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Screening and enhancement of an oscillating electric field in molecules
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According to the Schiff theorem, the atomic electrons completely screen the atomic nucleus from an external
static electric field. However, this is not the case if the field is time dependent. Electronic orbitals in atoms
either shield the nucleus from an oscillating electric field when the frequency of the field is off the atomic
resonances or enhance this field when its frequency approaches an atomic transition energy. In molecules, not
only electronic but also rotational and vibrational states are responsible for the screening of oscillating electric
fields. As will be shown in this paper, the screening of a low-frequency field inside molecules is much weaker
than it appears in atoms owing to the molecular rovibrational states. We systematically study the screening
of oscillating electric fields inside diatomic molecules in different frequency regimes, i.e., when the field’s
frequency is either of the order of rovibrational or electronic transition frequencies. In the resonance case, we
demonstrate that the microwave-frequency electric field may be enhanced up to six orders in magnitude due
to rovibrational states. We also derive the general formulas for the screening and resonance enhancement of
oscillating electric field in polyatomic molecules. Possible applications of these results include nuclear electric
dipole moment measurements and stimulation of nuclear reactions by laser light.
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I. INTRODUCTION

It is well known that the standard model of elementary par-
ticles predicts small electric dipole moments (EDMs) for the
electron and nucleon; see, e.g., Refs. [1–3] for recent reviews.
Different extensions of SM such as axion or supersymmetry
predict, however, different values for the EDMs of elementary
particles. Therefore, it is a challenge for modern experimental
physics to measure the EDMs of the electron and neutron
in order to verify (or falsify) these models. Presently, there
are several groups pursuing this goal, although the sensitivity
of current experiments does not allow one to make firm
conclusions.

One of the difficulties encountered in measuring the EDMs
of nuclei in atoms and molecules is the screening of the
external electric field by the electron shells in these systems.
Indeed, according to a theorem by Schiff [4], the atomic
nucleus of a neutral atom is completely screened from any
static external electric field. EDMs of diamagnetic atoms are
produced by the interaction of electrons with the nuclear
Schiff moment [5–9]. For light atoms, atomic EDMs produced
by the Schiff moment are very small, while they appear
significant for heavy atomic species (∼10−3dn; dn is the EDM
of neutron). Thus the electron screening makes the detection
of the nuclear EDMs difficult.

A possible way to overcome this difficulty is to use ions
instead of neutral atoms, where the screening of external fields
is incomplete [10]. However, since a charged particle is not
stationary in an electric field, it is problematic to preform
precise measurements on such a particle.
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The behavior of atoms in an oscillating electric field is
drastically different from that in the static case. It is natural to
expect that the screening of alternating electric field in atoms
and molecules is incomplete since the particles constituting
an atom or a molecule respond to the changes in the field
with some delay. Recently, it has been shown that when the
frequency of the external electric field is far from atomic
resonances, the resulting electric field at the center of an atom
is proportional to the dynamical atomic polarizability [11].
Numerical tests of these results were performed in Ref. [12].
However, when the frequency of the external field approaches
the energy of atomic transition, there may be a significant
enhancement (up to 105) of the field [13].

The extension of the static Schiff theorem to molecules was
considered in Ref. [14]. The derivation therein used the Ehren-
fest theorem and resorted to classical mechanics to relate the
acceleration of each nucleus to that of the whole molecule.
Although this approach proved fruitful in the static case, it
becomes inefficient in the dynamic case since the classical
motion of a molecule in an oscillating field is itself difficult
to describe. This paper aims at developing a general and fully
quantum-mechanical method for computing the electric field
inside atoms and molecules which is applicable both for static
and oscillating electric fields.

Note that the quantum-mechanical description of
molecules has some important features as compared with
the atomic case. In molecules, it is necessary to separate the
relative motion of the constituent nuclei from the motion of
the common center of mass, while in atoms this separation is
not essential, i.e., the atomic nucleus may be considered as
fixed in space. This relative motion of the nuclei in a molecule
is described by the rotational and vibrational modes. As a
result, the molecular spectra appear to have a very rich
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structure with rotational, vibrational, and electronic states.
As will be shown in this paper, these states give rise to new
terms in the formula for the resulting electric field in the
molecule as compared with the atomic case studied in [11].
All these new terms play an important role in the screening of
the external electric field in molecules.

The rest of this paper is organized as follows. In Sec. II,
the problem of calculating the field at the nuclei in a diatomic
molecule in an external electric field is discussed. The cases
of a static field, of an oscillating field off resonance with the
molecular transitions, and of an oscillating field on resonance
with a molecular transition will be examined. In Sec. III,
we will consider examples of some diatomic molecules and
present the estimates of screening and resonance enhancement
of electric field at nuclei. Section IV is devoted to the general-
ization of the diatomic-molecule case to systems of arbitrary
number of nuclei. Section V contains a summary of the results
and discussion of their potential application.

Throughout this paper, we employ the atomic units in
which h̄ = e = me = 4πε0 = 1. This makes the intermediate
formulas more compact. The final results, for convenience,
will be presented in arbitrary units with all fundamental
constants given explicitly.

II. SCREENING OF ELECTRIC FIELD IN
DIATOMIC MOLECULES

In this section, we derive the general formulas for the
screening of both static and alternating external electric fields
inside diatomic molecules. To make our presentation self-
consistent, we begin with a review of the molecular Hamil-
tonian in the center-of-mass coordinates frame.

A. Diatomic molecule Hamiltonian in the center-of-mass frame

Consider a diatomic molecule with L electrons in an ex-
ternal electric field Eext. Let MI and ZI be the masses and
charges of the nuclei, respectively (the subscript I = 1, 2 la-
bels the nuclei). The position and momentum operators of the
nuclei in the laboratory frame will be denoted by RI and PI ,
respectively. The electron positions and momenta operators
will be denoted by ri and pi (the subscript i = 1, . . . , L labels
the electrons).

The Hamiltonian of the diatomic molecule in the labora-
tory frame has the standard form

Hmol = K + V0 + V, (1a)

K = P2
1

2M1
+ P2

2

2M2
+

L∑
i=1

p2
i

2
, (1b)

V0 = Z1Z2

R12
−

L∑
i=1

(
Z1

R1i
+ Z2

R2i

)
+

L∑
i< j

1

ri j
, (1c)

V = −Eext ·
(

Z1R1 + Z2R2 −
L∑

i=1

ri

)
, (1d)

where RIi = |RI − ri|, ri j = |ri − r j |, and RIJ = |RI − RJ |.
Recall that we are using the atomic unit system in which e =
me = 1. Here, for simplicity, we consider the nonrelativistic
Hamiltonian for spinless particles.

It is convenient to define the total nuclear mass MN =
M1 + M2, the total nuclear charge ZN = Z1 + Z2, the to-
tal molecular mass MT = MN + L, and the total molecular
charge ZT = ZN − L (ZT = 0 for a neutral molecule).

To separate the molecule’s center-of-mass motion from the
relative dynamics of the electrons and nuclei, we perform the
change of variables (RI , ri ) → (ST , S, si )

ST = 1

MT

(
M1R1 + M2R2 +

L∑
i=1

ri

)
,

S = R1 − R2,

si = ri − M1R1 + M2R2

MN
, (2)

where ST is the position operator of the molecular center of
mass, S defines the molecular axis, and si are the positions of
the electrons with respect to the nuclear center of mass.

