 − β

2Tp
± ε

Tp
+ sk ωr, ω̄

pole
k′k′′sk

= ωk1 − β

Tp
± 2ε

Tp
+ sk ωr, (E13)

with k′ �= k′′. Different values of the index sk are associated with different five-level structures. The term sinc[(ω̄ − ωk1)Tp/2]
in Eq. (E1) modulates the intensity of the lines, such that structures in proximity of the transition energies ωk1 are stronger than
the remaining ones. Furthermore, whenever the frequencies ω̄

pole
k′j ′sk

in Eq. (E13) coincide with the frequencies ω̄zero
r in Eq. (E2),

the corresponding lines are suppressed in the spectrum.
The dependence of the poles upon the pulse-to-pulse phase shift �φ

.= ωoTp is, in general, complex due to the presence of ε

in Eq. (E13). We notice, however, that one of the spectral peaks is always centered on ω̄
pole
k′k′sk

, independent of the pulse area ϑ .
This central frequency has a linear dependence on �φ, and the corresponding peak can be recognized in Fig. 5 for all values of
ϑ except 2π . As we will discuss later, the contribution to the spectrum due to this line is suppressed for ϑ = 2π .

In the following, we investigate in detail a few particular cases on which we have focused during the discussion of the results
in Sec. III.

1. ωo = δr

Whenever the offset frequency ωo is equal to the effective detuning δr (see also Fig. 3), then F̂� V̂p = Î , i.e., the pulse-to-pulse
phase shift �φ perfectly balances the difference in the phase of the two excited states ω32Tp accumulated during the interval Tp

in between the two pump pulses. It follows that the operator F̂� V̂p Âpu reduces to the symmetric operator Âpu given in Eq. (26),
β = 0, ε = ϑ/2, such that

�̂ = diag(1, eiϑ/2, e−iϑ/2), P̂ =

⎛
⎜⎜⎝

0 1√
2

− 1√
2

−cos(α) sin(α)√
2

sin(α)√
2

sin(α) cos(α)√
2

cos(α)√
2

⎞
⎟⎟⎠, (E14)

with ϑ-independent eigenvectors. The central frequencies of the spectral lines from Eq. (E13) can therefore be written as

ω̄
pole
k′k′sk

= ωk1 + sk ωr, ω̄
pole
k′1sk

= ωk1 ± ϑ

2Tp
+ sk ωr, ω̄

pole
k′k′′sk

= ωk1 ± ϑ

Tp
+ sk ωr. (E15)
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These frequencies correspond to the central frequencies of the five-level structures identified in Sec. III for �φ = δrTp,
separated by the frequency gap �ω = ϑ/(2Tp). Notice that ω̄

pole
k′k′sk

in Eq. (E15) corresponds to the position ω̄zero
r of the zeros of

sinc[(ω̄ − ωk1)Tp/2] except when sk = 0. Hence, while the five-level structures centered on ωk1 do show the associated central
line, this is suppressed in the additional structures appearing above and below, as apparent in Figs. 5, 6(a)–6(c), and 7(a)–7(d) in
Sec. III.

2. ωo = δr − π/Tp

When offset frequency and effective detuning differ by π/Tp, it follows that F̂� V̂p = diag(1, −1, −1), β = π , and ε = π/2.
As a result, the Hermitian operator F̂� V̂p Âpu has eigenvalues and eigenvectors given by

�̂ = diag(−1, 1, −1), P̂ =

⎛
⎜⎜⎝

0 cos
(

ϑ
4

) −i sin
(

ϑ
4

)
−cos(α) −i sin

(
ϑ
4

)
sin(α) cos

(
ϑ
4

)
sin(α)

sin(α) −i sin
(

ϑ
4

)
cos(α) cos

(
ϑ
4

)
cos(α)

⎞
⎟⎟⎠, (E16)

such that all poles in Eq. (E13) are given by

ω̄
pole
22sk

= ω̄
pole
33sk

= ω̄
pole
31sk

= ωk1 − π

Tp
+ sk ωr, ω̄

pole
21sk

= ω̄
pole
23sk

= ωk1 − 2π

Tp
+ sk ωr, ω̄

pole
32sk

= ωk1 + sk ωr, (E17)

which can be summarized as the ϑ-independent frequencies

ω̄pole
s = ωk1 + s

ωr

2
, (E18)

with s ∈ Z. Notice that the corresponding spectral lines will be suppressed whenever their central frequencies are equal to the
zeros in Eq. (E2). This is apparent in Figs. 5, 6(d)–6(f), and 7(e)–7(h) in Sec. III.

