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Spectral broadening effects on metal photoemission by femtosecond laser pulses
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Emitted electronic densities from an Al surface have been computed for various temporal shapes of near-
infrared femtosecond laser pulses (less than or equal to 20 fs) over a wide range of low and intermediate laser
intensities. At low intensities photoemission originates from the high-energy tail of the pulse spectrum leading
to linear absorption in all cases, even if several photons are necessary to eject an electron at higher intensities.
We propose an analytical method to calculate the transition intensity in which the behavior of emitted densities
evolves from the single-photon Im slope to the multiphoton I n

m one (with Im the maximum intensity and n

the number of absorbed photons). We show that the use of a flat-top profile or at least of a super-Gaussian
envelope enables strong electron emission at very low intensities for realistic pulse durations and should allow
experimental observation of the transition between these two regimes of photoemission.
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I. INTRODUCTION

In recent years, femtosecond pulse temporal shaping has
attracted considerable interest for numerous applications as
light-wave communications or coherent control of quantum
nonlinear processes (see [1] and references therein). Among
the various techniques developed to achieve waveform syn-
thesis, one can distinguish the use of acousto-optic pro-
grammable dispersive filters [2] or the spatial masking of
the spatially dispersed optical frequency spectrum [1]. It is
now possible to generate almost arbitrary ultrafast waveforms
with control of amplitude, polarization, and phase in the near
infrared, visible, and also ultraviolet spectral ranges [3]. As
the temporal shaping modifies the laser pulse spectrum, it
is able to influence the electron dynamics in laser-matter
interactions since this dynamics is known to depend on the
wavelength. However, up to now only a few works [4,5] have
reported on broad spectra femtosecond laser pulse effects on
electron dynamics in such a way that an in-depth study of
possible significant effects is still lacking.

For this reason, we investigate in this work the influence of
the laser pulse shaping, i.e., the pulse spectrum, on the elec-
tron photoemission from metal surfaces. Electron densities
emitted during the interaction between short (from 5 to 20 fs)
near infrared (800 nm) laser pulses with various temporal
waveforms and an Al surface have been computed. This metal
has been chosen for the simplicity of its electronic structure.
Five waveforms are taken into account: a cos2 temporal profile
since it is frequently used in theoretical works, the widespread
Gaussian envelope, two super-Gaussian profiles, and also a
flat-top envelope as the high-order limit of the super-Gaussian
waveforms. Calculations have been performed for the ex-
tended domain of low and intermediate fluences ranging from
10−8 to 2 × 10−2 J/cm2, which corresponds roughly to a
peak intensity region between 5 × 105 and 1012 W/cm2. For
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small enough fluences, electron transitions are mainly driven
by the high-energy part of the laser spectrum, leading to a
linear absorption departing from the standard multiphoton
absorption [6,7]. Atomic units are used throughout unless
otherwise stated.

II. MODEL

Since the free-electron-gas model closely describes the
aluminum electronic structure [8], we represent the metal
by means of the jellium model, in which the metal poten-
tial reads VM (z) = −Vc�(−z), with Vc = EF + W , where
EF = 11.7 eV is the Fermi energy, W = 4.26 eV is the
work function of Al(111) [9], z is the electronic coordinate
perpendicular to the surface, and � is the Heaviside step
function. The ejected electron density is evaluated with the
expression

�e = 2

(2π )3

∫
dkf

∫
dki

|Tif (kiz, kf z)|2δ(kf s − kis )

1 + exp
[

1
kBT

( k2
i

2 − μ
)] , (1)

where the denominator originates from the Fermi-Dirac dis-
tribution with kBT the thermal energy. Due to the short-pulse
durations and the modest intensities considered, we have dis-
regarded thermal effects on photoemission and have set T =
300 K in all the calculations. For this reason, the chemical
potential μ is calculated by means of the first terms of its
low-temperature expansion μ � EF − (πkBT )2/12EF − · · ·
[10]. In Eq. (1), the numerator term |Tif (kiz, kf z)|2δ(kf s −
kis ) stands for the inelastic transition probability to eject
an electron initially within the conduction band with mo-
mentum ki (kis , kiz) towards the metal continuum with final
momentum kf (kf s, kf z), where the subscripts s and z indi-
cate the momentum components parallel and perpendicular
to the surface, respectively. The Dirac δ function accounts
for the momentum conservation in the plane parallel to the
surface due to the fact that the laser field considered here
is linearly polarized along the z direction, which results in
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the translational invariance of the problem along the surface
plane. Thus, integrations over kix and kiy are straightforward
and then integrations over kf x and kfy can be performed
analytically by considering the angles θf and ϕf related to
the final momentum in the spherical coordinate system [11]:
dkf xdkfy = k′2

f zd�f / cos3 θf and k2
f x + k2

fy = (k′
f z tan θf )2,

with k′
f z =

√
k2
f z − 2Vc . Within this framework, the ex-

pression of the emitted density reduces to a double integral
(performed numerically by means of Simpson quadratures)
over perpendicular components of initial and final momenta.
It reads