The conjugated momenta of the coordinates (ST , S, si ) will
be denoted by (QT , Q, qi ). These momenta are related to the
original momenta (PI , pi ) via

PI = − MI

MN

L∑
i=1

qi − (−1)I Q + MI

MT
QT ,

pi = qi + 1

MT
QT . (3)

The change of variables (2) and (3) in the Hamiltonian (1)
allows us to isolate the dynamics of the center of mass from
the relative motion,

Hmol = HT + Hrel, (4)

where

HT = Q2
T

2MT
− ZT Eext · ST (5)

is the center-of-mass Hamiltonian and Hrel is the Hamiltonian
describing the relative dynamics

Hrel = H0 + Vrel, (6a)

H0 =
L∑

i=1

q2
i

2μe
+

L∑
i< j

qiq j

MN
+ Q2

2μN
+ V0, (6b)

Vrel = V + ZT Eext · ST ≡ −d · Eext. (6c)

Here

μN = M1M2

MN
, μe = MN

1 + MN
(7)

are the reduced nuclear and electron masses, respectively, and
d is the electric dipole moment with respect to the molecular
center of mass,

d = −ζe

L∑
i=1

si + ζN S. (8)

Here we introduced the notations for the reduced electron
charge ζe and reduced nuclear charge ζN :

ζe = MN + ZN

MT
, (9)

ζN = M2Z1 − M1Z2

MN
. (10)
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Note that the Hamiltonian (6) contains the potential V0 defined
in Eq. (1c). Here it is assumed that this potential is expressed
in terms of the new variables S and si.

We point out that this section presents no new results.
It only describes the standard change of variables in the
molecular Hamiltonian (1) which allows one to isolate the dy-
namics of the center of mass of the molecule from the relative
dynamics.

B. Screening of a static external electric field

Let us consider the screening of a static homogeneous
electric field Eext = E0 at the position RI of the Ith nucleus.
The operator of the electric field induced by the other nucleus
and the electrons reads

E′
I = − 1

ZI
∇RIV0 = − i

ZI
[PI , H0], (11)

where the Hamiltonian H0 is given in Eq. (6).
Note that the Hamiltonian H0 defined in Eq. (6) is inde-

pendent from the center-of-mass coordinate ST . As a conse-
quence, [QT , H0] = 0, and Eq. (11) may be put in the form

E′
I = − i

ZI
[�I , H0], (12)

where �I denotes the truncated momentum operator

�I ≡ PI − MI

MT
QT = −(−1)I Q − MI

MN

L∑
i=1

qi. (13)

Using Eqs. (8) and (9), one can prove the following com-
mutator relation between �I and the potential Vrel given in
Eq. (6c): (

1 − MI ZT

MT ZI

)
E0 = − i

ZI
[�I ,−d · E0]. (14)

The composition of Eqs. (12) and (14) yields

E′
I +

(
1 − MI ZT

MT ZI

)
E0 = − i

ZI
[�I , Hrel]. (15)

Let ψ be a stationary-state wave function describing the
molecule in the center-of-mass frame, namely

Hrelψ = Eψ. (16)

The expectation value of the commutator on the right-hand
side of Eq. (15) with respect to ψ vanishes. This allows us to
find the expectation value of the operator E′

I on the left-hand
side of Eq. (15), 〈E′

I〉 ≡ 〈ψ |E′
I |ψ〉, so the total electric field at

Ith nucleus 〈EI〉 is

〈EI〉 ≡ 〈
E′

I

〉 + E0 = MI ZT

MT ZI
E0. (17)

This result, derived in a fully quantum-mechanical way,
agrees with that obtained in Ref. [14] with the use of the
Ehrenfest theorem. Note that, for a neutral molecule, ZT = 0
so the nuclei are completely screened from the static external
field, 〈EI〉 = 0. In deriving this result we explicitly assumed
that the nuclei are pointlike particles. For real molecules,
this screening is incomplete due to the finite-size effects of
the nuclei which are accounted for by the Schiff moment

operator [5–9]. In this paper, however, we do not consider
Schiff moment corrections.

C. Off-resonance screening of an oscillating
external electric field

We now consider the case of an oscillating external electric
field with frequency ω1

Eext = E0 cos ωt . (18)

When this field is sufficiently weak, the time-dependent per-
turbation theory may be applied to the Hamiltonian (6) with

Vrel(t ) = −d · E0 cos ωt (19)

treated as the perturbation.
Let |n〉 be a complete set of eigenstates of the unperturbed

Hamiltonian H0, namely
H0|n〉 = En|n〉. (20)

Up to the first order in perturbation theory, the evolution of
the ground state |0〉 is described by the wave function

ψ (t )=e−iE0t

[
|0〉 − i

∑
n

∫ t

dτ e−iωn0(t−τ )|n〉〈n|Vrel(τ )|0〉
]
,

(21)

where ωn0 = En − E0. In this formula, we assume that the
frequency of the external field ω is not in resonance with any
transition with energy ωn0. In this case, it is safe to discard the
widths of these states. The resonant case will be addressed in
the next subsection.

Substituting the potential (19) into Eq. (21), we find the
expectation value of the operator E′

I describing the induced
electric field at the Ith nucleus due to the other nucleus and
the electrons,

〈E′
I〉 ≡ 〈ψ (t )|E′

I |ψ (t )〉 = 2 cos ωt

×
∑

n

ωn0Re〈0|E′
I |n〉〈n|d · E0|0〉

ω2
n0 − ω2

. (22)

Making use of the identity (12), one may cast Eq. (22) in the
form

〈E′
I〉 = 2 cos ωt

ZI

∑
n

ω2
n0Im[〈0|�I |n〉〈n|d · E0|0〉]

ω2
n0 − ω2

, (23)

where the operator �I is defined as in Eq. (13).

Using the identity ω2
n0

ω2
n0−ω2 = 1 + ω2

ω2
n0−ω2 , the completeness

of the set of states |n〉, and the relation (15), we find the total
electric field at the position of Ith nucleus

〈EI〉 ≡ 〈E′
I〉 + E0 cos ωt = MI ZT

MT ZI
E0 cos ωt

+ 2ω2 cos ωt

ZI

∑
n

Im [〈0|�I |n〉〈n|d · E0|0〉]
ω2

n0 − ω2
. (24)

1An oscillating electric field Eext = E0 cos ωt generates an oscillat-
ing magnetic field Bext = B0 cos ωt , where B0 is orthogonal to E0.
This field, however, does not contribute to the resulting electric field
at nuclei due to the parity selection rules. Therefore, in what follows
we focus on the external electric field only.
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We point out that Eq. (24) is valid not only for the
Schrödinger Hamiltonian (6b), but also for the case when the
kinetic term for electrons is described by the Dirac Hamilto-
nian. In the latter case, the relativistic corrections due to the
Dirac equation are included in the energies ωn0 and states |n〉.

Using the explicit form of the Hamiltonian H0 given
in Eq. (6), one may prove the following identity for the
operator (13):

�I = iMI

ζeMT
[−d + MI S, H0], (25)

where

MI = (−1)I (MN − MI + ZN − ZI ), (26)

and the quantities d and ζe are given in Eqs. (8) and (9),
respectively.

The identity (25) allows us to represent the formula (24)
for the resulting electric field at the Ith as

〈EI〉 =
[

MI ZT

MT ZI
− ω2MI

ζeMT ZI
(

↔
α −

↔
βI )

]
E0 cos ωt, (27)

where

↔
α = 2

∑
n

ωn0

ω2
n0 − ω2

〈0|d|n〉〈n|d|0〉 (28)

is the molecule’s polarizability tensor and

↔
βI = 2MI

∑
n

ωn0

ω2
n0 − ω2

〈0|S|n〉〈n|d|0〉. (29)

Equation (27) describes the screening of an oscillating elec-
tric field inside a diatomic molecule in the case when the
frequency of the field is off resonance from any molecular
transition. Let us discuss the terms in this formula.

The first term in the brackets has the same form as for the
screening of static electric field (17). This term is proportional
to the total charge of the molecule ZT which is vanishing for
neutral molecules.

The second term in the brackets is specified by the molec-
ular polarizability tensor

↔
α. This term has the same structure

as that in the formula for screening of electric fields in atoms
derived in Ref. [11].

