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Strong-field photoelectron momentum distributions (PEMDs) generated in the ionization of molecules by
circularly polarized laser pulses contain valuable information on the structure of the ionizing molecular orbital.
In this paper, we investigate using the adiabatic theory how this information is imprinted in and can be extracted
from such PEMDs. The PEMDs have a donutlike shape. The variation of a PEMD along the donut reproduces
the orientation dependence of the ionization rate of the ionizing orbital, and hence reflects its nodal structure and
shape. The transverse structure of the PEMD in cross sections of the donut corresponding to orientations of the
molecule at which the ionizing orbital has a node in the direction opposite to that of the instantaneous laser field
reflects the interplay of two competing ionization channels, which provides additional information on the orbital
structure. We illustrate these features by the analysis of PEMDs for three states of different symmetries of the
hydrogen molecular ion H2

+.
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I. INTRODUCTION

Extracting target structure and dynamics information from
high-order harmonic spectra and photoelectron momentum
distributions (PEMDs) generated in the ionization of atoms
and molecules by intense low-frequency laser pulses is one
of the fundamental goals of strong-field physics [1]. In high-
order harmonic spectroscopy, a powerful technique of to-
mographic imaging of molecular orbitals is established [2];
for a review of its developments, see Ref. [3]. Photoelectron
spectroscopy suggests several complementing approaches of
two kinds, depending on whether rescattered or direct pho-
toelectrons perform imaging. Rescattered photoelectrons rec-
ollide with the parent ion before arriving at a detector [4], so
their contribution to strong-field PEMDs bears information on
the target collisional properties. One widely used approach
in rescattering photoelectron spectroscopy focuses on the
high-energy part of PEMDs dominated by nearly backward
rescattered photoelectrons [5] and enables one to extract the
differential cross section for elastic scattering of a photoelec-
tron on the parent ion [6,7]; a review of this approach and
its applications is given in Ref. [8]. Recently, the theoretical
foundation of this approach has been revisited [9] which made
the extraction procedure quantitative [10]. Another promising
approach focuses on a holographic pattern in the intermediate-
energy part of PEMDs resulting from interference of direct
and nearly forward rescattered photoelectrons [11], which
encodes information on the phase of the electron-ion elastic
scattering amplitude [12]. The potentiality of this approach
for resolving electronic dynamics on the attosecond timescale
was demonstrated in Ref. [13]. The contribution of direct pho-
toelectrons to PEMDs contains information on the tunneling
ionization process and, through this, on the ionizing orbital.
While in rescattering photoelectron spectroscopy linearly

polarized laser pulses are usually used, to force a photoelec-
tron to return to the parent ion for recollision, for the observa-
tion of direct photoelectrons it is preferable to use circularly
polarized pulses to eliminate rescattering [14] which con-
taminates tunneling observables. Thus, circular polarization
is essential for accurate measurements of tunneling ioniza-
tion rates of molecules [15–19]. Donut-shaped strong-field
PEMDs generated by circularly polarized pulses are being
intensively studied, both experimentally and theoretically, as
a source of information on molecular orbitals [20–39]. In this
paper, we analyze images of the ionizing orbital which can
be extracted from such PEMDs on the basis of the adiabatic
theory [40].

Within the adiabatic theory, the PEMD generated by a
circularly polarized pulse is expressed analytically in terms of
properties of a Siegert state (SS) [41–43] originating from the
initial electronic state in the presence of a static electric field
equal to the instantaneous laser field. If the laser field is not
too strong, so that ionization occurs in the tunneling (under-
the-barrier) regime, then the properties of the SS needed
can be expressed in terms of properties of the unperturbed
initial state using the weak-field asymptotic theory (WFAT)
[44]. This is how an image of the ionizing orbital is im-
printed in the PEMD. The adiabatic theory is quantitative,
its predictions converge to the exact results as the laser fre-
quency decreases. This has been demonstrated by comparison
with accurate results obtained by solving the time-dependent
Schrödinger equation (TDSE) for atomic targets [9,40,45].
Most of the TDSE treatments for molecular targets interacting
with low-frequency circularly polarized laser pulses to date
are restricted to two-dimensional models [25,28,31,34,39];
we are aware of only a few such calculations of PEMDs for
realistic three-dimensional systems [35–38]. In this situation,
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predictions of the adiabatic theory may prove to be very use-
ful. Here, we illustrate application of the theory to molecules
by calculating and analyzing PEMDs for three states of differ-
ent symmetries of the hydrogen molecular ion H2

+.
The paper is organized as follows. In Sec. II, we summarize

equations defining the PEMD generated by a circularly polar-
ized pulse within the adiabatic theory [40]. In Sec. III, the
quantitative performance of these equations is illustrated by
comparing the adiabatic results with the TDSE results for the
hydrogen atom in the ground state. In Sec. IV, the adiabatic
theory is applied to the analysis of PEMDs for the ground
(1sσ ) and two excited (2pσ and 2pπ+) states of H2

+. The
manifestation of the structure of the ionizing orbital in the
PEMDs is discussed by means of the WFAT [44]. Section V
concludes the paper.

II. ADIABATIC THEORY

We consider an atom or molecule treated in the single-
active-electron approximation interacting with an intense low-
frequency laser pulse. The TDSE in the dipole approximation
and length gauge reads as (atomic units are used throughout)

i
∂ψ (r, t )

∂t
= [− 1

2� + V (r) + F(t )r
]
ψ (r, t ), (1)

where the potential V (r) describes the interaction of the active
electron with the parent ion and F(t ) is the electric field of
the pulse. The field is presented in the form F(t ) = F (t )e(t ),
where F (t ) � 0 is the field strength and e(t ) is the polariza-
tion vector satisfying e2(t ) = 1. In this paper, we consider
pulses with a Gaussian envelope

F (t ) = F0 exp[−(2t/T )2], (2)

propagating along the z axis and circularly polarized in the
(x, y) plane

e(t ) = ex cos ωt + ey sin ωt, ω = 2πnoc/T . (3)

Thus, a pulse is characterized by its amplitude F0, dura-
tion T , frequency ω, and the number of optical cycles noc.
For reference, F0 = 0.1 corresponds to the intensity I ≈
7.02×1014 W/cm2 and ω = 0.057 corresponds to the wave-
length λ ≈ 800 nm. The initial condition for Eq. (1) is

ψ (r, t → −∞) = φ0(r)e−iE0t , (4)

where E0 and φ0(r) are the energy and wave function of a
bound state of the unperturbed system. The main observable
of interest here is the PEMD defined by

P (k) = |I (k)|2, I (k) = 〈ψ (−)
k |ψ (t → ∞)〉, (5)

where I (k) is the ionization amplitude and |ψ (−)
k 〉 is the

scattering out eigenstate of the field-free Hamiltonian with
the asymptotic momentum k normalized by 〈ψ (−)

k |ψ (−)
k′ 〉 =

(2π )3δ(k − k′) [46,47]. We solve Eq. (1) using a method
described in Ref. [48] generalized to the circular polarization
case. The TDSE results reported below are obtained from
Eq. (5).

Let T0 = min(T , 2π/ω) be the characteristic time of the
laser field and �E denote the energy spacing between the
initial state and the nearest eigenstate of the unperturbed sys-
tem. The adiabatic parameter ε = 2π/�ET0 gives the ratio of

the electronic and laser field timescales. Small values of this
parameter correspond to the adiabatic regime. The adiabatic
theory [40] amounts to the asymptotic solution of Eq. (1)
for ε → 0. Within this theory, the ionization amplitude is ob-
tained in the form I (k) = Ia (k) + Ir (k), where the adiabatic
Ia (k) and rescattering Ir (k) parts represent contributions from
electrons which go directly to a detector after their release
from the system and those which experience rescattering
before arriving at a detector, respectively. The rescattering part
can be neglected in the circular polarization case, so in this
paper we consider only the adiabatic part. The leading-order
term in the asymptotics of Ia (k) for ε → 0 is given by [40]

Ia (k) = eiπ/4(2π )1/2
∑

i

A(�k⊥; ti )

F 1/2(ti )
exp [iS (ti , k) − is(ti )].