�e = kBT

2π2

∫ +∞
√

2Vc

dkf z

∫ √
2Vc

0
dkiz|Tif (kiz, kf z)|2

× ln

{
1 + exp

(
1

kBT

[
μ − k2

iz

2

])}
. (2)

Due to the low laser intensities and the short-pulse dura-
tions considered in this work, the so-called jellium-Volkov
wave function is a reliable solution of the time-dependent
Schrödinger equation. Within this approach, the transition
amplitude reads [12,13]

Tif = −i

∫ +∞

−∞
dt Fl (t )Gif (t ) exp{i[�εt + βl (t )]}, (3)

with �ε = k2
f z/2 − k2

iz/2 the perpendicular energy difference
between final and initial states, Fl (t ) the temporal shape of
the laser pulse (with the subscript l standing for the various
waveforms used), and Gif (t ) a function defined as

Gif (t ) =
∫ +∞

−∞
dz �∗

kf z
(ζl (t ))z

× exp

[(
i
Al (t )

c
+ �(−z)

δs

)
z

]
�kiz

(z), (4)

where �kiz
is an outgoing eigenfunction of the jellium Hamil-

tonian representing an electron of the conduction band and
�kf z

an incoming eigenfunction describing an electron of the
continuum [14]. The vector potential Al (t ), the quiver ampli-
tude αl (t )[ζl (t ) = z − αl (t ) defines the coordinate z shifted
by the quiver amplitude], and the ponderomotive energy βl (t )
in Eq. (3) are

Al (t ) = −c

∫ t

−∞
dξ Fl (ξ ),

αl (t ) = 1

c

∫ t

−∞
dξ Al (ξ ),

βl (t ) = 1

2c2

∫ t

−∞
dξ A2

l (ξ ), (5)

where c is the speed of light in vacuum. Integrals involved
in Eqs. (3) and (5) are performed numerically, whereas the
function Gif (t ) of Eq. (4) can be expressed analytically due
to the simple expressions of jellium eigenfunctions �kiz

and
�kf z

. It has been shown [13] that the total field inside the metal
(sum of the laser field and the induced one) is very weak for
the central laser wavelength considered here (λ0 = 800 nm).
For this reason, we have allowed the incident field to penetrate
into the solid only over the skin depth δs = √

λ0R/πμ0c,

which is of 4.3 nm in the present case since the electrical
resistivity of Al at 300 K is R = 2.7 × 10−8 �m [9].

The temporal waveforms considered read

Fl (t ) = �lEl (t ) cos(ω0t + φ0), (6)

where �l represents the maximum field strength, ω0 and
φ0 are the carrier frequency and the carrier envelope phase,
respectively, and El (t ) stands for the envelopes in which τ is
the pulse duration (i.e., the full width at half maximum) in all
cases,

Eq (t ) = exp

(
− ln 2

[
2t

τ

]2q
)

, (7a)

Ew(t ) = �−τ/2,+τ/2(t ), (7b)

EC (t ) = cos2

(
πt

2τ

)
�−τ,+τ (t ), (7c)

where q in Eq. (7a) is a nonzero positive integer: q = 1
corresponds to the standard Gaussian shape and q � 2 to a
super-Gaussian form (cases q = 3 and q = 5 are considered
in this work). In Eqs. (7b) and (7c), �t1,t2 (t ) = �(t − t1) −
�(t − t2) is the window function, in such a way that the
flat-top waveform Ew(t ) is the limit of Eq (t ) for q → +∞.
Furthermore, to compare the influence of the various wave-
forms, the maximum field strength �l of Eq. (6) is obtained
through the normalization∫ +∞

−∞
dt F 2

l (t ) = 8π

c
J0 ≡

∫ +∞

−∞
dω|Fl (ω)|2, (8)

where J0 is the fluence, Fl (ω) is the Fourier transform of the
laser field Fl (t ), and the second equality of Eq. (8) comes
from Parseval’s identity. Maximum field strength values �l

obtained from this normalization procedure substantially vary
with the shape of the laser pulse in the range of pulse durations
studied here.