The last term in Eq. (27) is described by the tensor
↔
βI

defined in Eq. (29). This tensor depends on the matrix element
of the internuclear distance operator S, which has no analogy
in the atomic case. As we will show in the next section, this
term plays a significant role in the screening of the external
field in molecules. In fact, due to the large ratio of nuclear

and electron mass |MI | ≈ (MN − MI )/me � 1,
↔
βI usually

dominates over
↔
α. As will be discussed in Sec. III B, if the

external field’s frequency is in the rotational or vibrational

regimes (10−5–10−3 a.u.), then |
↔
βI | � ↔

α. Only the case where
the field’s frequency is in the electronic transition regime

(∼0.1 a.u.) that
↔
βI and

↔
α become comparable.

In conclusion of this section, we rewrite our results
(27)–(29) with the fundamental constants h̄, e, and me

explicitly shown:

〈EI〉 =
[

MI ZT

MT ZI
− ω2meMI

e2ζeMT ZI
(
↔
α −

↔
β I )

]
Eext, (30a)

↔
α = 2

h̄

∑
n

ωn0

ω2
n0 − ω2

〈0|d|n〉〈n|d|0〉, (30b)

↔
β I = 2MI

h̄

∑
n

ωn0〈0|eS|n〉〈n|d|0〉
ω2

n0 − ω2
, (30c)

where MI = (−1)I [m−1
e (MN − MI ) + ZN − ZI ], ζe =

M−1
T (MN + meZN ), and d = −ζee

L∑
i=1

si + ζN eS.

Since me � MI , one can make the (good) approximations
ζe ≈ 1, M1 ≈ −M2/me, M2 ≈ M1/me, and MT ≈ MN . Note
that, with these approximations, the final term in the bracket
in Eq. (30a) may be written as

ω2meMI

e2ζeMT ZI

↔
β I ≈ 2(−1)Iω2μN

e2h̄ZI

×
∑

n

ωn0〈0|eS|n〉〈n|d|0〉
ω2

n0 − ω2
, (31)

where μN is the reduced nuclear mass defined in Eq. (7).

D. Resonance enhancement of an oscillating
external electric field

When the frequency of the external electric field (18)
approaches one of the molecular transition frequencies, ω =
ωn0, the width of this state �n cannot be ignored in perturba-
tive calculations. In this case, the wave function (21) should
be modified to read

ψ (t ) = e−iE0t

[
|0〉 − i

∑
k

∫ t(
dτe−i(ωk0−i�k/2)(t−τ )

× |k〉〈k|Vrel(τ )|0〉)
]
. (32)

Using the explicit form of the potential (19), we find the
expectation value of the operator E′

I describing the electric
field at the Ith nucleus induced by the electrons and the other
nucleus

〈E′
I〉 =

∑
k

[
− cos(ωt ) fk (ω) + �k

2
sin(ωt )gk (ω)

]

× Re〈0|E′
I |k〉〈k| − d · E0|0〉, (33)

where

fk (ω) = ωk0 + ω

(ωk0 + ω)2 − (�k/2)2

+ ωk0 − ω

(ωk0 − ω)2 − (�k/2)2
, (34a)

gk (ω) = 1

(ωk0 + ω)2 − (�k/2)2

− 1

(ωk0 − ω)2 − (�k/2)2
. (34b)
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Note that, in Eq. (33), we keep only the terms which are not
suppressed by the small factor e−�kt/2.

It is natural to assume that all linewidths �k are much
smaller than the corresponding energies, �k � ωk0. Under
this assumption, the leading term in the functions fk (ω) and
gk (ω) are

fk (ω) =
{

1/2ω, k = n,

2ωk0/
(
ω2

k0 − ω2
)
, k = n,

(35a)

gk (ω) =
{−4/�2

n, k = n,

−4ωk0ω/
(
ω2

k0 − ω2
)2

, k = n.
(35b)

Substituting these functions into Eq. (33) and using the
identity (12), we find the total field at the Ith nucleus 〈EI〉 ≡
E0 cos(ωt ) + 〈E′

I〉,

〈EI〉 = MI ZT

MT ZI
E0 cos ωt + 2ω2 cos ωt

ZI

×
∑
k =n

Im[〈0|�I |k〉〈k|d · E0|0〉]
ω2

k0 − ω2

− 3 cos ωt

2ZI
Im[〈0|�I |n〉〈n|d · E0|0〉]

− 2ω sin ωt

ZI�n
Im[〈0|�I |n〉〈n|d · E0|0〉]. (36)

In deriving this result, we have employed the identity (14) and
taken into account the completeness of the set of states |k〉.

Different terms in the expression (36) play different roles
in the screening or resonant enhancement of the electric
field at the Ith nucleus in the molecule. Let us discuss them
separately.

The term in the first line of Eq. (36) is present only for
charged molecules with ZT = 0. In the rest of this subsection
we consider neutral molecules for which this term vanishes.

The term in the second line is responsible for the screening
of the external field due to the states which are off resonance
with frequency ω. Strictly speaking, this term cannot be ex-
pressed via the tensors (30b) and (30c) since the sum does not
contain the state |n〉, which is on resonance with the external
field.

The terms in the last two lines arise from this state |n〉,
which is in resonance with the external field. Between these
terms, the last one dominates because the width is typically
much smaller than the energy, �n � ω. Moreover, if |n〉 is a
rotational or vibrational state, then �n is typically very small
and the factor ω/�n in the last term of Eq. (36) causes it to
dominate over all other terms. We can thus write (with the
constant e and me restored)

〈EI〉 ≈ ω2meMI

ζee2ZI MT �n

↔
γ I E0 sin ωt, (37)

where we have introduced the tensor
↔
γ I = 2〈0|d|n〉〈n|d|0〉 − 2MI〈0|S|n〉〈n|d|0〉. (38)

In deriving Eq. (37) we applied the identity (25).
The electric field at the Ith nucleus (37) has the following

features. (i) The external field may be enhanced by many

orders of magnitude due to the resonance factor ω/�. (ii) The
phase of the resulting field is shifted by π/2 with respect to
the applied field. This is a typical resonance phase shift which
occurs in damped driven oscillations. Both these features are
already known for an atom in an oscillating electric field [13].
Here we establish similar results for molecules.

We note that, although in the resonance case, the external
field may be significantly enhanced thanks to the smallness of
the width �n, it certainly does not mean that one can induce an
arbitrarily large field at a nucleus by using an arbitrarily strong
external field. This is because for strong fields, perturbation
theory, in the framework of which the results of this section
were derived, breaks down. The condition for the applicability
of perturbation theory reads

	 � �n, (39)

where 	 ≡ |〈0|d · E0|n〉| is the Rabi frequency (see Ref. [13]
for more detail).

If the condition 	 � �n is not met, then 〈EI〉 may be
calculated nonperturbatively by considering the states |0〉 and
|n〉 as forming a two-level quantum system. The result is

〈EI〉 ≈ ω2meMI

ζee2ZI MT

�n

�2
n + 2	2

↔
γ I E0 sin ωt . (40)

We note that, for the weak external field E0 such that
	 � �n, Eq. (40) reduces to Eq. (37) derived perturbatively.
For a strong external field such that 	 � �n the resulting
electric field at nucleus 〈EI〉 becomes inversely proportional
to the applied field E0.

According to Eq. (40), the field 〈EI〉, considered as a
function of E0, reaches its maximum at

E0 = Ecrit ≡ �n√
2d

, (41)

where d = |〈0|d · k̂|n〉|. Here, k̂ is the unit vector in the direc-
tion of E0. The maximal value of EI ≡ |〈EI〉|, corresponding
to E0 = Ecrit , is

Emax
I ≈ ω2meMI√

8ζee2ZI MT d
|↔
γ I k̂| sin ωt . (42)

It is important to note that this field is independent of the width
of the excited state �n.