(6)

This formula contains quantities of two kinds, quantum and
classical. The quantum quantities are determined by proper-
ties of the SS in an external static electric field F originating
from the initial bound state and satisfying outgoing-wave
boundary conditions in the asymptotic region [41–43]. Equa-
tion (6) involves the complex SS energy eigenvalue E(F),
whose imaginary part defines the ionization rate �(F) =
−2 Im[E(F)], and the transverse momentum distribution
(TMD) amplitude A(k⊥; F), where k⊥ is the transverse with
respect to F part of the momentum of electrons in the outgoing
flux. The functions E(F) and A(k⊥; F) can be calculated using
the method developed in Refs. [41–43]; their behavior for the
different states in atomic and molecular potentials is illus-
trated therein. They should be taken at the instantaneous value
of the field F(t ), and thus become functions of time denoted
by E(t ) = E(F(t )) and A(k⊥; t ) = A(k⊥; F(t )). From Eq. (2)
we have E(t → ±∞) = E0. The quantum action in Eq. (6) is

s(t ) = E0t +
∫ t

−∞
[E(t ′) − E0] dt ′. (7)

The second term here accounts for both the accumulation
of an additional phase by the initial state due to the Stark
shift and its depletion via tunneling or over-the-barrier ion-
ization described by the instantaneous ionization rate �(t ) =
−2 Im[E(t )] = �(F(t )). Note that in the weak-field limit the
rate is related to the TMD amplitude by [44]

�(F) =
∫

|A(k⊥; F)|2 dk⊥
(2π )2

, F → 0. (8)

The classical quantities are expressed in terms of the velocity
for a reference electron trajectory in the field F(t ):

v(t ) = −
∫ t

−∞
F(t ′) dt ′, v(t → ∞) = v∞. (9)

In the present case v∞ = (v∞, 0, 0), where

v∞ = −π3/2noc exp

(
−π2n2

oc

4

)
v0 (10)

and v0 = F0/ω. The ratio v∞/v0 rapidly decreases as noc

grows and is negligibly small for few-cycle pulses considered
in the calculations below; for example, v∞/v0 ≈ −5.8×10−4

and −3.8×10−9 for noc = 2 and 3, respectively. The classical

013428-2



IMAGES OF MOLECULAR ORBITALS IN STRONG-FIELD … PHYSICAL REVIEW A 99, 013428 (2019)

action in Eq. (6) is

S (t, k) = 1

2
k2t − 1

2

∫ ∞

t

[
u2

i (t ′, k) − k2
]
dt ′, (11)

where

ui (t, k) = k − ka (t ) (12)

and

ka (t ) = v∞ − v(t ). (13)

The vector ui (t, k) gives the initial velocity with which an
electron driven by the field should start its motion at time t to
have the final velocity after the end of the pulse equal to k.
The moments of ionization are defined by

e(t )ui (t, k) = 0 → t = ti (k), (14)

and the summation in Eq. (6) runs over all real solutions to
this equation. A curve Ka in the photoelectron momentum
space traced by the end of ka (t ) as t varies along the real
axis represents the classical support of the PEMD. Since
dka (t ) = F(t )dt , the field F(t ) is tangential to the curve Ka

at the point k = ka (t ). In the adiabatic regime, the length of
Ka is O(ε−1) and the PEMD P (k) is localized in a narrow
pipelike neighborhood Ka of Ka of width O(ε0) determined
by the width of the TMD. Each k ∈ Ka can be presented in
the form

k = ka (ti ) + �k⊥, (15)

which defines the first argument of the TMD amplitude in
Eq. (6). From Eqs. (12) and (15) we have ui (ti , k) = �k⊥,
thus, �k⊥ is the initial velocity of an electron at the moment
of ionization ti and, as follows from Eq. (14), it is orthogonal
to the instantaneous field F(ti ). The adiabatic results reported
below are obtained from Eq. (6). They will be denoted by
AA, which stands for the adiabatic approximation. Note that
Eq. (6) amounts to a simple asymptotics using the terminology
of Ref. [45]. In this paper we do not discuss a uniform asymp-
totics also considered in Ref. [45], which works better at
weaker fields. The implementation of the uniform asymptotics
would require to calculate the SS at complex field strengths,
which is feasible for spherically symmetric atomic potentials
but becomes more expensive computationally for molecular
potentials of main interest here.

III. PERFORMANCE OF THE ADIABATIC THEORY
FOR THE HYDROGEN ATOM

The quantitative performance of the adiabatic theory was
demonstrated by comparison with accurate TDSE results for
finite-range [40] and Coulomb-tail [9] potentials, in the linear
polarization case, and for a finite-range potential [45], in the
circular polarization case. It should be noted that the asymp-
totics of the adiabatic part Ia (k) of the ionization amplitude
derived in Ref. [40], particularly Eq. (6), applies to both
finite-range and Coulomb-tail potentials, while that of the
rescattering part Ir (k) holds only for finite-range potentials.
Before we turn to the application of Eq. (6) to a Coulomb-tail
molecular potential, for which solving Eq. (1) is beyond our
current capabilities, it is worthwhile to illustrate its perfor-
mance for a Coulomb-tail atomic potential, in which case the

FIG. 1. Two-dimensional cuts of the PEMDs P (k) for H(1s ) in
the (kx, ky, kz = 0) (left panels) and (kx = 0, ky, kz ) (right panels)
planes. The PEMDs are generated by pulses with F0 = 0.07 and
noc = 2. In the top panels, T = 160 (ω ≈ 0.079, v0 ≈ 0.89). In
the bottom panels, T = 280 (ω ≈ 0.045, v0 ≈ 1.56). The adiabatic
results are multiplied by factors indicated in the figure. The solid
white lines in the leftmost panels show the curve Ka traced by the
vector (13).

predictions of Eq. (6) can be compared with the TDSE results.
The calculations presented in this section extend the validation
of the adiabatic theory in the circular polarization case [45] to
potentials with a Coulomb tail.

Here, we discuss ionization from the ground 1s state of
the hydrogen atom described by Eq. (1) with V (r) = −1/r .
Because of the spherical symmetry of the potential and the
initial state, the corresponding SS energy eigenvalue E(F )
and TMD amplitude A(k⊥; F ) needed to implement Eq. (6)
do not depend on the orientations of the external electric field
F and the transverse momentum k⊥ of an ionized electron;
the behavior of these functions is illustrated in Ref. [41]. We
consider sets of pulses with a fixed amplitude F0 and the num-
ber of optical cycles noc and growing duration T , therefore
decreasing adiabatic parameter ε ∝ 1/T . The adiabatic theory
[40] predicts that the AA results from Eq. (6) should converge
to the TDSE results from Eq. (5) as T grows. The goal of the
calculations is to demonstrate this convergence.

The AA and TDSE results for PEMDs generated by two-
cycle pulses with F0 = 0.07 and two durations T = 160 and
280 are shown in the top and bottom panels of Figs. 1 and 2,
respectively. In Fig. 1, two-dimensional cuts of the PEMDs in
the (kx, ky, kz = 0) and (kx = 0, ky, kz) planes are compared.
The PEMDs are seen to have a donutlike shape. The variation
of their amplitude along the donut is caused by the finiteness
of the number of optical cycles in the pulse, which amounts to
the carrier-envelope phase effect. To facilitate the comparison,
the adiabatic results for each T are multiplied by a factor in-
dicated in the figure. The factor approaches unity as T grows,
which illustrates the convergence of the overall amplitudes of
the AA and TDSE PEMDs. The shapes of the AA and TDSE
distributions in Fig. 1 also converge as T grows. This is more
clearly seen in the one-dimensional cuts of the PEMDs along
the ky axis shown in Fig. 2. The cuts consist of two peaks
localized in the intervals where the ky axis crosses the donut.
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FIG. 2. One-dimensional cuts of the PEMDs shown in Fig. 1
along the dashed white lines (at kx = kz = 0). The top (bottom) panel
corresponds to the top (bottom) panel in Fig. 1. The dashed (red) and
solid (blue) arrows indicate the values of kay (0) and k+

ay (0) defined
by Eqs. (13) and (16), respectively.

