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Theory of coherent optical transients with quantized atomic motion
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A theory of coherent transients is developed in which a sequence of optical pulses is incident on a sample
of trapped atoms and gives rise to phase-matched emission from the sample. The trapping potential for the
atoms can be state dependent, necessitating a quantum treatment of the center-of-mass motion. A source-field
approach is followed, modified to account for the quantized motion of the atoms. The theory is illustrated with
two examples, one involving the creation of ground-Rydberg level coherence in an optical lattice and the second
Raman coherence between two ground-state sublevels of atoms in a dipole trap. For state-independent potentials,
a comparison is made with a theory in which the center-of-mass motion is treated classically.
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I. INTRODUCTION

Coherent transients provide an important probe of atomic
and molecular systems. Historically, the field of coherent tran-
sients was developed within the context of nuclear magnetic
resonance (NMR). In NMR a series of radio-frequency pulses
is applied to a spin system [1]. In response to the applied
pulses, the sample emits a coherent signal that can be used to
measure spin relaxation rates. With the development of laser
sources, the coherent transient technique was extended to the
optical domain [2]. A series of optical pulses is applied to
an atomic or molecular sample, resulting in phase-matched,
coherent emission from the sample. Such coherent optical
transients (COT) can be used to measure the relaxation rates
of the various atomic coherences that are produced by the
incident pulses. In both NMR and COT, inhomogeneous
variations in the transition frequencies of the spins or atoms
can result in significant damping of the generated signals. In
NMR, stray magnetic fields modify the separation between
spin magnetic sublevels while in COT the Doppler shift
associated with atomic motion leads to the inhomogeneities.
Spin echoes and photon echoes represent coherent transient
techniques that can be used to suppress the effects of magnetic
field or Doppler dephasing.

A somewhat more direct way of eliminating Doppler de-
phasing is to cool atoms. However, even at temperatures of
tens of microkelvins that can be achieved using standard
laser cooling techniques, Doppler dephasing can still be the
dominant factor that limits the lifetimes of long-lived atomic
coherences. To further reduce any effects of motional or
Doppler dephasing, atoms can be trapped in optical potentials
that confine the atoms to distances that are much smaller than
the relevant optical wavelengths [3]. This is akin to Dicke
narrowing [4], where collisions of atoms with a background
buffer gas effectively restrict the atoms to a small volume
for the duration of a given experiment. To observe Dicke
narrowing, there is a subtle effect that enters. If the collision
interaction between the buffer gas and the atoms is state
dependent, that is, if the collision interaction differs for the
two atomic states of an optical transition, then the mechanism

responsible for Dicke narrowing can be totally suppressed
[5]. In such cases, the atomic center-of-mass motion must be
quantized to properly model the system. The same can be said
for trapping by optical potentials. If phase-matched emission
results from coherence between two atomic levels for which
the optical potentials are different, the atomic motion in the
trapping potentials must be treated using a fully quantum
theory.

Light-matter interfaces and quantum memories based on
Raman scattering [6,7] or excitation to Rydberg levels [8,9] in
atomic ensembles are well-known applications of COT. Such
systems have been studied intensely in the past two decades.
Much of the experimental and theoretical work in this area
was focused on situations in which atoms are not subjected
to external forces. On the other hand, there are experiments
aimed at achieving long-term (�1 s) quantum state storage
that make use of atomic confinement, typically employing
far-detuned optical fields [10–12]. The atomic state dynamics
is then governed by the periodic motion in the confining
potentials, with a corresponding modulation of the strength
of atom-light coupling and memory storage and retrieval
efficiencies.