III. NUMERICAL ESTIMATES FOR
DIATOMIC MOLECULES

In this section, the screening of an electric field in some di-
atomic molecules will be considered. To find the total electric
field at the Ith nucleus (27), one needs to evaluate the tensors
↔
α,

↔
βI , and

↔
γ I given in Eqs. (28), (29), and (38). In general, to

accurately compute these tensors one needs to apply sophisti-
cated numerical methods. Our goal is, however, to give crude
semianalytic estimates of some leading contributions to these
tensors. For this purpose, we first develop a representation
of these tensors in the Born-Oppenheimer approximation and
then present numerical estimates for some simple molecules.
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A. Molecular polarizability in the
Born-Oppenheimer approximation

The leading contributions to the tensors (28), (29), and (38)
may be estimated in the Born-Oppenheimer approximation.
In this approximation, the motion of the molecule in any
state |n〉 may be separated into rotational, vibrational, and
electronic modes. The rotational motion is described by the
Wigner D matrix DJn

Mn
n
(�) depending on the set of Euler

angles � which describes the molecule’s orientation with
respect to the fixed laboratory frame (Jn is the molecule’s total
angular momentum quantum number, Mn is the projection of
this angular momentum onto the laboratory z axis, and 
n

is the projection of the electronic angular momentum onto
the internuclear axis), whereas the vibrational and electronic
motions may be described by the ket |μn
nνn〉 (νn is the
vibrational quantum number which, generally, depends on Jn,
νn = νn(Jn), and μn denotes all other quantum numbers). We
write

|n〉 =
√

2Jn + 1

8π2
DJn

Mn
n
(�)|μn
nνn〉, (43)

where the coefficient
√

(2Jn + 1)/8π2 is the normalization
constant for the Wigner D matrix. The ket |μn
nνn〉 is as-
sumed to be properly normalized.

The ket |μn
nνn〉 may be considered as a wave function of
the molecule in the rotating frame. This wave function factor-
izes into the vibrational ψμn
n

νn
(S) and electronic φμn
n (S, si )

parts,

|μn
nνn〉 = S−1ψμn
n
νn

(S)φμn
n (S, si ). (44)

In this representation, we ignore all spins of electrons and
nuclei. This approximation usually gives acceptable accuracy
for low rotational levels [15].

In literature, the polarizability tensor
↔
α is often calculated

in the frame rotating with the molecule (this frame is defined
with respect to the laboratory by the angular coordinates �).
However, the external electric field is naturally defined with
respect to the laboratory frame. Thus one needs to express the
laboratory-frame components of the molecular polarizability
tensor via its rotating-frame components.

The spherical components of the vector d in the laboratory
(l) and rotating (r) frames will be denoted by d (l )

q and d (r)
q

(q = 0,±1), respectively. They are related to each other by
the formula [15]

d (l )
p =

∑
q

(−1)p−qD1
pq(�)d (r)

q . (45)

This formula, together with Eq. (43) and the standard
identity for the Wigner D matrices [16,17],

1

8π2

∫
D̄J ′

M ′
′ (�)D j
pq(�)DJ

M
(�)d�

= (−1)2J ′−M ′−
′
(

J ′ j J

−M ′ p M

)(
J ′ j J

−
′ q 


)
,

(46)

allows us to relate the laboratory-frame components of the
tensor 〈0|d|n〉〈n|d|0〉 to its rotating-frame components

〈0|d (l )
p |n〉〈n|d̄ (l )

q |0〉
= δpq(2J0 + 1)(2Jn + 1)

×
(

J0 1 Jn

−M0 p Mn

)2( J0 1 Jn

−
0 
0 − 
n 
n

)2

× ∣∣〈μ0
0ν0|d (r)

0−
n

|μn
nνn〉
∣∣2

. (47)

If the molecule is nonpolarized in the ground state, the
expression (47) should be averaged over the quantum number
M0 and summed over the quantum number Mn. In this case,
the molecular polarizability tensor (28) has only the scalar part
α(ω), namely

↔
α(ω) = α(ω)13×3. (48)

Physically, this implies that the induced electric field in the
nonpolarized molecule can only be parallel to the external
electric field.

Without loss of generality, it may be assumed that the
external field Eext is directed along the laboratory z axis. For
simplicity, it will also be assumed that the ground state is in
the � (
 = 0) configuration and has total angular momentum
J0 = 0 (this assumption forces M0 = 0 and Jn = 1). Under
these assumptions, the only relevant component of the tensor
(47) is

〈0|d (l )
0 |n〉〈n|d̄ (l )

0 |0〉 = δ0Mn

(
0 1 1

0 −
n 
n

)2

× ∣∣〈μ0�ν0|d (r)
−
n

|μn
nνn〉
∣∣2

, (49)

where the vibrational quantum number ν0 corresponds to
the total momentum quantum number J = 0, whereas νn is
attributed to J = 1.

Substituting Eq. (49) into Eq. (28), we obtain the expres-
sion for the polarizability tensor in the laboratory frame via
the components of this tensor in the molecular (rotating) frame

α(ω) = 1
3 [α‖

el(ω) + 2α⊥
el (ω) + α

‖
vib(ω) + α

‖
rot (ω)], (50)

where α
‖
el and α⊥

el are the parallel and perpendicular com-
ponents with respect to the molecular axis arising due to
electronic excitations; α

‖
vib and α

‖
rot are the terms originating

from the vibrational and rotational states. Explicitly, these
quantities read

α
‖
el(ω) =

∑
μn = μ0

νn

2ωn0

ω2
n0 − ω2

∣∣〈μ0�ν0|d (r)
0 |μn�νn〉

∣∣2
, (51a)

α⊥
el (ω) =

∑
μn,νn

2ωn0

ω2
n0 − ω2

∣∣〈μ0�ν0|d (r)
−1|μn�νn〉

∣∣2
, (51b)

α
‖
vib(ω) =

∑
νn =ν0

2ωn0

ω2
n0 − ω2

∣∣〈μ0�ν0|d (r)
0 |μ0�νn〉

∣∣2
, (51c)

α
‖
rot (ω) = 2ων0ν

′
0

ω2
ν0ν

′
0
− ω2

∣∣〈μ0�ν0|d (r)
0 |μ0�ν ′

0〉
∣∣2

, (51d)
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where the vibrational quantum numbers ν0 and ν ′
0 correspond

to J = 0 and J = 1, respectively.
As we will show in the end of this section, the representa-

tion for the molecular polarizablity (50) appears useful, as the
values of the quantities (51) may be either easily calculated or
found in literature. Similar representations may be developed
for the tensors (29) and (38). Following the same procedure
as above, it is possible to prove that each of these tensors is
proportional to the unit matrix,

↔
βI (ω) = βI (ω)13×3,

↔
γ I (ω) = γI (ω)13×3. (52)

For the quantity βI (ω) we find

βI (ω) = MI

3
[β‖

vib(ω) + β
‖
rot (ω)], (53)

where

β
‖
vib(ω) = 2

∑
νn =ν0

ωn0

ω2
n0 − ω2

〈μ0�ν0|S|μ0�νn〉

× 〈μ0�νn|d (r)
0 |μ0�ν0〉, (54a)

β
‖
rot (ω) = 2ων0ν

′
0

ω2
ν0ν

′
0
− ω2

〈μ0�ν0|S|μ0�ν ′
0〉

× 〈μ0�ν ′
0|d (r)

0 |μ0�ν0〉. (54b)

In contrast to the quantities (28) and (29), there is no summa-
tion over states in the formula of the γ tensor (38) since only
one pair of states is in resonance with the external field.

It is of interest to consider the external electric field
in resonance with the lowest rotational state. In this case,
we have
γI (ω) = 2

3

∣∣〈μ0�ν0|d (r)
0 |μ0�νn〉

∣∣2 − 2
3MI〈μ0�ν0|S|μ0�νn〉

×〈μ0�νn|d (r)
0 |μ0�ν0〉. (55)

In this formula, the second term on the right-hand side
dominates over the first one since |MI | � 1,

γI (ω) ≈ − 2
3MI〈μ0�ν0|S|μ0�νn〉

× 〈μ0�νn|d (r)
0 |μ0�ν0〉. (56)

We point out, however, that the first term in Eq. (55) cannot
be ignored if the external electric field is in resonance with
electronic transitions in the molecule. In this case, the second
term in Eq. (55) vanishes so the sole contribution to γI (ω)
comes from its first term.