The agreement is better for the left peak, which corresponds to
a stronger instantaneous field at the moment of ionization, but
it also improves for the right oscillatory peak as T increases.
Unfortunately, we cannot extend the comparison to larger T

because the TDSE calculations become unfeasible.
A shift between the left peaks in the AA and TDSE

results seen in Fig. 2 deserves a discussion. As has been
mentioned above, in the adiabatic regime the PEMD P (k) is
localized near its classical support Ka traced by the vector
(13). This follows from Eq. (6), because the TMD amplitude
A(k⊥; t ) generally peaks at k⊥ = 0 (a situation where this is
not the case is discussed in Sec. IVC). For pulses containing
sufficiently many optical cycles, the part of Ka corresponding
to instantaneous field strengths close to the maximum of the
envelope (2) forms a circle of radius v0 = F0/ω, which results
in the donutlike shape of the PEMD. This is confirmed by
the distributions shown in Fig. 1, where Ka is depicted by the
solid white lines in the leftmost panels. The lowest point of
Ka , where it crosses the ky axis, corresponds to the maximum
of the field strength at t = 0 (in fact, the crossing occurs at
a small negative t because of the nonzero value of v∞, but
we neglect this difference in the discussion). However, the
localization of the PEMD near Ka holds only in the limit
ε → 0. In Ref. [45], by taking into account terms of the first
order in ε, it was shown that the maximum of the PEMD in
the transverse with respect to Ka direction is shifted from Ka

to a curve K+
a traced by the vector

k+
a (t ) = ka (t ) − �2ė(t )

6F (t )
, (16)

where � = √
2|E0|. The second term in this equation, which

is O(ε1), means that K+
a is expanded from Ka in the radial

direction outwards. Equation (6) gives only the leading-order
term in the asymptotics of the ionization amplitude for ε → 0,
so it does not account for this nonadiabatic effect. Indeed,
the maximum of the left peak in the AA results in Fig. 2
is located at ky = kay (0), where Ka crosses the ky axis; this

FIG. 3. Two-dimensional cuts of the PEMDs P (k) for H(1s ) in
the (kx, ky, kz = 0) (left panels) and (kx = 0, ky, kz ) (right panels)
planes. The PEMDs are generated by pulses with F0 = 0.07 and
noc = 3. In the top panels, T = 240 (ω ≈ 0.079, v0 ≈ 0.89). In
the bottom panels, T = 390 (ω ≈ 0.048, v0 ≈ 1.45). The adiabatic
results are multiplied by factors indicated in the figure. The solid
white lines in the leftmost panels show the curve Ka traced by the
vector (13).

point is indicated by the dashed (red) arrows. Equation (16)
predicts the position of the maximum at ky = k+

ay (0) =
kay (0) − �2ω/6F0, where K+

a crosses the ky axis; this point
is indicated by the solid (blue) arrows. The maximum is thus
expected to be shifted to the left by �ky = 0.187 and 0.107 for
T = 160 and 280, respectively. The peak in the TDSE results
is shifted to the left from the AA peak by �ky = 0.079 and
0.058, which amounts to 42% and 54% of the shift predicted
by Eq. (16) for the two values of T , respectively. Thus, there
exists a nonadiabatic shift of the peak predicted in Ref. [45]
and Eq. (16) describes it more accurately as T grows.

Similar results for PEMDs generated by three-cycle pulses
with the same amplitude F0 = 0.07 and two durations T =
240 and 390 are shown in the top and bottom panels of Figs. 3
and 4, respectively. The structure of the PEMDs and the level
of agreement between the AA and TDSE results in this case
are similar to those discussed above. The general conclusion
supported by these calculations is as follows: The adiabatic
results from Eq. (6) converge to the TDSE results as the pulse
frequency decreases and at ω ∼ 0.045 (corresponding to the
wavelength λ ∼ 1010 nm) the difference reduces to ∼10%,
so the agreement becomes quantitative. This agrees with a
conclusion following from calculations for a finite-range po-
tential in Ref. [45]. We note that the rate of convergence of the
adiabatic and TDSE results depends on the pulse amplitude
and was shown to be higher for stronger fields [45].

Before closing this section, it is instructive to illustrate
how the different terms in Eq. (6) representing contributions
from the different moments of ionization defined by Eq. (14)
affect the shape of the PEMD. For pulses defined by Eqs. (2)
and (3), Eq. (14) has infinitely many solutions for each k
inside the pipelike region Ka of localization of the PEMD
around its classical support Ka . However, only few of them
lying near the maximum of the pulse envelope (2) give non-
negligible contributions to Eq. (6). This can be seen from
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FIG. 4. One-dimensional cuts of the PEMDs shown in Fig. 3
along the dashed white lines (at kx = kz = 0). The top (bottom) panel
corresponds to the top (bottom) panel in Fig. 1. The dashed (red) and
solid (blue) arrows indicate the values of kay (0) and k+

ay (0) defined
by Eqs. (13) and (16), respectively.

Eq. (8), which, roughly speaking, means that the magnitude of
A(k⊥; t ) varies with t as �1/2(t ), and the fact that the instanta-
neous ionization rate �(t ) sharply peaks near the maximum of
the field strength F (t ). We illustrate this point by considering
the pulse used to obtain the results shown in the bottom
panels of Figs. 3 and 4. Let us focus on the one-dimensional
cut of the PEMD generated by this pulse along the ky axis
shown in the bottom panel of Fig. 4. Several solutions ti of
Eq. (14) contributing to Eq. (6) in this case as functions of ky

are shown in the top panel of Fig. 5. As follows from Eq. (14),
for a nearly monochromatic many-cycle pulse with noc  1
the solutions would be given by ti = ±π/ω, ±3π/ω, . . . ,
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FIG. 5. Top panel: several moments of ionization ti (in units
of the laser period 2π/ω) defined by Eq. (14) for k = (0, ky, 0)
as functions of ky giving non-negligible contributions to Eq. (6).
Bottom panel: individual contributions from the corresponding ti
to the PEMD (broken lines, the contributions from t1 and t3 are
multiplied by 10) and their incoherent (smooth solid blue line) and
coherent (oscillatory solid red line) sums. The results correspond to
the pulse used in the bottom panel of Fig. 4.

for ky > 0, and ti = 0, ±2π/ω,±4π/ω, . . . , for ky < 0.
This explains the behavior of ti (ky ) at sufficiently large ky .
The finiteness of noc = 3 for the present pulse modifies this
behavior at small ky . The individual contributions of the
different solutions of Eq. (14) to the PEMD are shown in
the bottom panel of Fig. 5. The dominant contribution to
the left peak in the distribution comes from the ionization
moment t2, which is closest to the maximum of the pulse
envelope (2). The contributions from t1 and t3 (multiplied
in the figure by 10) are much smaller, but not negligi-
ble, since they are responsible for the appearance of the
interference structure seen in the right wing of the peak.
The right peak mainly consists of the contributions from
t4 and t5; they have comparable amplitudes, which results
in the high-contrast interference structure. The figure also
shows the incoherent sum of all individual contributions, that
is, the sum of their absolute values squared, and their coherent
sum obtained from Eq. (6), the latter coinciding with the AA
results shown in the bottom panel of Fig. 4.

The phase of the different terms in Eq. (6) is thus seen
to determine the interference structure of the PEMD. This
phase consists of the classical action (11), the real part of the
quantum action (7), and the phase of the TMD amplitude. As
the number of optical cycles noc in the pulse grows, a series
of above-threshold ionization peaks separated by the photon
energy ω emerges from the interference structure. To illustrate
this feature, we have calculated using Eq. (6) the PEMD
for H(1s) generated by a 15-cycle pulse with F0 = 0.07 and
T = 1650 (ω ≈ 0.057 corresponding to λ ≈ 800 nm). The
one-dimensional cut of the PEMD along the ky axis (similar
to the cuts shown in Figs. 2 and 4) is presented in Fig. 6.
In the top panel, the PEMD is shown as a function of the
photoelectron momentum ky . Both peaks in this case have a
rapidly oscillating substructure caused by the interference of
the different terms in Eq. (6) (compare with Figs. 2 and 4).
In the bottom panel, the same PEMD in the interval 1 �
ky �

√
1.6 is replotted as a function of the photoelectron

energy k2
y/2. This reveals a series of above-threshold ion-

ization peaks. As can be seen from Eq. (6), for a nearly
monochromatic pulse (noc  1) the peaks would be located
at energies k2

y/2 = Re[E(F0)] − v2
0/2 + nω corresponding to

absorption of n photons, with the Stark shift of the initial state
and a ponderomotive shift of the ionization threshold taken
into account. These energies are shown by the vertical dashed
lines in the bottom panel of Fig. 6. In the present case, the
positions of the main peaks in the PEMD do not follow this
formula because of a shift caused by the finiteness of noc,
which is another manifestation of the carrier-envelope phase
effect.