3. π -area pulses

When ϑ = π , such that ε = π/2, then the diagonalization of the operator F̂� V̂p Âpu leads to

�̂ = diag(e−i(δr−ωo )Tp , i e−i(δr−ωo )Tp/2, −i e−i(δr−ωo )Tp/2),

P̂ =

⎛
⎜⎜⎝

0 1√
2

− 1√
2
ei(δr−ωo )Tp/2

−cos(α) e−i(δr−ωo )Tp/2 sin(α)√
2

sin(α)√
2

sin(α) e−i(δr−ωo )Tp/2 cos(α)√
2

cos(α)√
2

⎞
⎟⎟⎠. (E19)

Equation (E13) then provides the equations for the central frequencies of the peaks as a function of both offset frequency and
effective detuning:

ω̄
pole
k′k′sk

= ωk1 + (ωo − δr ) + sk ωr, ω̄
pole
k′k′′sk

= ωk1 +
[
ωo −

(
δr ± π

Tp

)]
+ sk ωr, ω̄

pole
k′1sk

= ωk1 + ωo − δr

2
± ωr

4
+ sk ωr.

(E20)

Notice that the ± sign in ω̄
pole
k′k′′sk

is superfluous, since the + solution associated with the index sk coincides with the − solution for
the index (sk + 1). This leads to the level structures shown in Figs. 5(d)–5(f), explaining the linear dependence of the position
of the absorption lines upon the pulse-to-pulse phase shift. Two parallel lines, given by ω̄

pole
k′k′sk

and ω̄
pole
k′k′′sk

, have the same unitary

slope and are spaced by π/Tp = ωr/2. The remaining two lines, given by ω̄
pole
k′1sk

, are also parallel and separated by ωr/2, but with
a slope equal to 1/2. These two couples of lines intersect at ωo = δr − π/Tp, as confirmed in Figs. 5(d)–5(f).

4. 2π -area pulses

A pulse with area ϑ = 2π will not mix the subspace formed by the ground state with that associated with the two excited
states, since its action is given by the block-diagonal operator

Âpu =
⎛
⎝−1 0 0

0 cos(2α) −sin(2α)
0 −sin(2α) −cos(2α)

⎞
⎠. (E21)
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Multiplying it by F̂� V̂p still preserves its block-diagonal form. In this case, ε = π − β/2, such that eigenvalues and eigenvectors
of F̂� V̂p Âpu can be written as

�̂ = diag(e−i(δr−ωo )Tp , −e−i(δr−ωo )Tp , −1), P̂ =
⎛
⎝ 0 0 1

−cos(α) sin(α) 0
sin(α) cos(α) 0

⎞
⎠. (E22)

Owing to the many vanishing elements of P̂ , not all five peaks in Eq. (E13) contribute to the spectrum. To see this, one can refer
to Eq. (E11), which for a 2π -area pulse reads

�vk Âpu (Î − e−i(ω̄Tp−�φ) F̂� V̂p Âpu)−1

=
3∑

k′′=2

2∑
j ′=1

δkk′′ P ∗
k′′j ′ [(0, 0, 1) ⊗ (δj ′1, δj ′2, 0)] [e−iβ�̂ ⊗ �̂∗] [Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1(P̂ ⊗ P̂ ∗)−1, (E23)

where we have used the fact that P1k′ = δk′3 and that Pk′′j ′ vanishes for j ′ = 3. As a result, the only lines appearing in the
spectrum are due to the poles of

e−iβ ei(λ3−λj ′ )

1 − e−i(ω̄−ωk1 )Tp e−iβ ei(λ3−λj ′ ) = (−1)j
′+1

1 − e−i(ω̄−ωk1 )Tp (−1)j ′+1
, (E24)

which are given by

ω̄
pole
31sk

= ωk1 + ωr

2
+ sk ωr, ω̄

pole
32sk

= ωk1 + (sk + 1) ωr, (E25)

are spaced by ωr/2, and independent of ωo, as shown in Figs. 5(j)–5(l). They are equal to the ϑ-independent frequencies in
Eq. (E18) for ωo = δr − π/Tp. Also here, if these central frequencies are equal to the zeros in Eq. (E2), then the corresponding
spectral lines are suppressed, as shown in Figs. 7(d) and 7(h). We finally notice that Eq. (E23) is independent of β as a
consequence of Eqs. (E22) and (E24). This will be used in Appendix G 4.