B. Screening of the external electric field in
different frequency regimes

Recall that the molecular spectra have three typical fre-
quency scales: ωrot associated with the rotational transitions,
ωvib associated with the vibrational transitions, and ωel associ-
ated with the electronic transitions. Normally, ωrot � ωvib �
ωel. It is interesting to consider the screening of external elec-
tric fields with frequencies in these three different regimes.

As was shown in the previous subsection, the induced
electric field at the Ith nucleus is parallel to the external
electric field. The magnitude of this field may be written as

EI = σI (ω)E0 cos ωt, (57)

where the suppression factor σI is defined as

σI (ω) = MI ZT

MT ZI
− ω2MI

ζeMT ZI
[α(ω) − βI (ω)]. (58)

The first term here is ω independent and is nonvanishing
only for charged molecules. Although this term is important
in the total formula for the suppression factor, it is more
interesting to analyze the other terms in Eq. (58) which are
nonvanishing both for charged and neutral molecules and are
ω dependent. Therefore, to the end of this subsection we will
restrict ourselves to the case ZT = 0. We will also work in the
limit me � MI in which ζe ≈ 1, MI ≈ (−1)I (MN − MI ), and
MT ≈ MN .

1. Screening of rotational-range-frequency fields

Let us consider an external electric field with frequency
of order of the lowest rotational transition frequencies, ω ∼
ων0ν

′
0
. In this case, because the factor ωn0/(ω2

n0 − ω2) in
Eq. (28) scales as energy inverse, the dominant contribution
to α(ω) comes from Eq. (51d) and the dominant contribution
to βI (ω) comes from Eq. (54b). Since the matrix elements
〈μ0�ν0|S|μ0�ν ′

0〉 and 〈μ0�ν0|d (r)
0 |μ0�ν ′

0〉 are of the same
order, and since |MI | � 1, the dominant contribution to the
suppression factor (58) comes from βI (ω). Thus the leading
contribution to the suppression factor (58) is given by the term
(54b), namely

σ rot
I (ω) ≈ (−1)I 2ω2μN

3ZI

ω̄S̄d̄

ω̄2 − ω2
, (59)

where

ω̄ ≡ ων0ν
′
0
= 1

μN S̄2
(60)

is the rotational energy with J = 1,

S̄ = 〈μ0�ν0|S|μ0�ν0〉 (61)

is the ground-state mean internuclear distance, and

d̄ = 〈μ0�ν0|d (r)
0 |μ0�ν0〉 (62)

is the ground-state mean electric dipole (in the direction
of S). Note that we have invoked the rigid-rotor approximation
which allows us to replace ν ′

0 by ν0 in the definition of S̄
and d̄ . We have also made the approximation MIMI/MT ≈
(−1)IμN .

2. Screening of vibrational-range-frequency fields

In the case where ω is of the order of a vibrational energy,
ω ∼ ωvib, contributions to α(ω) from α

‖
el and α⊥

el are negli-
gible, whereas the terms α

‖
vib and α

‖
rot are significant. In the

expression (53) for βI , both terms β
‖
vib and β

‖
rot contribute.

Again, since |MI | � 1, βI dominates over α. Thus, in this
case, the leading contributions to the suppression factor (58)
are

σI (ω) = σ vib
I (ω) + σ rot

I (ω), (63a)

σ vib
I (ω) ≈ (−1)I 2ω2μN

3ZI

∑
νn =ν0

ωn0Sνn
ν0

(
dr

0

)ν0

νn

ω2
n0 − ω2

, (63b)
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where ω̄, S̄, and d̄ are given in Eqs. (60), (61), and (62),
respectively, and the quantities Sνn

ν0
and (dr

0 ) are defined by

Sνn
ν0

= 〈μ0�ν0|S|μ0�νn〉 (64)

and (
dr

0

)ν0

νn
= 〈μ0�νn|d (r)

0 |μ0�ν0〉. (65)

The quantity σ rot
I (ω) in Eq. (63a) is defined in Eq. (59).

Note, however, that since the field’s frequency, being in the vi-
brational regime, is much larger than the rotational frequency,
we have ω2ω̄

ω̄2−ω2 ≈ −ω̄. As a result, this term σ rot
I (ω) becomes

independent of ω.
The quantity Sνn

ν0
may be roughly estimated assuming that

the vibrational mode is purely harmonic, i.e., vibrational
wave functions are harmonic-oscillator wave functions. The
operator d (r)

0 may be written as −∑L
i=1 s‖

i + ζN S, where
s‖

i is the projection of si onto the molecular axis. The
quantity (dr

0 )ν0
νn

may be approximated by − f ν0
νn

s̄‖ + ζN Sν0
νn

,
where f ν0

νn
= 〈νn|ν0〉 is the Franck-Condon factor and s̄‖ =

〈μ0�| ∑L
i=1 s‖

i |μ0�〉. If one takes, approximately, f ν0
νn

≈ δν0
νn

,
then the electronic part drops out when summed over all
νn = ν0. In this case, (dr

0 )ν0
νn

≈ ζN Sν0
νn

. Typically, Sν0
νn

decreases
rapidly as νn increases. Thus only the term with νn = ν0 ± 1
makes a dominant contribution to the sum in Eq. (63).

3. Screening of electronic-range-frequency fields

In the case where ω is of the order of an electronic energy,
ω ∼ ωel, the dominant contributions to the scalar polarizabil-
ity (50) come from the electronic terms (51a) and (51b). Due
to the factor MI , the contribution βI to the suppression factor
(58) is also significant. Thus, in this case, we have

σI = σ el
I (ω) + σ vib

I (ω) + σ rot
I (ω), (66a)

σ el
I (ω) ≈ − ω2MI

3MN ZI
[α‖

el(ω) + 2α⊥
el (ω)], (66b)

where the quantities ω̄, S̄, d̄ , Sνn
ν0

, and (dr
0 )ν0

νn
are as given in

Eqs. (60)–(62), (64), and (65), respectively. We point out that
the expression (66b) is analogous to the screening factor for
the oscillating electric field in atoms found in [11].

The quantities σ rot
I (ω) and σ vib

I (ω) are defined in Eqs. (59)
and (63a), respectively. Note that just as in the vibrational
energy regime, here, σ rot

I (ω) and σ vib
I (ω) is independent

of ω.

4. Summary on different contributions to the screening coefficient

In the rotational energy regime (ω ∼ 10−5 a.u.), only σ rot
I

given by Eq. (59) contributes to σI . As we move up to the
vibrational energy regime (ω ∼ 10−3 a.u.), σ vib

I (ω) defined
in Eq. (63b) becomes comparable to σ rot

I and σ el
I , on the

other hand, is still negligible. In the electronic energy regime
(ω ∼ 0.1 a.u.), σ el

I from Eq. (66b) becomes comparable to
its rotational and vibrational counterpart; now all three terms
contribute to σI .

In Fig. 1, we plot the behavior of the three quantities
σ rot

I (ω), σ vib
I (ω), and σ el

I (ω) as functions of frequency ω. The
change in the significance of these terms as one moves up the
frequency scale is clearly demonstrated.

FIG. 1. Comparison of the magnitudes of the three contributions
to σI : σ rot

I , σ vib
I , and σ el

I in the CaF molecule. The frequency ω is
presented in atomic units. For low frequency in the rotational regime,
σ rot

I dominates. For frequency in the vibrational regime, both σ rot
I

and σ vib
I contribute; σ el

I is still negligible. For large frequency in the
electronic regime, each of the three terms is comparable to the other
two.