IV. RESULTS AND DISCUSSION FOR THE HYDROGEN
MOLECULAR ION

In this section, we apply the adiabatic theory to the anal-
ysis of PEMDs generated in strong-field ionization of the
hydrogen molecular ion H2

+. The geometry of the system
is illustrated in the top left panel of Fig. 7. The nuclei are
assumed to be located on the x axis in the polarization plane,
symmetrically with respect to the origin. The interaction be-
tween the electron and the nuclei is modeled by the soft-core
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FIG. 6. One-dimensional cut along the ky axis of the PEMD for
H(1s ) generated by a pulse with F0 = 0.07, noc = 15, and T = 1650
(ω ≈ 0.057) obtained from Eq. (6). The top panel shows the PEMD
as a function of the photoelectron momentum ky . The bottom panel
reproduces the plot in the interval 1 � ky �

√
1.6, now as a function

of the photoelectron energy k2
y/2. Above-threshold ionization peaks

separated by the photon energy ω are clearly seen in the latter
format. The vertical dashed (blue) lines indicate the energies k2

y/2 =
Re[E(F0)] − v2

0/2 + nω where the peaks would be located for a
monochromatic pulse in the limit noc → ∞.

potential

V (r) = − 1√
|r − R/2|2 + a2

− 1√
|r + R/2|2 + a2

, (17)

where R = (R, 0, 0), R is the internuclear distance, and a is
a softening parameter. All the results reported below are ob-
tained with R = 2 and a = 0.3. We consider ionization from
three states (labeled by the united atom quantum numbers
[49], with m denoting the projection of the electronic angular
momentum onto the internuclear axis): the ground 1sσ state
having no nodes, an excited 2pσ state having a node in the
(y, z) plane, and an excited 2pπ+ state given by a linear
combination of the two degenerate 2pπ states with m = ±1
which is even with respect to a reflection z → −z (this is
indicated by the superscript +) and has a node in the (x, z)
plane. Two-dimensional cuts in the polarization (x, y) plane
of the unperturbed electron densities |φ0(r)|2 for these states
are shown in Fig. 7.

We wish to investigate how the shape of the initial orbital
φ0(r), in particular its nodal structure, is reflected in the shape
of the PEMD. The PEMDs considered below are obtained
from Eq. (6). The orbital properties appear in this formula
through the SS energy eigenvalue E(F) and the TMD ampli-
tude A(k⊥; F). For linear molecules, these properties as func-
tions of the field F depend only on its strength F and the angle
β between F and the internuclear axis (see Fig. 7). Note that,
for given F and β, the TMD amplitude A(k⊥; F) depends not
only on the length k⊥ of the transverse momentum, but also on
its orientation in the plane perpendicular to F; we define this
orientation by a polar angle ϕk measured from the projection
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FIG. 7. Top left panel illustrates the geometry of the system. The
nuclei are located on the x axis. The electric field vector F(t ) lies in
the polarization (x, y ) plane under an angle β to the internuclear axis.
The other panels show two-dimensional cuts in the polarization plane
of the unperturbed electron densities |φ0(r)|2 for the three states in
the potential (17) considered in the calculations, with white circles
indicating the positions of the nuclei. The energies of the states
1sσ , 2pσ , and 2pπ+ in the present system are E0 = −0.962 37,
−0.555 90, and −0.418 95, respectively.

of the internuclear axis onto the plane. The behavior of these
functions for the 1sσ and 2pπ+ states in the present potential
(17) was discussed and illustrated in Refs. [42,43]. Their
relation to the structure of φ0(r) becomes more transparent
in the weak-field limit. For F → 0, the Stark-shifted energy
Re[E(F)] is given by the standard perturbation theory [46]; it
affects the interference structure of the PEMD. The overall
shape of the PEMD, which is of the main interest here, is
determined by the functions �(F) and A(k⊥; F) describing the
tunneling ionization process. These functions can be obtained
from the WFAT as asymptotic expansions in F [44]. For the
present system, the WFAT yields

�(F) =
[
|G00(β )|2 + F

2�2
|G01(β )|2

]
�

2

(
4�2

F

)4/�−1

× exp

(
−2�3

3F

)
(18)

and

A(k⊥; F)=
[
G00(β )− i

�1/2
G01(β )k⊥ cos ϕk

]
π1/2

21/2

(
4�2

F

)2/�

× exp

(
2iπ

�
+ iπ

4
− �k2

⊥
2F

− �3

3F

)
, (19)

where G00(β ) and G01(β ) are the structure factors [50] in
the state under consideration for the dominant and next-to-
the-dominant ionization channels, respectively. These factors
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FIG. 8. Adiabatic results for PEMDs generated in the ionization of H2
+(1sσ ) by pulses with F0 = 0.1 and ω ≈ 0.052, hence, v0 ≈ 1.91.

In the top panels, noc = 1 (v∞ ≈ −0.90) and T = 120. In the bottom panels, noc = 4 (v∞ ≈ 0) and T = 480. The left panels show two-
dimensional cuts of the PEMDs in the plane (kx, ky, kz = 0). Here, the solid white lines show the curve Ka and the vertical dashed white lines
indicate the position of kx = v∞/2. The middle panels show two-dimensional cuts of the PEMDs in the plane (kx = v∞/2, ky, kz ). The right
panels show one-dimensional cuts of the PEMDs as functions of ky along the white dashed lines in the left panels, that is, at kx = v∞/2 and
kz = 0.

are determined by a coefficient in the projection of the unper-
turbed orbital φ0(r) onto the corresponding parabolic channel
function in the asymptotic region [44,50], and therefore reflect
the structure of the orbital. In particular, G00(β ) turns to zero
in directions where φ0(r) has a node; this is the case at β =
90◦, for the 2pσ state, and at β = 0◦ and 180◦, for the 2pπ+
state. On the other hand, G01(β ) turns to zero in directions
around which φ0(r) is axially symmetric; this is the case, e.g.,
at β = 0◦ and 180◦ for 1sσ and 2pσ states. The first terms in
the square brackets in Eqs. (18) and (19) containing G00(β )
are the leading-order terms in the asymptotic expansions for
F → 0. The smallness of the second term in Eq. (18) is seen
from the presence of an additional power of F . The second
term in Eq. (19) does not contain such a factor explicitly.
However, the TMD amplitude (19) as a function of k⊥ is
localized at k⊥ ∼ F 1/2, which determines the width of the
region Ka of localization of the PEMD around its classical
support Ka in the weak-field case [51]. Thus, the second term
in Eq. (19) contains an additional power of F implicitly in the
factor k⊥. Outside small intervals of the orientation angle β

of size ∝F 1/2 around the zeros of G00(β ), the second terms
in Eqs. (18) and (19) represent small corrections which can be
neglected, but near the zeros they become comparable with the
leading-order terms and must be taken into account [43,50].
We will see that the interplay of the two terms in Eq. (19)

in the latter case causes a modification of the transverse
structure of the PEMD compared to the former case. Note
that Eqs. (18) and (19) are consistent with Eq. (8). Let us
recall that these equations are not exact; they hold only in the
weak-field limit. The quantitative performance of the WFAT
in the description of tunneling ionization in a static electric
field from the 1sσ and 2pπ+ states in the present model was
illustrated in Refs. [42,43,52].

We will focus on two aspects of the donut-shaped PEMD:
its longitudinal variation along the donut and its transverse
structure in the different cross sections of the donut. Accord-
ing to Eq. (6), the coordinate in the photoelectron momentum
space along the donut maps to the ionization time t , and hence
to the angle β between the instantaneous electric field F(t ) and
the internuclear axis (see Fig. 7). For a nearly monochromatic
pulse, the inner axis Ka of the donut is a circle of radius
v0 = F0/ω lying in the polarization (kx, ky ) plane with the
center at the origin. As can be seen from Eq. (13), in this
case each value of 0◦ � β � 180◦ corresponds to two points
on Ka , one in the region kx � 0 and the other in the region
kx � 0. In particular, the points (kx, ky ) = (0,−v0), (v0, 0),
(0, v0), and (−v0, 0) on Ka correspond to β = 0◦, 90◦, 180◦,
and 90◦, respectively. The longitudinal variation of the PEMD
is determined by the dependence of the ionization rate �(F)
on the orientation angle β, which in the weak-field case is
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given by Eq. (18). On the other hand, cross sections of the
donut at the different β are parametrized by the transverse
momentum �k⊥ defined by Eq. (15). The transverse structure
of the PEMD is determined by the dependence of the TMD
amplitude A(k⊥; F) on k⊥ and ϕk , which in the weak-field
case is given by Eq. (19). In the calculations below we illus-
trate how the longitudinal variation and transverse structure of
a PEMD reflect the structure of the initial orbital φ0(r).