III. RESULTS

Emitted densities computed for the five previous wave-
forms are displayed in Fig. 1 for τ = 20 fs and φ0 = π/2.
This value of the carrier envelope phase has been used
throughout, although calculations (not reported) considering
other values have been performed. For the smaller pulse
duration considered after (5 fs), emitted densities as well as
transition intensities (discussed below) substantially vary with
the carrier envelope phase, while these variations decrease
with increasing pulse duration. However, the choice of the
particular φ0 = π/2 value for our illustrations does not affect
the generality of our conclusions.

As the spectrum of a near infrared 800-nm laser pulse
is centered around 1.55 eV and since the work function of
Al(111) is 4.26 eV, at least three photons are necessary to eject
an electron from the conduction band. Consequently, within
the multiphoton fluence range, emitted densities follow a J 3

0
power law. This is exactly what can be observed in Fig. 1 in
the case of Gaussian, super-Gaussian, and cos2 waveforms
for fluences greater than 10−5 J/cm2, which corresponds to
a maximum intensity around 109 W/cm2. At lower fluences,
the variation of emitted densities corresponding to these four
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FIG. 1. Emitted electronic densities �e (in e−/cm3) as a func-
tion of the fluence J0 (in J/cm2) for ω0 = 0.057 (λ0 = 800 nm),
φ0 = π/2, and τ = 20 fs: Gaussian shape, red line with ×; q = 3
super-Gaussian waveform, green line with •; q = 5 super-Gaussian
envelope, blue line with �; flat-top form, black line with �; and
cos2 shape, orange line with +. The vertical red line indicates the
transition fluence (see the text) for the Gaussian shape. The inset
shows the emitted densities in the higher-fluence region ranging from
2 × 10−3 to 2 × 10−2 J/cm2.

profiles departs from the J 3
0 law to reach a J0 behavior at very

low fluences. As demonstrated below, this behavior originates
from the high-energy tail of the pulse spectrum and corre-
sponds to electron emission through the absorption of only
one photon whose energy is at least the work function value.
Transition intensities Itr from the n = 1 to the n = 3 absorp-
tion behaviors are around 107 W/cm2 (5 × 10−8 J/cm2) for
the Gaussian shape as well as for the q = 3 super-Gaussian
one (whose emitted densities are very close in the whole
range of fluences considered) and around 2 × 108 W/cm2

(10−6 J/cm2) and 4 × 108 W/cm2 (2 × 10−6 J/cm2) for the
q = 5 super-Gaussian profile and the cos2 one, respectively.
In the case of the flat-top profile, ejected densities are much
more important for all considered fluences and also follow a
J0 power law up to 10−2 J/cm2 (Im ≈ 1012 W/cm2; see the
inset of Fig. 1).

We will see below that in the low-fluence single-photon ab-
sorption regime, emitted densities are proportional to |Fl (ω)|2
of Eq. (8), i.e., to the spectral intensities corresponding to
the various waveforms studied in this work, which are dis-
played in Fig. 2 as a function of the photon energy. Hence,
the relative strength of electronic emission at low fluences
related to the five waveforms, displayed in Fig. 1 for 20 fs,
are explained by the amplitude of the corresponding spectral
intensities depicted in Fig. 2(a) for photon energies greater
than 4.26 eV. One can see in Fig. 2(a) that spectral intensities
in this photon energy range are very weak with respect to the
main peak magnitude, except for the flat-top profile whose
spectral intensity dominates by several orders of magnitude
those corresponding to the four other shapes. Moreover, the
spectral intensity corresponding to the cos2 shape (which de-
creases as ω−1 far from the central peak) is higher than those
related to the super-Gaussian and Gaussian profiles whose
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FIG. 2. Spectral intensity (in photons/cm2) as a function of
photon energy (in eV) for ω0 = 0.057 (h̄ω0 = 1.55 eV), φ0 = π/2,
J0 = 10−7 J/cm2, and (a) τ = 20 fs or (b) τ = 5 fs: Gaussian shape,
red line with ×; q = 3 super-Gaussian waveform, green line with
•; q = 5 super-Gaussian envelope, blue line with �; flat-top form,
black line with �; and cos2 shape, orange line with +.

decrease is exponential in this spectral range. Consequently,
one understands the magnitude of emitted densities in the
single-photon absorption regime as a function of the temporal
profile, which is, for increasing values (see Fig. 1), Gaussian,
q = 3 super-Gaussian, q = 5 super-Gaussian, cos2, and the
flat-top shape that dominates.