Note that each of the three plots shows a single resonance
(the spikes in the case of σ rot

I and σ vib
I , the upward tail of

σ el
I ) due to the applied approximations. In reality, σ rot

I and
σ vib

I should have many more resonances. However, since we
assumed that the molecule is in the ground state when the
external field is absent and the contribution to σ vib

I of all states
with vibrational quantum number large than 1 is negligible,
σ rot

I and σ vib
I each has, under these approximations, a single

resonance. On the other hand, σ el
I possesses many resonances

which we do not include in Fig. 1 (these resonances are at
frequencies higher than the range plotted in Fig. 1).

C. Resonance enhancement from the lowest rotational transition

In this subsection, we consider the resonance enhancement
of an oscillating electric field in a diatomic molecule by the
lowest rotational level. This case may be of interest for exper-
imental applications because the energy of this level is in the
microwave region and is thus quite accessible experimentally.

Since the
↔
γ I tensor contains only the scalar part γI as in

Eq. (52), the formula (37) for the enhancement of the electric
field may by rewritten as

EI = εI (ω)E0 sin ωt, (67)

where εI denotes the enhancement factor,

εI (ω) = ω2MIγI

ζeZI MT �
. (68)

When the frequency of the external field is equal to the
lowest rotational state frequency (60), ω = ω̄, the equation
(56) yields γI = − 2

3 (−1)IMI S̄d̄ , where S̄ and d̄ are given in
Eqs. (61) and (62), respectively. The width of this transition
may be approximated by the electric-dipole one-photon decay
rate, � ≈ 4

3 ω̄3d̄2. In this case, the enhancement factor (68)
reads (in the limit me � MI )

εI = −(−1)I μN S̄

2ZI ω̄d̄
. (69)
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This factor gives a large enhancement of the electric field
owing to the small quantity ω̄ in the denominator.

The formula (69) is applicable only for sufficiently weak
electric field, i.e., when the Rabi frequency 	 = 〈0|d · E0|n〉
satisfies the condition 	 � �. If this condition is not met, the
enhancement of the electric field is described by the nonper-
turbative formula (40). In this case, instead of Eq. (69) we
have a more general expression for the enhancement factor:

εI = −(−1)I 4μN ω̄5S̄d̄

ZI
(
8ω̄6d̄2 + 9E2

0

) . (70)

Note that Eq. (70) reduces to Eq. (69) if E0 � ω̄3d̄ .
According to Eq. (41), the magnitude of the induced field,

EI , reaches its maximum at E0 = Ecrit ≡ √
8ω̄3d̄/3. The value

εI (Ecrit ) is given by

εI (Ecrit ) = −(−1)I μN S̄

4ZI ω̄d̄
, (71)

and the corresponding value of EI is

Emax
I = −(−1)I μN ω̄2S̄

3
√

2ZI

. (72)

Note that here, for simplicity, we have assumed that �n is
the natural width of the state |n〉. In reality, there may be other,
possibly larger, contributions to �n such as Doppler width,
collison width, etc. Nevertheless, as proved in Eq. (42), the
formula (72) for Emax

I has the same form regardless of which
�n is assumed. The critical field E0, however, depends linearly
on �n.

D. Numerical results

In this subsection, we present numerical estimates for the
suppression and enhancement factors σI and εI given by
Eqs. (59), (63), (66), (69), and (70) for various frequency
regimes and different strengths of the external electric field.
These estimates will be given for some simple diatomic
molecules with well-studied polarizability properties: lithium
hydride (LiH), sodium hydride (NaH), boron fluorine (BF),
and calcium fluorine (CaF).

For our numerical estimates, we take the values of the
mean electric dipole parameter d̄ from Refs. [18–20]. The
mean values of the internuclear distance S̄ for the molecules
under consideration are available in the NIST database [21].
The quantity Sνn

ν0
may be roughly estimated assuming that the

vibrational mode is purely harmonic. The quantity (dr
0 )ν0

νn
is

approximately given by ζN Sν0
νn

.
As noted above, the sums in Eqs. (63) and (66) contain

effectively one term corresponding to ν0 = 0 and νn = 1. The
values of the parallel α

‖
el and perpendicular α⊥

el electronic po-
larizabilities for the molecules under inspection are presented
in Ref. [22].

For the estimates of the suppression factor σI we consider
three frequency regimes: low-frequency regime, where the
frequency of the external field is taken to be half of the
first rotational frequency, ω = ω̄/2; intermediate-frequency
regime with ω = ωe/2, where ωe is the ground-state vibra-
tional constant; electronic-transition range ω ≈ ωel, where ωel

is the lowest E1 electronic transition frequency. The value

TABLE I. Estimates of the suppression factors for the electric
field on the lighter (σ1) and heavier (σ2) nuclei in the molecules
LiH, NaH, BF, and CaF. S̄ is the ground-state mean internuclear
distance, d̄ is the ground-state mean electric dipole, ω̄ is the rigid-
rotor rotational energy with angular momentum 1, and ωe is the
ground-state first vibrational constant. All quantities are presented
in atomic units. [For the convenience of unit conversion, we recall
that one atomic unit of length (Bohr) is equivalent to 0.529 Å, one
atomic unit of electric dipole moment is equivalent to 0.393 Debye,
and one atomic unit of energy (Hartree) is equivalent to 27.21 eV,
6.58 × 106 GHz, or 2.19 × 105 cm−1. The suppression factors σ1,2

are, of course, dimensionless.]

S̄ d̄
ω̄

(×10−5)
ωe

(×10−3)
ω σ1 σ2

LiH 3.0 −2.3 6.9 6.4 3.4×10−5 −0.17 0.06
3.2×10−3 0.70 −0.23
0.12 0.37 0.20

NaH 3.6 −2.6 4.5 5.3 2.2×10−5 −0.16 0.02
2.7×10−3 0.51 −0.05
0.11 0.35 0.23

BF 2.4 0.4 1.4 6.4 7.0×10−6 0.01 −0.004
3.2×10−3 −0.02 0.01
0.22 0.38 0.38

CaF 3.7 1.2 0.5 2.6 2.5×10−6 0.01 −0.004
1.3×10−3 −0.05 0.01
0.075 1.4 1.3

of ωe may be found in the NIST database [21], while the
electronic-range frequency ωel is available in Ref. [22].

Recall that the index I labels the nuclei in the diatomic
molecule. Without loss of generality we assume that I = 1
stands for the lighter nucleus while I = 2 for the heavier one.
The values of the suppression factors of the electric field at
these nuclei in different frequency regimes are presented in
Table I. The values of the enhancement factors ε1 are given in
Table II for a weak E0 � Ecrit and strong E0 = Ecrit external
field in resonance with the first rotational level. Here Ecrit =√

8ω̄3d̄/3 is the value of the electric field E0 at which the
induced field EI reaches its maximum. Incidentally, Ecrit also
serves as a rough marker above which the general formula

TABLE II. Estimates of the enhancement factors ε1 and ε2 in the
molecules LiH, NaH, BF, and CaF.

Ecrit

(V/cm)
ε1

(E0 � Ecrit )
ε1

(E0 = Ecrit )
Emax

1

(V/cm)

LiH 3.7 × 10−3 −1.5 × 107 −7.7 × 106 −2.9 × 104

NaH 1.1 × 10−3 −2.7 × 107 −1.4 × 107 −1.5 × 104

BF 5.3 × 10−6 5.5 × 108 2.8 × 108 1.5 × 103

CaF 7.3 × 10−7 1.1 × 109 5.3 × 108 3.9 × 102

Ecrit

(V/cm)
ε2

(E0 � Ecrit )
ε2

(E0 = Ecrit )
Emax

2

(V/cm)
LiH 3.7 × 10−3 5.1 × 106 2.6 × 106 9.5 × 103

NaH 1.1 × 10−3 2.5 × 106 1.2 × 106 1.4 × 103

BF 5.3 × 10−6 −3.1 × 108 −1.5 × 108 −8.2 × 102

CaF 7.3 × 10−7 −2.7 × 108 −1.3 × 108 −9.6 × 101
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(70) applies while under this value a simplified formula (69)
gives sufficient accuracy.