Although there have been numerous papers written re-
lated to the interaction of optical fields with trapped atoms
in the context of laser cooling [13], light scattering [14],
fluorescence [15], and wave-packet oscillations [16], there
have been only a few articles that addressed phase-matched
emission from trapped atoms. Zhao et al. [17] and Jenkins
et al. [18] calculated the phase-matched emission from an en-
semble of trapped atoms following a Raman excitation pulse
and a readout pulse. Recently, Lampen et al. [19] presented
both theoretical and experimental results for phase-matched
emission from an ensemble of trapped atoms using pulsed,
two-photon excitation of a Rydberg level pulse followed by a
readout pulse. There are also related calculations carried out
within the context of atom interferometry [20]. However, to
our knowledge, a general theory of optical coherent transients
from trapped atoms based on a source-field approach [21] that
includes the effects of quantized motion in state-dependent
trapping potentials has not yet been developed.
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In this paper, we formulate a general theory of coher-
ent transient spectroscopy that incorporates a quantum de-
scription of the atomic center-of-mass motion. In Sec. II,
we calculate the change in atomic density matrix elements
produced by an optical pulse acting on a generic two-level
atomic system. The transfer matrix associated with such a
process is the building-block solution from which the more
general response of the atoms to a number of pulses can
be calculated. In Sec. III, source-field theory [21], modified
to include quantized center-of-mass motion for the atoms, is
used to calculate the phase-matched coherent transient signal
emitted by a sample of atoms. In Secs. IV and V, we present
two examples to illustrate the theory. The first involves the
creation and probing of ground-Rydberg level coherence in
an optical lattice and the second the effect of transit-time
loss on Raman coherence between ground-state sublevels. For
state-dependent optical potentials, a quantized treatment of
the center-of-mass motion is needed. However, under suitable
initial conditions, a classical description of the center-of-
mass motion can be used, provided the optical potentials are
identical for the relevant atomic levels. In this limit, closed-
form expressions for the radiated signal are obtained with and
without the assumption of classical center-of-mass motion.
The results are summarized in Sec. VI. The atomic density
is assumed to be sufficiently low to neglect all atom-atom
interactions.

II. PULSED EXCITATION: TRANSFER MATRIX

A. Excitation pulses

The atoms are subjected to a series of classical optical
pulses. In this section, we calculate the response of a generic
“two-level” atom (lower level a, upper level c, transition
frequency ωca) to the nth pulse in this series. The incident

fields are assumed to propagate in the X direction and be
polarized in the z direction. In a paraxial wave approximation,
the electric field of the nth pulse in the sample is given by

En(R, t ) = 1
2 uzEn(t )fn(R)ei(knX−ωnt ) + c.c., (1)

where En(t ) is the pulse amplitude at the center of the sample,
fn(R) is the (real) spatial profile of the field in the sample, uz

is a unit vector in the z direction, kn = ωn/c is a propagation
constant, and “c.c.” stands for “complex conjugate.” The pulse
duration Tpn

is assumed to be sufficiently large to ensure
that the spatial extent of the pulse is much larger than the
sample length L. As a consequence, the pulse amplitude En(t )
reaches its maximum at approximately the same time for all
atoms in the sample: this time is denoted by tn. In other words,
it is assumed that the spatial profile of the pulses can be taken
to be constant during the atom-field interaction.

In addition to their interaction with the applied field pulses,
the atoms are continuously subjected to optical trap fields
that result in state-dependent optical potentials. The optical
potentials associated with levels a and c are denoted by Va (R)
and Vc(R), respectively. For an atom having mass M , the
eigenenergies of the Hamiltonian

Hα (R) = − h̄2∇2
R

2M
+ Vα (R) (α = a, c) (2)

are denoted by h̄ω̃αq , the eigenkets by |αq〉, and the eigen-
functions by ψαq (R), where q represents the set of quantum
numbers needed to label all the quantum numbers associated
with the potential Vα (R). The eigenfunctions ψaq (R) and
ψcq ′ (R) are not orthogonal for q �= q ′ if the potential is state
dependent.

In the rotating-wave approximation (RWA), the Hamilto-
nian is taken as

Hn = h̄ωa|a〉〈a| + h̄ωc|c〉〈c| +
∑

q

(h̄ω̃aq |aq〉〈aq| + h̄ω̃cq |cq〉〈cq|) + h̄�(n)
ca (t )

2

N∑
j=1

fn(Rj )

[
eiknXj e−iωntσ

(j )
ca

+e−iknXj eiωntσ
(j )
ac

]
, (3)

where �(n)
ca (t ) = −μcaEn(t )/h̄ (assumed real) is a Rabi fre-

quency associated with the a-c transition, μca is an elec-
tric dipole transition matrix element, σ

(j )
ca (σ (j )

ac ) is a raising
(lowering) operator for atom j , and N is the number of
atoms. It is important to recognize that Xj is an operator:
it is the X component of the position operator of atom j .
The field is taken to be resonant with the atomic transition
ωn = ωca .