A. 1sσ state

We begin with the nodeless 1sσ state. PEMDs for this
state generated by one-cycle and four-cycle pulses with F0 =
0.1 and ω ≈ 0.052 are shown in the top and bottom panels
of Fig. 8, respectively. The left panels in the figure present
two-dimensional cuts of the PEMDs in the polarization
(kx, ky, kz = 0) plane. We consider these cuts to discuss the
longitudinal dependence of the PEMDs. For the one-cycle
pulse, the PEMD as a function of the photoelectron momen-
tum along Ka peaks at k = ka (0) (the point where Ka is
crossed by the vertical dashed line in the figure) corresponding
to the maximum of the pulse envelope (2) at t = 0. This
longitudinal variation of the PEMD is mainly caused by the
dependence of the ionization rate �(F) on F and is revealed
due to the smallness of the number of optical cycles in the
pulse (the carrier-envelope phase effect); a similar behavior is
seen in PEMDs generated by pulses with noc = 2 shown in
the left panels of Fig. 1. As noc grows, PEMDs for spherically
symmetric atomic targets cease to depend on the coordinate
along the donut; this is almost the case already for noc = 3, as
seen from Fig. 3. However, for molecular targets the situation
is different. In the present case, the PEMD remains dependent
on the coordinate along the donut even for nearly monochro-
matic pulses because the ionization rate �(F) depends on β.
This dependence reveals itself in the longitudinal variation of
the PEMD for the four-cycle pulse shown in the bottom left
panel of Fig. 8.

This feature is additionally illustrated in Fig. 9. The solid
(black) line in the figure shows the exact ionization rate �(F)
of H2

+(1sσ ) as a function of β for F = 0.1. For comparison,
we have calculated the PEMD generated by a many-cycle
(noc = 15) pulse with F0 = 0.1 and ω ≈ 0.052. The solid
(red) circles in the figure are obtained by integrating this
PEMD over the transverse momentum �k⊥ across the donut
at several values of β in the region kx � 0; these results
are normalized to the value of the rate at β = 0◦. The good
agreement between the results demonstrates that the lon-
gitudinal variation of the PEMD for a many-cycle pulse
reproduces the shape of the orientation dependence of the
ionization rate. This conclusion is expectable, it follows from
Eqs. (6) and (8) under the assumption that the depletion can
be neglected, which is true in the present case. The numerical
results presented in Fig. 9 confirm the conclusion and help to
perceive it. Returning to the PEMD shown in the bottom left
panel of Fig. 8, its minima at photoelectron momenta where
the donut crosses the kx axis reflect the minimum of the rate at
β = 90◦. In addition, the leading-order WFAT results for the
ionization rate are shown in Fig. 9 by the dashed (blue) line;
these results are also normalized to the exact rate at β = 0◦.
In the leading-order approximation, the WFAT rate (18)
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FIG. 9. Solid (black) line shows the exact ionization rate of
H2

+(1sσ ) as a function of the angle β between a static ionizing
field F and the internuclear axis at the field strength F = 0.1. Solid
(red) circles show results obtained by integrating the adiabatic PEMD
from Eq. (6) generated by a pulse with F0 = 0.1 and ω ≈ 0.052,
as in Fig. 8, but for noc = 15 and T = 1800, over the transverse
momentum �k⊥ across the donut at several values of β. Dashed
(blue) line shows the structure factor squared |G00(β )|2 defin-
ing the orientation dependence of the leading-order WFAT results
for the ionization rate. The PEMD and WFAT results are normalized
to the exact rate at β = 0◦.

factorizes into the structure factor squared |G00(β )|2 and a
field factor which does not depend on β, therefore, the dashed
line in the figure reproduces the shape of |G00(β )|2 which is
related to the shape of the initial orbital φ0(r). Qualitatively,
the orientation dependencies of the exact and WFAT rates
have similar shapes, and in this sense one can say that the
longitudinal variation of the PEMD reflects the shape of the
orbital. However, only the exact rate reproduces the shape of
the PEMD quantitatively, and this is related to the shape of the
orbital in a less direct way. Within the WFAT, the difference is
described by the first-order terms in the asymptotic expansion
in F [52,53] which account for the Stark shift and distortion
of the ionizing orbital by the field.

The middle panels in Fig. 8 show two-dimensional cuts
of the PEMDs in the (kx = v∞/2, ky, kz) plane and the right
panels present one-dimensional cuts along the line (kx =
v∞/2, ky, kz = 0) shown by the vertical dashed lines in the
left panels. These cuts illustrate the transverse structure of
the PEMDs. For the present state, G00(β ) never turns to
zero, so the first term in Eq. (19) dominates at all β. In this
case, the PEMD as a function of the transverse momentum
�k⊥ in cross sections of the donut at the different β has the
same bell-like shape determined by the dependence of the
exponential factor in Eq. (19) on k⊥. The half-width of the bell
can be estimated as �k⊥ ∼ √

F0/�, which in the present case
gives 0.27. Inside the bell, there is a more or less pronounced
interference substructure depending on the number of optical
cycles in the pulse. This transverse structure of the PEMD
is similar to that in the atomic case discussed in Sec. III.
However, while in the atomic case the TMD amplitude does
not depend on the angle ϕk defining the orientation of �k⊥,
there is such a dependence for molecular targets [43], that is,
the bell is generally not symmetric, although for the present
state the asymmetry is rather weak and not visible in the
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FIG. 10. Similar to Fig. 8, but for H2
+(2pσ ). The PEMDs are generated by pulses with F0 = 0.03 and ω ≈ 0.052, hence, v0 ≈ 0.57. In

the top panels, noc = 1 (v∞ ≈ −0.27) and T = 120. In the bottom panels, noc = 4 (v∞ ≈ 0) and T = 480.

figure. Similar transverse structure of the PEMD is to be
expected in the general case for arbitrary linear molecules
in σ states in cross sections of the donut corresponding to
orientation angles not close to zeros of the structure factor
G00(β ).

B. 2 pσ state

We next discuss ionization from the 2pσ state. Figures 10
and 11 present results for this state similar to the results shown
in Figs. 8 and 9. PEMDs generated by one-cycle and four-
cycle pulses with F0 = 0.03 and ω ≈ 0.052 are shown in the
top and bottom panels of Fig. 10, respectively. The exact ion-
ization rate �(F) as a function of β for F = 0.03, the rate ex-
tracted from the PEMD generated by a many-cycle (noc = 15)
pulse with F0 = 0.03 and ω ≈ 0.052 by integrating it over the
transverse momentum �k⊥ at a given β, and the leading-order
WFAT results for the rate are shown in Fig. 11. The main
qualitative difference in the shape of the PEMDs from the
previous case stems from the fact that the structure factor
G00(β ) for the 2pσ state turns to zero at β = 90◦ (see the
WFAT results in Fig. 11), which reflects the node of the initial
orbital in the (y, z) plane. This node explains the appearance
of minima in the longitudinal dependence of the PEMD shown
in the bottom left panel of Fig. 10 at photoelectron momenta
where the donut crosses the kx axis. The good agreement of
the PEMD results in Fig. 11 with the ionization rate confirms
the above conclusion that the variation of the PEMD along the
donut reproduces the shape of the orientation dependence of
the rate.

The middle and right panels in Fig. 10 demonstrate that
the transverse structure of the PEMDs in cross sections of the
donut at orientation angles β not close to the zero of G00(β )
is determined by the first term in Eq. (19) and therefore is
similar to the case of the 1sσ state. However, the situation near
β = 90◦, where G00(β ) turns to zero, is different. Note that
the exact rate has a minimum at β = 90◦, it does not turn to
zero there because of the second term in Eq. (18) (see Fig. 11).
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FIG. 11. Similar to Fig. 9, but for H2
+(2pσ ). The exact rate is

calculated for the field strength F = 0.03. The PEMD results are
obtained by integrating the adiabatic PEMD from Eq. (6) generated
by a pulse with F0 = 0.03 and ω ≈ 0.052, as in Fig. 10, but for noc =
15 and T = 1800. Dashed (blue) line shows the structure factor
squared |G00(β )|2. The PEMD and WFAT results are normalized to
the exact rate at β = 0◦.

013428-9



PHAM, TOLSTIKHIN, AND MORISHITA PHYSICAL REVIEW A 99, 013428 (2019)

FIG. 12. Similar to Figs. 8 and 10, but for H2
+(2pπ+). The PEMDs are generated by pulses with F0 = 0.03 and ω ≈ 0.052, hence,

v0 ≈ 0.57. In the top panels, noc = 1 (v∞ ≈ −0.27) and T = 120. In the bottom panels, noc = 4 (v∞ ≈ 0) and T = 480.

At orientations near the zero of G00(β ), the second term
in Eq. (19) becomes comparable with the leading-order first
term, which results in a rapid modification of the transverse
structure of the PEMDs. We discuss this feature in more detail
in the next subsection.