IV. SCREENING AND ENHANCEMENT OF ELECTRIC
FIELD IN POLYATOMIC MOLECULES

In this section, we derive the analogs of the equations
(27) and (40) for the screening and resonant enhancement of
alternating electric fields in polyatomic molecules.

A. Polyatomic molecule Hamiltonian in the
center-of-mass frame

In this subsection we consider the Hamiltonian of a poly-
atomic molecule in the center-of-mass frame. This subsection
contains no new results and serves mainly to specify the nota-
tion for the next subsection. For a more extensive discussion
of the separation of the nuclear and electronic motions in
molecules, see, for example, Ref. [23].

Consider a molecule composed of H (for “heavy”) nuclei
and L (for “light”) electrons in an external electric field Eext.
The masses and charges of the nuclei will be denoted by
MI and ZI , respectively; the nuclear positions and momenta
operators are RI and PI , respectively. The electrons’ positions
and momenta are denoted by ri and pi, respectively. Here
we use capital letters I, J = 1, . . . , H to label the nuclei, and
small letters are attributed to the electrons i, j = 1, . . . , L.

The Hamiltonian of a polyatomic molecule has the stan-
dard form

Hmol = K + V0 + V,

K =
H∑

I=1

P2
I

2MI
+

L∑
i=1

p2
i

2
,

V0 =
H∑

I<J

ZI ZJ

RIJ
−

H∑
I=1

L∑
i=1

ZI

RIi
+

L∑
i< j

1

ri j
,

V = −Eext ·
(

H∑
I=1

ZI RI −
L∑

i=1

ri

)
, (73)

where RIJ = |RI − RJ |, RI j = |RI − r j |, and ri j = |ri − r j |.
In this Hamiltonian, we ignore all spins of particles.

Following the same steps as in the case of diatomic
molecules, Sec. II A, we introduce the parameters of total
nuclear mass MN = ∑H

I=1 MI and the total nuclear charges
ZN = ∑H

I=1 ZI . The total molecular mass and charge are
MT = MN + L and ZT = ZN − L, respectively. Using these
notations, we perform a change of variables (RI , ri ) →
(ST , SI , si ) similar to Eqs. (2):

ST =
H∑

J=1

U HJ
N RJ + 1

MT

L∑
i=1

ri, (74a)

SI =
H∑

J=1

U IJ
N RJ (I = 1, . . . , H − 1), (74b)

si = ri − 1

MN

H∑
I=1

MI RI , (74c)

where UN is an H × H invertible matrix whose bottom-row
elements have the form U HJ

N = MJ/MT . The inverse of UN is
denoted by U −1

N and has elements on the last column of the

form (U −1
N )

IH = MT /MN .
The condition U HJ

N = MJ/MT means that the vector S in
Eq. (74a) is the coordinate of the molecule’s center of mass.
The submatrix U IJ

N , with I, J = 1, . . . , H − 1, in Eq. (74b)
specifies the relative coordinates of the nuclei in the center-
of-mass frame. Physical quantities, such as the (expectation
value of) total electric field at a nucleus in the molecule, must
be independent of U IJ

N .
It should also be noted that the equation (74c) defines the

coordinates of electrons si with respect to the nuclear center
of mass.

The conjugated momenta for the coordinates (ST , SI , si )
are denoted by (QT , QI , qi ). The original momenta PI and pi

may be expressed in terms of the new ones

pi = qi + 1

MT
QT , (75a)

PI =
H−1∑
J=1

U JI
N QJ − MI

MN

L∑
i=1

qi + MI

MT
QT . (75b)

Upon this transformation the Hamiltonian (73) acquires the
form (4) with the center-of-mass Hamiltonian HT given by
Eq. (5) and the relative motion Hamiltonian given by

Hrel = H0 + Vrel, (76a)

H0 =
L∑

i=1

q2
i

2μe
+

L∑
i< j

qiq j

MN
+ 1

2

H−1∑
I,J=1

(
μ−1

N

)IJ
QI QJ + V0,

(76b)

Vrel = −d · Eext. (76c)

Here μe is the reduced electron mass (7) and μ−1
N is the inverse

reduced nuclear mass H × H matrix with elements

(
μ−1

N

)IJ =
H∑

K=1

M−1
K U KI

N U KJ
N . (77)

It is straightforward to show that μ−1
N has the following

properties:(
μ−1

N

)IH = (
μ−1

N

)HI = 0 (I = 1, . . . , H − 1),(
μ−1

N

)HH = M−1
T . (78)

The interaction potential (76c) involves the molecule’s
electric dipole moment d with respect to the center of mass
ST . This EDM is described by the analog of Eq. (8),

d = −ζe

L∑
i=1

si +
H−1∑
I=1

ζ I
N SI , (79)

where ζe is the reduced electron charge (9) and ζ I
N is the

reduced nuclear charge:

ζ I
N =

H∑
J=1

(
U −1

N

)JI
ZJ (I = 1, . . . , H − 1). (80)
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The representation (76) allows us to apply perturbation
theory with Vrel considered as a perturbation. The unperturbed
wave functions |n〉 are defined with respect to the Hamiltonian
H0 given in Eq. (76b), i.e., H0|n〉 = En|n〉. The evolution of
the ground state |0〉 shall be described by the wave function
(21) (in the off resonance case) or (32). We will use these
wave functions to find the expectation value of the operator
of electric field at the Ith nucleus.

B. Off-resonance screening of an oscillating
external electric field

Let us assume that the frequency ω of the oscillating elec-
tric field (18) is far from any molecular transition frequency
ωn0. When the magnitude of this field is sufficiently weak,
the time-dependent perturbation theory may be applied to
compute the expectation value of the operator of electric field
at the Ith nucleus (11). This procedure is the same as presented
in Sec. II C. As a result, for the electric field at Ith nucleus we
arrive at the same expression (24),

〈EI〉 = MI ZT

MT ZI
E0 cos ωt + 2ω2 cos ωt

ZI

×
∑

n

Im [〈0|�I |n〉〈n|d · E0|0〉]
ω2

n0 − ω2
, (81)

where �I is the truncated momentum operator of Ith nucleus.
This operator is defined by the expression (75b) with the
center-of-mass term removed, namely

�I ≡ PI − MI

MT
QT =

H−1∑
J=1

U JI
N QJ − MI

MN

L∑
i=1

qi. (82)

Using the expressions of the Hamiltonian H0 in Eq. (76b)
and molecular EDM operator (79), it is possible to show that
the operator (82) may be represented in the form

�I = iMI

ζeMT

[
−d +

H−1∑
J=1

MIJSJ , H0

]
, (83)

where

MIJ = ζ J
N − (MN + ZN )

(
U −1

N

)IJ
(84)

is a generalization of the quantity MI in Eq. (26).
Substituting Eq. (83) into Eq. (81), one finds that the

electric field at Ith nucleus is given by the expression similar
to Eq. (27),

〈EI〉 =
[

MI ZT

MT ZI
− ω2MI

ζeMT ZI
(

↔
α −

↔
βI )

]
E0 cos ωt, (85)

where
↔
α is the molecule’s polarizability tensor

↔
α = 2

∑
n

ωn0

ω2
n0 − ω2

〈0|d|n〉〈n|d|0〉, (86)

and
↔
βI is the polyatomic analog of the tensor (29),

↔
βI = 2

∑
n

ωn0

ω2
n0 − ω2

〈0|
H−1∑
J=1

MIJSJ |n〉〈n|d|0〉. (87)

We point out that the results (85)–(87) reduce to the analogous
results (27)–(29) for diatomic molecules given in Sec. II C
upon the special choice of the matrix UN = M−1

T (MT −MT

M1 M2
).