Our goal is to calculate the change in density matrix
elements of atom j resulting from the applied pulse. In this
section, we drop the j and n labels, but it is to be understood
that all quantities refer to the time evolution of atom j during
the nth pulse [for example, fn(Rj ) → f (R), kn → k, etc.];
these labels will be restored in Sec. III. In the Schrödinger rep-
resentation, density matrix elements obey the time-evolution
equation

ρ̇αq;α′q ′ = 1

ih̄
[H, ρ]αq;α′q ′ . (4)

Defining an interaction representation by

ραq;α′q ′ = ρI
αq;α′q ′ exp[−iωαα′ t − iωαq,α′q ′ t], (5)

where

ωαα′ = ωα − ωα′ ; ωαq,α′q ′ = ω̃αq − ω̃α′q ′ , (6)

we find time-evolution equations

ρ̇I
aq;cp =−i

�ca (t )

2

⎡
⎣ ∑p′ e

iωaq,cp′ tB
†
aq,cp′ (k)ρI

cp′;cp

−∑q ′ e
iωaq′,cptρI

aq;aq ′B
†
aq ′,cp(k)

⎤
⎦, (7a)

ρ̇I
cp;aq =−i

�ca (t )

2

[ ∑
q ′ e

iωcp,aq′ tBcp,aq ′ (k)ρI
aq ′;aq

−∑p′ e
iωcp′ ,aq tρI

cp;cp′Bcp′,aq (k)

]
, (7b)
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ρ̇I
cp;cp′ =−i

�ca (t )

2

∑
q

[
eiωcp,aq tBcp,aq (k)ρI

aq;cp′

−e−iωcp′ ,aq tρI
cp;aqB

†
aq,cp′ (k)

]
, (7c)

ρ̇I
aq;aq ′ =−i

�ca (t )

2

∑
p

[
eiωaq,cptB

†
aq,cp(k)ρI

cp;aq ′

−e−iωaq′ ,cptρI
aq;cpBcp,aq ′ (k)

]
, (7d)

where k = kux and

Bcp,aq (k) =
∫

dR[ψcp(R)]∗f (R)eik·Rψaq (R), (8a)

B†
aq,cp(k) =

∫
dR[ψaq (R)]∗f (R)e−ik·Rψcp(R). (8b)

If we define an operator

Mca (R, k, t ) = f (R)eiHc (R)t/h̄eik·Re−iHa (R)t/h̄, (9)

then Eqs. (7) can be written in matrix form as

ρ̇I
ac = −i

�ca (t )

2

[
Mca (k, t )†ρI

cc − ρI
aaMca (k, t )†

]
, (10a)

ρ̇I
ca = −i

�ca (t )

2

[
Mca (k, t )ρI

aa − ρI
ccMca (k, t )

]
, (10b)

ρ̇I
cc = −i

�ca (t )

2

[
Mca (k, t )ρI

ac − ρI
caMca (k, t )†

]
, (10c)

ρ̇I
aa = −i

�ca (t )

2

[
Mca (k, t )†ρI

ca − ρI
acMca (k, t )

]
, (10d)

where each element ρI
αα′ is now a matrix having matrix

elements 〈αq|ρI
αα′ |α′q ′〉 and Mca is a matrix with elements

[Mca (k, t )]αq;βq ′ = 〈αq|Mca (R, k, t )|βq ′〉 (11)

for α, β equal to a or c. The pulse duration is sufficiently short
to neglect any decay during the pulse. Note that Mca (R, k, t )
is not a unitary operator owing to the factor f (R), but that the
operator

Uca (R, k, t ) = eiHc (R)t/h̄eik·Re−iHa (R)t/h̄ (12)

is unitary.
In principle, Eqs. (10) could be solved numerically as

coupled equations for all the matrix elements. However, if the
pulse duration Tp is sufficiently short such that |ωaq,cpTp| 	 1
for all relevant q and p (this corresponds to the atomic motion
being frozen during the pulse), then the matrix Mca (k, t ) can
be evaluated at t = tn and Eqs. (10) reduce to

ρ̇I
ac = −i

�ca (t )

2

[
Mca (k,tn)†ρI

cc − ρI
aaMca (k,tn)†

]
, (13a)

ρ̇I
ca = −i

�ca (t )

2

[
Mca (k,tn)ρI

aa − ρI
ccMca (k,tn)