APPENDIX F: SPECTRAL FEATURES IN A PUMP-PROBE-PUMP SETUP DETERMINED BY THE PUMP PULSES
PRECEDING THE PROBE PULSE

The area of the pump pulses preceding the probe pulse determines the state in which the system is prepared and encountered
by the probe pulse. This influences the frequency-dependent features of the spectrum in a pump-probe-pump setup, causing, e.g.,
the disappearance of some of the spectral lines identified in Appendix E. This is clearly visible in Figs. 6 and 7, displaying the
dependence of the spectral lines upon pulse area and time delay: One can see that lines otherwise present in the spectrum are
suppressed for given values of ϑ and τ .

This feature is a result of the state in which the system is prepared by the Mτ pump pulses preceding the probe pulse. To
provide an example for this general property, we focus on the case of ϑ = π and show how the preparation of the system
determines the disappearance of given lines. This is clearly apparent in Fig. 5(e) for Mτ = 1: in this figure, half of the spectral
lines identified in Appendix E 3 for ϑ = π are suppressed, whereas they appear in Fig. 5(f) for Mτ = 2.

To show this, we notice that, for ϑ = π , a train of Mτ pulses prepares the system in the state

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T = (i e−iβ/2)Mτ

2

⎛
⎝ 1 + (−1)Mτ

eiβ/2 sin(α) [1 − (−1)Mτ ]
eiβ/2 cos(α) [1 − (−1)Mτ ]

⎞
⎠, (F1)

see also Eq. (G1). Therefore, whenever Mτ is odd, only the two excited states are occupied. In such case, the spectrum from
Eq. (58) contains only the last addend appearing in Eq. (D1),

e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂� Âpu (F̂� V̂p Âpu)Mτ −1 �R0 = e−iω̄(Tp−τ ′ )

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ

⎛
⎝ 0

sin(α)
cos(α)

⎞
⎠ ⊗

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ∗

⎛
⎝ 0

sin(α)
cos(α)

⎞
⎠, (F2)

and the central frequencies of the lines appearing in the spectrum can be determined by inspecting

[Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1 (P̂ ⊗ P̂ ∗)−1e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂� Âpu (F̂� V̂p Âpu)Mτ −1 �R0

= e−iω̄(Tp−τ ′ ) [Î − e−i(ω̄Tp−�φ) (�̂ ⊗ �̂∗)]−1 �x ⊗ �y, (F3)

with the three-dimensional vectors

�x =
⎛
⎝x1

x2

x3

⎞
⎠ = P̂ †

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠Ẑ

⎛
⎝ 0

sin(α)
cos(α)

⎞
⎠ (F4)
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and

�y =
⎛
⎝y1

y2

y3

⎞
⎠ = P̂ T

⎛
⎝0 0 0

0 1 0
0 0 1

⎞
⎠Ẑ∗

⎛
⎝ 0

sin(α)
cos(α)

⎞
⎠. (F5)

By noticing that the components x1 and y1 vanish for ϑ = π and for the weak probe pulses (ϑpr � 1) described by Eq. (59), then
one can conclude from Eq. (F3) that the poles ω̄

pole
k′1sk

identified in Eq. (E20) do not correspond to peaks in the pump-probe-pump
spectrum for ϑ = π and for an odd number Mτ of pulses preceding the weak probe pulse. This is in agreement with the results
exhibited in Fig. 5(e).

APPENDIX G: PERIODICITY OF THE SPECTRA AS A FUNCTION OF TIME DELAY

The periodicity of the pump-probe-pump spectrum in Eq. (58) is exclusively determined by the operator
Âpu (F̂� V̂p Âpu)Mτ −1 �R0, which prepares the system in the state encountered by the probe pulse. All remaining terms in the
spectrum depend on Tp − τ ′ = MτTp − τ and are thus periodic in τ with period Tp. Whenever two sequences of pump pulses
Mτ1 and Mτ2 prepare the system in the same state, also the associated spectra will exhibit the same features.