C. 2 pπ+ state

We finally discuss the 2pπ+ state. Figures 12 and 13
present results for this state similar to the results shown in
Figs. 8–11. PEMDs generated by one-cycle and four-cycle
pulses with F0 = 0.03 and ω ≈ 0.052 are shown in the top
and bottom panels of Fig. 12, respectively. The exact ioniza-
tion rate as a function of β for F = 0.03, the rate extracted
from the PEMD generated by a many-cycle (noc = 15) pulse
with F0 = 0.03 and ω ≈ 0.052, and the leading-order WFAT
results for the rate are shown in Fig. 13. The structure factor
G00(β ) for the 2pπ+ state turns to zero at β = 0◦ and 180◦.
This explains deep minima in the longitudinal dependence of
the PEMDs shown in the left panels of Fig. 12 at photoelectron
momenta where the donut is crossed by the vertical dashed
line [these are minima, not nodes, since the exact rate is
not zero at β = 0◦ and 180◦ (see Fig. 13)]. One can also
notice shallow minima in the PEMD shown in the bottom left
panel of Fig. 12 where the donut crosses the kx axis, which
reflects the minimum of the exact ionization rate at β = 90◦
(see Fig. 13). The appearance of such a minimum in the
ionization yield for H2

+(2pπ+) at β = 90◦ was also predicted
by solving the TDSE [54]. This minimum results from the
Stark shift and distortion of the initial orbital caused by the
ionizing field. The leading-order WFAT does not account for

these effects and therefore does not reproduce the minimum
(see the dashed blue line in Fig. 13), but the inclusion of the
first-order correction terms [53] within the WFAT does [52].

The transverse structure of the PEMDs in cross sections of
the donut corresponding to the orientation angles β = 0◦ and
180◦ is shown in the middle and right panels of Fig. 12. The
first term in Eq. (19) vanishes at these values of β. In small
intervals of β near these orientations, where the first and sec-
ond terms in Eq. (19) are comparable, the transverse structure
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FIG. 13. Similar to Figs. 9 and 11, but for H2
+(2pπ+). The

exact rate is calculated for the field strength F = 0.03. The PEMD
results are obtained by integrating the adiabatic PEMD from Eq. (6)
generated by a pulse with F0 = 0.03 and ω ≈ 0.052, as in Fig. 12,
but for noc = 15 and T = 1800. Dashed (blue) line shows the struc-
ture factor squared |G00(β )|2. The PEMD and WFAT results are
normalized to the exact rate at β = 60◦.
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FIG. 14. Two-dimensional cuts in the polarization (kx, ky, kz = 0) plane of PEMDs for H2
+(2pπ+) generated by one-cycle pulses with

durations T and amplitudes F0 indicated in the figure. The solid white lines show the curve Ka . The bottom left panel reproduces the results
from the top left panel of Fig. 12.

of the PEMD is determined by the interplay of contributions
from the two competing ionization channels. In the rest of this
section we discuss the resulting structure in cross sections near
β = 0◦ (in the lower part of the distributions in the left panels
of Fig. 12) in more detail.

Let us first consider the PEMD generated by a one-cycle
pulse shown in the top panels of Fig. 12. In this case, its
transverse structure is not distorted by interference, so it is
easier to understand it. The two-dimensional cut of the PEMD
shown in the top middle panel of Fig. 12 corresponds to
β = 0◦. At this β, the first term in Eq. (19) vanishes, so
the structure seen in the figure is determined by the second
term. This term as a function of the angle ϕk defining the
orientation of �k⊥ turns to zero at ϕk = ±π/2, which results
in the horizontal nodal line crossing the bell-like distribution
shown in the figure. The nodal line is related to the minimum
line seen in the lower part of the distribution in the top left
panel of Fig. 12. One can notice that this line is not vertical,
but slightly tilted. The tilting is additionally illustrated in
Fig. 14, where we present two-dimensional cuts in the (kx, ky )
plane of PEMDs generated by several one-cycle pulses with
the different durations T and amplitudes F0 indicated in the
figure. The bottom left panel in Fig. 14 reproduces the results
from the top left panel in Fig. 12. In all the cases, the minimum
line in the lower part of the distributions is tilted, and the tilt
angle is seen to grow with F0. This feature is explained as
follows. At β = 0◦, the nodal line in the transverse structure of
the PEMD, which results from the cos ϕk factor in the second
term in Eq. (19), passes through the center of the bell-like
distribution, as in the top middle panel of Fig. 12. As β departs
from 0◦, the first term in Eq. (19) becomes nonzero. At small
|β|, the nodal line still exists, but is shifted up (down) for

positive (negative) β, because G00(β ) changes sign at β = 0◦.
This is illustrated in Fig. 15 showing the transverse structure
of the PEMD from the bottom left panel of Fig. 14 in cross
sections of the donut at β = −5◦, 0◦, and 5◦ indicated by the
dashed white lines. The middle panel in Fig. 15 reproduces the
results from the top middle panel of Fig. 12; here, the nodal
line passes through the center of the bell-like distribution. In
the left and right panels of Fig. 15, it is shifted down and up,
respectively, so the distribution restores its nodeless bell-like
shape. The shift of the nodal line in the transverse structure of
the PEMD caused by the interplay of the two terms in Eq. (19)
results in tilting of the minimum lines in Fig. 14. As has been
mentioned above (for details see Ref. [43]), the size of the
interval of β where these terms are comparable is ∝F 1/2, so
the tilt angle in Fig. 14 grows as F0 grows.

The rapid modification of the transverse structure of
PEMDs for linear molecules in π states in cross sections of the
donut near β = 0◦ and 180◦ discussed above is an interesting
feature which may provide an access to an additional struc-
ture information represented by the structure factor G01(β )
for the next-to-the-dominant ionization channel. A question
remains as to whether this feature survives contamination
by interference and can be observed also in PEMDs gener-
ated by many-cycle pulses. The answer to this question is
affirmative, as is demonstrated in Fig. 16. This figure shows
one-dimensional cuts of the PEMD generated by a many-cycle
(noc = 15) pulse with F0 = 0.03 and ω ≈ 0.052 as functions
of �k⊥x = �k⊥ cos ϕk along the line kz = 0 in cross sections
of the donut corresponding to the same three values of β

as in Fig. 15. The solid (red) lines show the raw PEMD
having a pronounced interference substructure. The dashed
(blue) lines show the same results averaged over intervals of
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FIG. 15. Transverse structure of the PEMD for H2
+(2pπ+) shown in the top middle panel of Fig. 12 and the bottom left panel of Fig. 14

in cross sections of the donut corresponding to the three values of β indicated in the figure (these cross sections are shown by the dashed white
lines in Fig. 14). The coordinates in the cross section plane are �k⊥x = �k⊥ cos ϕk and kz, where the transverse momentum �k⊥ is defined
by Eq. (15). The middle panel reproduces the results from the top middle panel of Fig. 12.

�k⊥x of width 0.13. One can see that the maximum of the
averaged distributions in the left and right panels is shifted
towards positive and negative values of �k⊥x , respectively,
while the distribution in the middle panel acquires a deep
minimum at �k⊥x = 0. This behavior is consistent with the
results shown in Fig. 15. Thus, the feature discussed above
should be observable experimentally.

V. CONCLUSIONS

In this paper, we have investigated using the adiabatic
theory [40] how the ionizing molecular orbital structure is
imprinted in and can be extracted from donut-shaped strong-
field PEMDs generated by circularly polarized laser pulses.
The variation of the PEMD along the donut reproduces the
orientation dependence of the ionization rate of the ionizing
orbital which, in turn, reflects its nodal structure and shape.
This conclusion is in accordance with the results presented,
e.g., in Refs. [23,27,29]. Here, we have additionally shown
that the longitudinal variation of the PEMD is related to the
orbital through the structure factor G00(β ) for the dominant
ionization channel. Such structure factors have been tabulated
for a number of diatomic molecules [55]. We have also
analyzed the transverse structure of the PEMD in the different
cross sections of the donut. It is shown that in cross sections
near the ones corresponding to orientations of the molecule at

which the ionizing orbital has a node in the direction opposite
to that of the instantaneous laser field, the transverse structure
of the PEMD undergoes a rapid modification reflecting the
interplay of two competing ionization channels. This provides
additional information on the orbital represented by the struc-
ture factor G01(β ) for the next-to-the-dominant ionization
channel. This analysis contributes to the understanding of
how PEMDs generated by circularly polarized pulses can be
used for imaging molecular orbitals and enables one to relate
observable PEMDs to the shape of the ionizing orbital by
means of the WFAT [44]. We believe its results will find
applications in strong-field physics.