It is important to note that the value of the electric field at
nucleus (85) is independent of the choice of the matrix UN in
Eq. (74). To demonstrate this, it is sufficient to prove that the
tensors (86) and (87) are independent of this matrix.

As follows from Eqs. (75b) and (77), the Hamiltonian
(76b) is independent of the matrix UN when expressed in
terms of the coordinates ri and RI and momenta pi and
PI . Thus the eigenstates |n〉 of this Hamiltonian are also
independent of the matrix UN when expressed in terms of
the coordinates ri and RI . Taking into account Eqs. (74b)
and (80) one can easily see that the molecular EDM (79)
is also independent of the matrix UN in the coordinates ri

and RI . Since these coordinates are integrated out in the
matrix elements in Eq. (86), we conclude that the molecular
polarizability tensor

↔
α is independent of the choice of the

matrix UN .
Using Eqs. (74b), (80), and (84) one may check the identity∑H−1
J=1 MIJSJ = ∑H

J=1 (MJ + ZJ )RJ − (MN + ZN )RI . Thus
the quantity

∑H−1
J=1 MIJSJ is independent of the matrix UN in

the coordinates ri and RI . As a corollary, all matrix elements
in Eq. (87) are independent of the matrix UN . This completes
the proof that the expression for the electric field at nucleus
(85) is independent of the choice of the matrix UN .

The independence of the result (85) on UN means that
one is free to define the relative nuclear coordinates in any
convenient way. Once a particular matrix UN is chosen, one
can then solve for the states n and proceed to calculating the
fields as in Eq. (85). The results one obtains this way will be
the same as those obtained if some different UN was chosen.

C. Resonance enhancement of an oscillating electric field

Let us now assume that the frequency of the external
electric field is in resonance with one of the molecular transi-
tion frequencies, ω = ωn0, associated with some excited state
|n〉 with width �n. Theoretically, due to the resonance, the
magnitude of the electric field at nucleus infinitely grows
with time if one discards the spontaneous decay rate of
the excited state. Physically, this field can grow only up to
the lifetime of the excited state, τ = 1/�n. Therefore, the
resonance enhancement of the electric field in the molecule is
due to the factor 1/�n which is large for lowest rotational and
vibrational states. The off-resonance states, however, provide
partial screening of the electric field in the same way as is
described in Sec. II D. We stress that Eq. (36) describing
the resonance enhancement of the electric field in diatomic
molecules holds for polyatomic molecules as well. Indeed, the
derivation of this equation is purely formal and is not limited
to the diatomic case.

Since the lowest rovibrational states in molecules possess
a very large lifetime, the resonance enhancement due to the
factor 1/�n becomes significantly larger than the screening
due to the off-resonance states. In this case, the electric field
is described by the analog of Eq. (37),

〈EI〉 ≈ ω2meMI

ζee2ZI MT �n

↔
γ I E0 sin ωt, (88)
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where the tensor
↔
γ I reads now

↔
γ I = 2〈0|d|n〉〈n|d|0〉 − 2〈0|

H−1∑
J=1

MIJSJ |n〉〈n|d|0〉. (89)

Here MIJ is given in Eq. (84).
We point out that the expression (88) for the enhancement

of the electric field at nucleus is valid for a weak external
field since it is obtained in perturbation theory. The condition
of the applicability of perturbation theory reads 	 � �n,
where 	 = |〈0|d · E0|n〉| is the Rabi frequency. For a stronger
electric field one is to apply a more general formula derived
nonperturbatively in [13]:

〈EI〉 = ω2meMI

ζee2ZI MT

�n

�2
n + 2	2

↔
γ I E0 sin ωt . (90)

This formula has the same form as in the case of diatomic
molecules (40) except for the tensor

↔
γ I given by Eq. (89). As

a result, the formulas for the critical field Ecrit and the maximal
field Emax

I are the same as given in Eqs. (41) and (42) but with
↔
γ I given by Eq. (89).

V. SUMMARY AND DISCUSSION

In this paper, we derived the general formulas for the
screening (30) and resonance enhancement (40) of an oscil-
lating electric field at a nucleus in a diatomic molecule.

The screening formula (30) applies when the frequency of
external electric field is far from any transition frequency in
the molecule. This formula may be considered, on the one
hand, as a generalization of the screening of a static electric
field in molecules [14] and, on the other hand, as an extension
of the screening formula of oscillating electric field in atoms
[11]. For molecules, the screening of electric field exhibits
some important features. Similar to the atomic case [11],
Eq. (30) contains the term with dynamical polarizability

↔
α.

However, there are extra terms (described by the tensor
↔
β) in

Eq. (30), which have no analogs in the atomic case.
To uncover the role of the new terms in Eq. (30), we consid-

ered the examples of some diatomic molecules in the electric
field in different frequency regimes. We found that when the
frequency of the electric field is of the order of the frequency

of rovibrational transitions in a molecule, the
↔
β tensor in

Eq. (30) gives dominant contribution to the resulting electric
field at nucleus since it is enhanced by the ratio MI/me. This
parameter makes the screening of the low-frequency electric
field in molecules very different from that in atoms.

When the frequency of the external field approaches the
energies of electronic transitions, the contributions from both

tensors
↔
α and

↔
β become significant. Thus the molecules

exhibit different screening behavior in different frequency
ranges. The typical dependence on the frequency of different
contributions to the suppression coefficient is presented at
Fig. 1. In particular, the screening of the field in molecules in
the microwave regime appears not as strong as it is in atoms

[11]. The summary of suppression coefficients σI for some
molecules in various frequency regimes is given in Table I.

When the frequency of the external electric field ap-
proaches one of the transition frequencies, the resonant ex-
cited state in the molecule is responsible for the linear-in-time
growth of the electric field at nucleus up to the lifetime of the
excited state. The off-resonant states, however, provide partial
screening of this electric field as is shown in Eq. (36). The
resonance enhancement may be up to the factor 109 due to a
small width of the state �, so it becomes dominating over the
suppression factors as in Eq. (37).

The advantage molecules have over atoms is that they
possess rovibrational states with energies in the microwave or
even radio-frequency region. These states in molecules typi-
cally have very narrow spectral lines that makes the resonance
enhancement of the oscillating electric field at nucleus very
large.

However, we caution the readers against using the res-
onance enhancement formula (37) for the electric field at
nucleus: since this result is derived within the perturbatie
approach, it is applicable only for sufficiently weak electric
field under the constraint (39). For a stronger electric field,
one should apply the nonperturbative formula (40) which was
derived in [13]. Physically, this formula tells us that even in
the resonance one cannot produce the electric field at nucleus
stronger than the Coulomb field inside the molecule. The
point of the perturbative formula (36) is that one can take
a very weak electric field in resonance with the molecular
transition to produce sufficiently large oscillating electric field
at nucleus. Some particular examples of such weak fields and
their amplification factors εI are presented in Table II.

Although our main results (30) and (40) are derived for
the case of diatomic molecules, we present a generalization of
these formulas to the polyatomic molecules in Sec. IV.

The results of this paper may have various physical ap-
plications since they represent a way out from the shielding
of a static electric field at nucleus due to the Schiff theorem
[4]. In particular, it would be interesting to develop a tech-
nique for measuring nuclear EDM using an oscillating electric
field in resonance with molecular transition. Many diatomic
molecules possess 	 doubling of states with splitting of the
order of 100 MHz. Such molecules have already proved useful
for measuring electron’s EDM, see, e.g., Refs. [24–26]. One
can apply the electric field in resonance with this transition
to induce a large electric field at nucleus which may be used
to measure nuclear EDM. Another use of the results of this
paper may be related to application of laser beams to stimulate
nuclear transitions such as the neutron capture in the 139La
nucleus proposed in [27–29]. These issues deserve separate
studies.
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