One observes in Fig. 2(b) that the magnitude of the spectral
intensity (for h̄ω � 4.26 eV) related to the flat-top profile for
5-fs pulse duration is similar to the one of Fig. 2(a) in the 20-fs
case, while those corresponding to super-Gaussian shapes are
strongly increased in such a way that the values corresponding
to the q = 5 super-Gaussian envelope are close to those of the
flat-top profile. To a lesser extent, spectral intensities related
to the cos2 shape and to the Gaussian one are also increased
with respect to the 20-fs case.

Consequently, emitted densities for 5-fs pulse duration,
which are reported in Fig. 3, are greater than their 20-fs coun-
terparts, except for the flat-top profile whose corresponding
emitted densities are close in both cases. For 5-fs pulse dura-
tion, the magnitude of emitted densities in the single-photon-
absorption regime as a function of the temporal profile is,
for increasing values, Gaussian, cos2, q = 3 super-Gaussian,
q = 5 super-Gaussian, and flat-top. Calculations similar to
those presented in Figs. 1 and 3 have been performed also for a
10-fs pulse duration (results not reported for the sake of con-
ciseness) and show intermediate behaviors between the 20-
and 5-fs cases. In all cases, the emitted density related to the
Gaussian shape presents the lower values in the single-photon
regime while the greater ones are obtained by consideration
of the flat-top envelope, which is also the shape for which the
single-photon absorption is conserved for the wider domain
of fluences. Moreover, one can note in Fig. 3 that transition
intensities from the single-photon to the multiphoton regimes
are greater than in the 20-fs case: around 108 W/cm2 for
the Gaussian shape, 1.5 × 1010 W/cm2 for the cos2 envelope,
around 2 × 1011 W/cm2 for the q = 3 super-Gaussian profile,
and 4 × 1011 W/cm2 for the q = 5 super-Gaussian and flat-
top waveforms. Furthermore, the structures appearing in the
emitted densities at high fluences for the flat-top and q = 5
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FIG. 3. Same as Fig. 1 for τ = 5 fs. The dashed black line
corresponds to the flat-top profile without consideration of αw (t ) in
the calculation (see the text). The vertical red and black lines indicate
the transition fluences (see the text) for the Gaussian shape and the
flat-top profile, respectively.

super-Gaussian profiles in the 5-fs case are due to the quiver
amplitude αl (t ) [see Eqs. (4) and (5)]. Indeed, these structures
disappear if one neglects the quiver amplitude, as it can
be seen in Fig. 3 for the flat-top case (dashed black line).
Calculations without αl (t ) have been performed for all the
waveforms considered here and we have observed that the
influence of this factor on emitted densities is negligible in
the single-photon fluence region, while it produces a decrease
of a factor around 2 in the multiphoton region. We have also
observed that the ponderomotive energy βl (t ) does not play
any significant role on ejected densities in the domain of
fluence under consideration.

For practical reasons, the cos2 waveform is frequently used
in theoretical works in place of the Gaussian shape. One can
see in Figs. 1 and 3 that these envelopes lead to the same
emitted densities at high enough fluences. However, in the
low-fluence range emitted densities obtained by consideration
of the cos2 shape are significantly greater than those related
to the Gaussian form and these differences increase with
decreasing pulse duration. This is due to the fact that the
high-energy tail of the cos2 spectral intensity is much more
important than the Gaussian one (see Fig. 2).

IV. TRANSITION INTENSITY

In order to determine the intensity Itr for which the be-
havior of ejected densities evolves from the single-photon
Im power law to the multiphoton I n

m one, we have expanded
the term exp[iAl (t )z/c] of Eq. (4) in a Taylor series and
we have also neglected the quantities αl (t ) and βl (t ). After
a straightforward analysis based on Eqs. (2)–(5), emitted
densities can be expressed as

�e =
+∞∑
p=0

ηp Ip/2+1
m , (9)

in which the coefficients ηp vanish for odd values of p. In-
deed, it can be shown that these coefficients contain products
of integrals over time (discussed below) in which different
resonance conditions appear related to energy conservation
like (�ε − ω0)−1 and (�ε − 2ω0)−1. Since the two resonance
conditions cannot be fulfilled simultaneously, one of these in-
tegrals vanishes. This fact has also been verified numerically.
Then �e can be expanded as

�e =
+∞∑
n=1

σnI
n
m = σ1Im + σ2I

2
m + σ3I

3
m + · · · , (10)

where n is the multiphotonic order and the weights σn read

σn = kBT

2π2

[
8π

c

]n ∫ +∞
√

2Vc

dkf z

∫ √
2Vc

0
dkiz

⎧⎨
⎩

2n−2∑
j=0

Cj C∗
2n−j−2

⎫⎬
⎭

× ln

{
1 + exp

(
1

kBT

[
μ − k2

iz

2

])}
, (11)

in which the coefficients Cm(kiz, kf z) come from the expan-
sion of |Tif (kiz, kf z)|2 and are given by