The analysis presented is based on the adiabatic the-
ory [40]. Another result of the paper which is worth men-
tioning in view of future applications is that we have ex-
tended previous validations of this theory by comparison with
TDSE results [9,40,45] to the case of strong-field ionization
by circularly polarized pulses from Coulomb-tail potentials
(Sec. III). The adiabatic theory is shown to quantitatively
reproduce the TDSE results for the hydrogen atom and the
agreement improves as the laser frequency decreases. We
mention that quantitative performance of the adiabatic theory
for many-electron systems has been recently demonstrated
by comparison with experimental results on rescattering
photoelectron spectroscopy of diatomic molecules NO and
CO [10].
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FIG. 16. Solid (red) lines show one-dimensional cuts of the PEMD for H2
+(2pπ+) generated by a pulse with F0 = 0.03 and ω ≈ 0.052,

as in Fig. 15, but for noc = 15 and T = 1800. The PEMD is shown as a function of �k⊥x = �k⊥ cos ϕk at kz = 0 in cross sections of the donut
corresponding to the three values of β indicated in the figure. Dashed (blue) lines show the same results convoluted with a rectangular window
function of width 0.13 and multiplied by a factor to fit the raw results.
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To implement the adiabatic theory as prescribed [40],
without further approximations, one needs to calculate the
Siegert state corresponding to the ionizing orbital. In this pa-
per, we have demonstrated the feasibility of such an accurate
approach for diatomic molecules (Sec. IV) using molecular
Siegert states calculated by the method of Refs. [42,43]. In
principle, this technical development can be extended to larger
molecules, however, the calculation of Siegert states in this
case becomes more laborious. Alternatively, the adiabatic
theory can be implemented more easily using the WFAT [44].
An error incurred by this approximation is illustrated by the
difference between the solid (black) and dashed (blue) lines
in Figs. 9, 11 and 13. The WFAT has been successfully ap-
plied to the analysis of strong-field ionization in experiments
with diatomic [56], triatomic [57], and polyatomic [58–60]
molecules. A general method to calculate structure factors
for arbitrary polyatomic molecules needed for implementing

the adiabatic theory has been developed recently [61,62].
This opens the way for applications of the theory to prob-
lems where solving the TDSE remains unfeasible, such as
strong-field ionization of molecules by circularly polarized
midinfrared laser pulses.
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D. B. Milošević, Molecular above-threshold ionization with a
circularly polarized laser field, Eur. Phys. J. D 67, 61 (2013).

[33] I. Petersen, J. Henkel, and M. Lein, Signatures of Molecular
Orbital Structure in Lateral Electron Momentum Distributions
from Strong-Field Ionization, Phys. Rev. Lett. 114, 103004
(2015).

[34] P.-L. He, N. Takemoto, and F. He, Photoelectron momentum
distributions of atomic and molecular systems in strong cir-
cularly or elliptically polarized laser fields, Phys. Rev. A 91,
063413 (2015).

[35] M. Abu-samha and L. B. Madsen, Alignment dependence of
photoelectron momentum distributions of atomic and molecular
targets probed by few-cycle circularly polarized laser pulses,
Phys. Rev. A 94, 023414 (2016).

[36] K. Liu and I. Barth, Nonadiabatic tunnel ionization of current-
carrying orbitals of prealigned linear molecules in strong

circularly polarized laser fields, Phys. Rev. A 94, 043402
(2016).

[37] M. Murakami and Shih-I Chu, Photoelectron momentum dis-
tributions of the hydrogen molecular ion driven by multicycle
near-infrared laser pulses, Phys. Rev. A 94, 043425 (2016).

[38] K. Liu, K. Renziehausen, and I. Barth, Producing spin-polarized
photoelectrons by using the momentum gate in strong-field
ionization experiments, Phys. Rev. A 95, 063410 (2017).

[39] M. Paul, L. Yue, and S. Gräfe, Strong-field ionization of
asymmetric triatomic model molecules by few-cycle circularly
polarized laser pulses, J. Mod. Opt. 64, 1104 (2017).

[40] O. I. Tolstikhin and T. Morishita, Adiabatic theory of ionization
by intense laser pulses: Finite-range potentials, Phys. Rev. A 86,
043417 (2012).

[41] P. A. Batishchev, O. I. Tolstikhin, and T. Morishita, Atomic
Siegert states in an electric field: Transverse momentum dis-
tribution of the ionized electrons, Phys. Rev. A 82, 023416
(2010).

[42] L. Hamonou, T. Morishita, and O. I. Tolstikhin, Molecular
Siegert states in an electric field, Phys. Rev. A 86, 013412
(2012).

[43] V. N. T. Pham, O. I. Tolstikhin, and T. Morishita, Molecular
Siegert states in an electric field. II. Transverse momentum
distribution of the ionized electrons, Phys. Rev. A 89, 033426
(2014).

[44] O. I. Tolstikhin, T. Morishita, and L. B. Madsen, Theory
of tunneling ionization of molecules: Weak-field asymptotics
including dipole effects, Phys. Rev. A 84, 053423 (2011).

[45] M. Ohmi, O. I. Tolstikhin, and T. Morishita, Analysis of a
shift of the maximum of photoelectron momentum distributions
generated by intense circularly polarized pulses, Phys. Rev. A
92, 043402 (2015).

[46] L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Non-
relativistic Theory) (Pergamon Press, Oxford, 1977).

[47] R. G. Newton, Scattering Theory of Waves and Particles
(Springer, New York, 1982).

[48] T. Morishita, Z. Chen, S. Watanabe, and C. D. Lin, Two-
dimensional electron momentum spectra of argon ionized by
short intense lasers: Comparison of theory with experiment,
Phys. Rev. A 75, 023407 (2007).

[49] I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov,
Spheroidal and Coulomb Spheroidal Functions (Nauka,
Moscow, 1976).

[50] L. B. Madsen, O. I. Tolstikhin, and T. Morishita, Application
of the weak-field asymptotic theory to the analysis of tunnel-
ing ionization of linear molecules, Phys. Rev. A 85, 053404
(2012).

[51] N. B. Delone and V. P. Krainov, Energy and angular elec-
tron spectra for the tunnel ionization of atoms by strong low-
frequency radiation, J. Opt. Soc. Am. B 8, 1207 (1991).

[52] V. H. Trinh, V. N. T. Pham, O. I. Tolstikhin, and T. Morishita,
Weak-field asymptotic theory of tunneling ionization includ-
ing the first-order correction terms: Application to molecules,
Phys. Rev. A 91, 063410 (2015).

[53] V. H. Trinh, O. I. Tolstikhin, L. B. Madsen, and T. Morishita,
First-order correction terms in the weak-field asymptotic theory
of tunneling ionization, Phys. Rev. A 87, 043426 (2013).

[54] G. L. Kamta and A. D. Bandrauk, Imaging electron molecular
orbitals via ionization by intense femtosecond pulses, Phys.
Rev. A 74, 033415 (2006).