To investigate the properties of the state prepared by the pump pulses preceding the probe pulse, we observe that

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T = (F̂� V̂p)−1 P̂ �̂Mτ P̂ −1 (1, 0, 0)T

= e−iβMτ /2

sin2 (ϑ/2) + | cos (ϑ/2) − eiβ/2−iε|2

×

⎛
⎜⎝

sin2 (ϑ/2)eiεMτ + | cos (ϑ/2) − eiβ/2−iε|2e−iεMτ

−2 sin (ϑ/2)[cos (ϑ/2) − e−iβ/2+iε]eiβ sin(εMτ ) sin(α)

−2 sin (ϑ/2)[cos (ϑ/2) − e−iβ/2+iε]eiβ sin(εMτ ) cos(α)

⎞
⎟⎠. (G1)

Since the spectrum depends on

Âpu (F̂� V̂p Âpu)Mτ −1 �R0 = Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T ⊗ Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T, (G2)

we observe that (i) it does not depend on the common phase term e−iβMτ /2 in Eq. (G1), and (ii) its dependence upon Mτ is only
via terms of the form e±i2εMτ . In other words, the dipoles generated by Mτ1 pulses associated with ε1 and Mτ2 pulses associated
with ε2 are equal—and the corresponding spectra coincide—if there exists an integer K for which

Mτ1ε1 = Mτ2ε2 + πK. (G3)

For fixed pulse parameters ϑ and β, the spectrum is periodic with respect to the number of preparatory pump pulses, with period
�Mτ = πK/ε, where �Mτ and K are both integers.

We analyze this in depth for the same particular cases already discussed in Appendix E.

1. ωo = δr

In this case, with β = 0 and ε = ϑ/2, the state prepared by the initial Mτ pump pulses is given by

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T =

⎛
⎜⎝

cos
(

ϑMτ

2

)
i sin

(
ϑMτ

2

)
sin(α)

i sin
(

ϑMτ

2

)
cos(α)

⎞
⎟⎠, (G4)

and Eq. (G3) leads to Eq. (63), thus explaining the periodic features in Figs. 8(a) and 8(b) and their dependence on ϑ .

2. ωo = δr − π/Tp

With β = π and ε = π/2, the state encountered by the probe pulse is given by

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T =

⎛
⎜⎜⎝

1+(−1)Mτ

2 + 1−(−1)Mτ

2 cos
(

ϑ
2

)
i 1−(−1)Mτ

2 sin
(

ϑ
2

)
sin(α)

i 1−(−1)Mτ

2 sin
(

ϑ
2

)
cos(α)

⎞
⎟⎟⎠ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎝

cos
(

ϑ
2

)
i sin

(
ϑ
2

)
sin(α)

i sin
(

ϑ
2

)
cos(α)

⎞
⎟⎠, if Mτ odd,

(1, 0, 0)T, if Mτ even,

(G5)

explaining the results in Figs. 8(c) and 8(d) and the periodicity of the spectra as a function of τ , with period 2Tp.
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3. π -area pulses

As shown in Eq. (F1), a sequence of Mτ π -area pulses prepares the system in the state

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T =
{

(i e−iβ/2)Mτ eiβ/2 (0, sin(α), cos(α))T, if Mτ odd,

(i e−iβ/2)Mτ (1, 0, 0)T, if Mτ even,
(G6)

so that the associated spectra are periodic in τ , with period 2Tp for any β.

4. 2π -area pulses

A sequence of Mτ 2π -area pulses prepares the system in the state

Âpu (F̂� V̂p Âpu)Mτ −1 (1, 0, 0)T = ((−1)Mτ , 0, 0)T, (G7)

and the time-delay-dependent spectra have period Tp—the spectra are not sensitive to the absolute phase of the state associated
with (−1)Mτ . In Appendix E 4, we already noticed that Eq. (E23) is independent of β. Due to Eq. (G7) and therefore as a result
of

F̂� Âpu (F̂� V̂p Âpu)Mτ −1 �R0 = �R0, (G8)

the spectrum in Eq. (58) contains only the second addend appearing in Eq. (D1), leading to

e−iω̄(Tp−τ ′ ) Ẑ (τ ′) F̂� Âpu (F̂� V̂p Âpu)Mτ −1 �R0

= e−iω̄(Tp−τ ′ ) (Z11, 0, 0)T ⊗ (0, Z∗
21, Z∗

31)T = −i
ϑ

2

⎛
⎝1

0
0

⎞
⎠ ⊗

⎛
⎝ 0

e−i(ω̄−ω21 )(Tp−τ ′ ) sin(α)
e−i(ω̄−ω31 )(Tp−τ ′ ) cos(α)

⎞
⎠ (G9)

for the weak probe pulses described by Eq. (59). Hence, the spectra in Eq. (58) at ϑ = 2π are independent of the pulse-to-pulse
phase shift. This explains why the spectra displayed in Figs. 7(d) and 7(h), evaluated at ϑ = 2π for two different values of β,
are identical.
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