Cm(kiz, kf z) = im+1

m!
Mm(kiz, kf z)Lm(kiz, kf z), (12)

with

Mm =
∫ +∞

−∞
dz �∗

kf z
(z)zm+1 exp

(
�(−z)z

δs

)
�kiz

(z),

Lm =
∫ +∞

−∞
dt fl (t )am

l (t ) exp(i�εt ), (13)

where fl (t ) = Fl (t )/�l is the normalized temporal shape and
al (t ) = − ∫ t

−∞ dξ fl (ξ ) is the normalized vector potential.
One can note in Eq. (13) that the matrix element Mm is char-
acteristic of the metal target, while Lm is mainly characteristic
of the laser pulse. Furthermore, in the case of the coefficient
σ1 of Eq. (10), the discrete sum in Eq. (11) reduces to |C0|2 =
|M0L0|2, where M0 is the dipole matrix element and L0 the
Fourier transform of the normalized temporal profile with �ε

the difference in perpendicular energy between the final and
the initial state. The term |L0|2 in the σ1 coefficient is respon-
sible for the variations of the emitted densities as a function
of the pulse waveform in the single-photon absorption regime
that can be observed in Figs. 1 and 3.

Then we define the transition intensity as the intensity for
which the sum of the terms from n = 2 to n + 1 of Eq. (10)
overtake the first one. Thus this value is obtained through

n+1∑
j=2

σjIj
tr = σ1Itr. (14)

This amounts to finding the root with physical meaning of an
nth degree polynomial. The sum up to n + 1 in Eq. (14) is
necessary in the case of a smooth transition as for the flat-top
profile or for the 5-fs super-Gaussian envelope; otherwise a
sum up to n is enough. In the case at hand with n = 3, this
method leads, for example, to 9 × 10−8 and 5 × 10−8 J/cm2

for the transition fluence in the cases of 5- and 20-fs Gaussian
shapes, respectively, and 3 × 10−4 J/cm2 in the 5-fs flat-top
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case. These values, which are in agreement with what can be
observed in Figs. 1 and 3, are indicated by vertical lines in
these figures.

In the 20-fs case (Fig. 1), emitted densities in the flu-
ence transition regions for the Gaussian, super-Gaussian, and
cos2 waveforms appear too weak to allow the experimental
observation of the transition between the two photoemission
regimes. This is probably also the case for Gaussian and cos2

profiles at 5 fs (Fig. 3). However, such a detection should
be possible by consideration of a flat-top envelope (emitted
densities around 1017 e−/cm3 in the transition region) or by
means of a super-Gaussian profile at short-pulse duration.

Finally, it must be noted that the jellium model used in this
work to represent the simple electronic structure of aluminum
is not able to account for localized surface states like intrinsic
surface states or image potential states [15]. It has been shown
[13,16] that these partially occupied states which display a
highly localized electron density at the edge of the crystal
surface can significantly influence the photoemission process.
Consequently, localized surface states whose corresponding
eigenfunctions and eigenenergies would appear in Eq. (13)
can modify the transition intensity value. However, the study
of this effect is beyond the scope of the present work.

V. SUMMARY

We have evaluated electronic densities emitted from an
Al(111) surface irradiated by near infrared femtosecond (less
than 20 fs) laser pulses with various temporal profiles over
a large range of intensities. Even if several photons are

necessary to eject an electron in the intermediate multiphoton
intensity range, ionization takes place through the absorption
of only one photon at low enough intensities. This behavior
has been shown to originate from the high-energy part of the
pulse spectrum. Consequently, our attention has been attracted
by the intensity region in which the behavior of ejected densi-
ties evolves from the single-photon absorption Im power law
to the I n

m multiphotonic law (with n = 3 in the present case).
An analytical method is proposed to calculate the transition
intensity Itr between these two regimes of photoemission.
Our study shows that the use of a flat-top profile or at least
a super-Gaussian one allows us to obtain important emission
at very low intensities with realistic laser pulses durations.

The transition evidenced here results only from the energy
conservation associated with various parts of the pulse spec-
trum, the present conclusions are expected to be universal,
taking place for all types of targets (atoms, molecules, and
solids). To our knowledge, such a transition has not been
evidenced experimentally up to now. In the case of gaseous
targets, emitted electronic densities at low intensities are
probably too weak even with short shaped pulses to enable
such measurement. Solids and in particular metals are good
candidates due to the high electronic densities involved lead-
ing to relatively large emitted densities of 1016–1017 e−/cm3

where the linear-nonlinear transition takes place.
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