013428-14

https://doi.org/10.1103/PhysRevLett.105.133002
https://doi.org/10.1103/PhysRevLett.105.133002
https://doi.org/10.1103/PhysRevLett.105.133002
https://doi.org/10.1103/PhysRevLett.105.133002
https://doi.org/10.1103/PhysRevA.81.063418
https://doi.org/10.1103/PhysRevA.81.063418
https://doi.org/10.1103/PhysRevA.81.063418
https://doi.org/10.1103/PhysRevA.81.063418
https://doi.org/10.1103/PhysRevLett.106.073001
https://doi.org/10.1103/PhysRevLett.106.073001
https://doi.org/10.1103/PhysRevLett.106.073001
https://doi.org/10.1103/PhysRevLett.106.073001
https://doi.org/10.1103/PhysRevLett.107.143004
https://doi.org/10.1103/PhysRevLett.107.143004
https://doi.org/10.1103/PhysRevLett.107.143004
https://doi.org/10.1103/PhysRevLett.107.143004
https://doi.org/10.1103/PhysRevA.83.023405
https://doi.org/10.1103/PhysRevA.83.023405
https://doi.org/10.1103/PhysRevA.83.023405
https://doi.org/10.1103/PhysRevA.83.023405
https://doi.org/10.1103/PhysRevA.83.023406
https://doi.org/10.1103/PhysRevA.83.023406
https://doi.org/10.1103/PhysRevA.83.023406
https://doi.org/10.1103/PhysRevA.83.023406
https://doi.org/10.1103/PhysRevA.84.013426
https://doi.org/10.1103/PhysRevA.84.013426
https://doi.org/10.1103/PhysRevA.84.013426
https://doi.org/10.1103/PhysRevA.84.013426
https://doi.org/10.1364/OE.19.013722
https://doi.org/10.1364/OE.19.013722
https://doi.org/10.1364/OE.19.013722
https://doi.org/10.1364/OE.19.013722
https://doi.org/10.1103/PhysRevLett.109.123001
https://doi.org/10.1103/PhysRevLett.109.123001
https://doi.org/10.1103/PhysRevLett.109.123001
https://doi.org/10.1103/PhysRevLett.109.123001
https://doi.org/10.1088/0953-4075/45/19/194011
https://doi.org/10.1088/0953-4075/45/19/194011
https://doi.org/10.1088/0953-4075/45/19/194011
https://doi.org/10.1088/0953-4075/45/19/194011
https://doi.org/10.1140/epjd/e2013-30702-9
https://doi.org/10.1140/epjd/e2013-30702-9
https://doi.org/10.1140/epjd/e2013-30702-9
https://doi.org/10.1140/epjd/e2013-30702-9
https://doi.org/10.1103/PhysRevLett.114.103004
https://doi.org/10.1103/PhysRevLett.114.103004
https://doi.org/10.1103/PhysRevLett.114.103004
https://doi.org/10.1103/PhysRevLett.114.103004
https://doi.org/10.1103/PhysRevA.91.063413
https://doi.org/10.1103/PhysRevA.91.063413
https://doi.org/10.1103/PhysRevA.91.063413
https://doi.org/10.1103/PhysRevA.91.063413
https://doi.org/10.1103/PhysRevA.94.023414
https://doi.org/10.1103/PhysRevA.94.023414
https://doi.org/10.1103/PhysRevA.94.023414
https://doi.org/10.1103/PhysRevA.94.023414
https://doi.org/10.1103/PhysRevA.94.043402
https://doi.org/10.1103/PhysRevA.94.043402
https://doi.org/10.1103/PhysRevA.94.043402
https://doi.org/10.1103/PhysRevA.94.043402
https://doi.org/10.1103/PhysRevA.94.043425
https://doi.org/10.1103/PhysRevA.94.043425
https://doi.org/10.1103/PhysRevA.94.043425
https://doi.org/10.1103/PhysRevA.94.043425
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1103/PhysRevA.95.063410
https://doi.org/10.1080/09500340.2017.1299883
https://doi.org/10.1080/09500340.2017.1299883
https://doi.org/10.1080/09500340.2017.1299883
https://doi.org/10.1080/09500340.2017.1299883
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.86.043417
https://doi.org/10.1103/PhysRevA.82.023416
https://doi.org/10.1103/PhysRevA.82.023416
https://doi.org/10.1103/PhysRevA.82.023416
https://doi.org/10.1103/PhysRevA.82.023416
https://doi.org/10.1103/PhysRevA.86.013412
https://doi.org/10.1103/PhysRevA.86.013412
https://doi.org/10.1103/PhysRevA.86.013412
https://doi.org/10.1103/PhysRevA.86.013412
https://doi.org/10.1103/PhysRevA.89.033426
https://doi.org/10.1103/PhysRevA.89.033426
https://doi.org/10.1103/PhysRevA.89.033426
https://doi.org/10.1103/PhysRevA.89.033426
https://doi.org/10.1103/PhysRevA.84.053423
https://doi.org/10.1103/PhysRevA.84.053423
https://doi.org/10.1103/PhysRevA.84.053423
https://doi.org/10.1103/PhysRevA.84.053423
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/PhysRevA.92.043402
https://doi.org/10.1103/PhysRevA.75.023407
https://doi.org/10.1103/PhysRevA.75.023407
https://doi.org/10.1103/PhysRevA.75.023407
https://doi.org/10.1103/PhysRevA.75.023407
https://doi.org/10.1103/PhysRevA.85.053404
https://doi.org/10.1103/PhysRevA.85.053404
https://doi.org/10.1103/PhysRevA.85.053404
https://doi.org/10.1103/PhysRevA.85.053404
https://doi.org/10.1364/JOSAB.8.001207
https://doi.org/10.1364/JOSAB.8.001207
https://doi.org/10.1364/JOSAB.8.001207
https://doi.org/10.1364/JOSAB.8.001207
https://doi.org/10.1103/PhysRevA.91.063410
https://doi.org/10.1103/PhysRevA.91.063410
https://doi.org/10.1103/PhysRevA.91.063410
https://doi.org/10.1103/PhysRevA.91.063410
https://doi.org/10.1103/PhysRevA.87.043426
https://doi.org/10.1103/PhysRevA.87.043426
https://doi.org/10.1103/PhysRevA.87.043426
https://doi.org/10.1103/PhysRevA.87.043426
https://doi.org/10.1103/PhysRevA.74.033415
https://doi.org/10.1103/PhysRevA.74.033415
https://doi.org/10.1103/PhysRevA.74.033415
https://doi.org/10.1103/PhysRevA.74.033415


IMAGES OF MOLECULAR ORBITALS IN STRONG-FIELD … PHYSICAL REVIEW A 99, 013428 (2019)

[55] R. Saito, O. I. Tolstikhin, L. B. Madsen, and T. Morishita,
Structure factors for tunneling ionization rates of diatomic
molecules, At. Data Nucl. Data Tables 103-104, 4 (2015).

[56] T. Endo, A. Matsuda, M. Fushitani, T. Yasuike, O. I. Tolstikhin,
T. Morishita, and A. Hishikawa, Imaging Electronic Excitation
of NO by Ultrafast Laser Tunneling Ionization, Phys. Rev. Lett.
116, 163002 (2016).

[57] H. Ohmura, N. Saito, and T. Morishita, Molecular tunneling
ionization of the carbonyl sulfide molecule by double-frequency
phase-controlled laser fields, Phys. Rev. A 89, 013405 (2014).

[58] C. Wang, M. Okunishi, R. R. Lucchese, T. Morishita, O. I.
Tolstikhin, L. B. Madsen, K. Shimada, D. Ding, and K. Ueda,
Extraction of electron-ion differential scattering cross sections
for C2H4 by laser-induced rescattering photoelectron spec-
troscopy, J. Phys. B: At. Mol. Opt. Phys. 45, 131001 (2012).

[59] P. M. Kraus, B. Mignolet, D. Baykusheva, A. Rupenyan, L.
Horný, E. F. Penka, G. Grassi, O. I. Tolstikhin, J. Schneider,

F. Jensen, L. B. Madsen, A. D. Bandrauk, F. Remacle, and
H. J. Wörner, Measurement and laser control of attosecond
charge migration in ionized iodoacetylene, Science 350, 790
(2015).

[60] S. G. Walt, N. B. Ram, A. von Conta, O. I. Tolstikhin, L.
B. Madsen, F. Jensen, and H. J. Wörner, Role of multi-
electron effects in the asymmetry of strong-field ionization and
fragmentation of polar molecules: The methyl halide series,
J. Phys. Chem. A 119, 11772 (2015).

[61] L. B. Madsen, F. Jensen, A. I. Dnestryan, and O. I. Tolstikhin,
Structure factors for tunneling ionization rates of molecules:
General Hartree-Fock-based integral representation, Phys. Rev.
A 96, 013423 (2017).

[62] A. I. Dnestryan, O. I. Tolstikhin, L. B. Madsen, and F. Jensen,
Structure factors for tunneling ionization rates of molecules:
General grid-based methodology and convergence studies,
J. Chem. Phys. 149, 164107 (2018).

013428-15

https://doi.org/10.1016/j.adt.2015.02.001
https://doi.org/10.1016/j.adt.2015.02.001
https://doi.org/10.1016/j.adt.2015.02.001
https://doi.org/10.1016/j.adt.2015.02.001
https://doi.org/10.1103/PhysRevLett.116.163002
https://doi.org/10.1103/PhysRevLett.116.163002
https://doi.org/10.1103/PhysRevLett.116.163002
https://doi.org/10.1103/PhysRevLett.116.163002
https://doi.org/10.1103/PhysRevA.89.013405
https://doi.org/10.1103/PhysRevA.89.013405
https://doi.org/10.1103/PhysRevA.89.013405
https://doi.org/10.1103/PhysRevA.89.013405
https://doi.org/10.1088/0953-4075/45/13/131001
https://doi.org/10.1088/0953-4075/45/13/131001
https://doi.org/10.1088/0953-4075/45/13/131001
https://doi.org/10.1088/0953-4075/45/13/131001
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1126/science.aab2160
https://doi.org/10.1021/acs.jpca.5b07331
https://doi.org/10.1021/acs.jpca.5b07331
https://doi.org/10.1021/acs.jpca.5b07331
https://doi.org/10.1021/acs.jpca.5b07331
https://doi.org/10.1103/PhysRevA.96.013423
https://doi.org/10.1103/PhysRevA.96.013423
https://doi.org/10.1103/PhysRevA.96.013423
https://doi.org/10.1103/PhysRevA.96.013423
https://doi.org/10.1063/1.5046902
https://doi.org/10.1063/1.5046902
https://doi.org/10.1063/1.5046902
https://doi.org/10.1063/1.5046902