]
, (13b)

ρ̇I
cc = −i

�ca (t )

2

[
Mca (k,tn)ρI

ac − ρI
caMca (k,tn)†

]
, (13c)

ρ̇I
aa = −i

�ca (t )

2

[
Mca (k,tn)†ρI

ca − ρI
acMca (k,tn

)]
. (13d)

Unfortunately, even though Mca (k,tn) and Mca (k,tn)† are time
independent in these equations, there is no simple solution

owing to the fact that Mca (k, tn) is not a unitary matrix. In
effect, Eqs. (10) must be solved numerically to obtain the
ρI

αq;βq ′ (t+n ) in terms of ρI
αq,βq ′ (t−n ).

There are two limiting cases where a relatively simple solu-
tion can be obtained. If the applied field spatial profile is con-
stant over the sample [f (R)=1 and Mca (k,tn)=Uca (k,tn)],
then we can set

ρ̃ac(k, t, tn) = ρI
ac(t )Uca (k,tn), (14a)

ρ̃ca (k, t, tn) = Uca (k, tn)†ρI
ca (t ), (14b)

ρ̃aa (k, t, tn) = ρI
aa (t ), (14c)

ρ̃cc(k, t, tn) = Uca (k, tn)†ρI
cc(t )Uca (k, tn), (14d)

which transforms Eqs. (13) into

dρ̃ac

dt
= −i

�ca (t )

2
[ρ̃cc − ρ̃aa], (15a)

dρ̃ca

dt
= −i

�ca (t )

2
[ρ̃aa − ρ̃cc], (15b)

dρ̃cc

dt
= −i

�ca (t )

2
[ρ̃ac − ρ̃ca], (15c)

dρ̃aa

dt
= −i

�ca (t )

2
[ρ̃ca − ρ̃ac]. (15d)

The solution of these equations is straightforward [22]

⎛
⎜⎜⎜⎝

ρ̃ac(t+n )

ρ̃ca (t+n )

ρ̃aa (t+n )

ρ̃cc(t+n )

⎞
⎟⎟⎟⎠=

⎛
⎜⎜⎜⎝

cos2
(

A
2

)
sin2

(
A
2

)
i sin A

2 −i sin A
2

sin2
(

A
2

)
cos2

(
A
2

) −i sin A
2 i sin A

2

i sin A
2 −i sin A

2 cos2
(

A
2

)
sin2

(
A
2

)
−i sin A

2 i sin A
2 sin2

(
A
2

)
cos2

(
A
2

)

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

ρ̃ac(t−n )

ρ̃ca (t−n )

ρ̃aa (t−n )

ρ̃cc(t−n )

⎞
⎟⎟⎟⎠, (16)

where t±n are times just before and after the application of the
pulse and

A =
∫ tn+

t−n
dt �ca (t ) (17)

is a pulse area. Equations (16) and (14) can be used to
calculate the change in the atomic density matrix elements in
the interaction representation.

The second case where a simple solution is possible is
one in which there is a lattice trap potential varying as
−V0 cos2(ktrX) superimposed on a much more slowly vary-
ing trap potential. If the temperature is sufficiently low to en-
sure that all atomic motion can be neglected on the timescale
of an experiment except that associated with motion in the
lattice potential, but is still sufficiently large to ensure that
motion in the slowly varying trap potential can be treated
classically, then f (R) can be replaced by a classical function
fcl (R) and the resulting signal averaged over the classical
Boltzmann distribution associated with the slowly varying
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FIG. 1. Level schemes.

trap potential. In this limit, Eqs. (14) and (16) remain valid,
provided that the area A appearing in Eq. (16) is replaced by

A(R) = fcl (R)
∫ t+n

t−n
dt �ca (t ). (18)

Although we have taken the a-c transition to be dipole
allowed, the formalism can still be used when levels a and c

have the same parity and are driven by two-photon excitation.
The only change that need be made is to replace �ca (t ) by
some effective two-photon Rabi frequency that depends on
the product of the amplitudes of each of the fields involved
in the transition.

B. Readout pulse

In some cases, it is necessary to apply a readout pulse to
generate the phase-matched signal. For example, consider the
level schemes shown in Fig. 1. In both cases, it is assumed
that some initial two-photon pulse has created a long-lived
atomic coherence between levels a and c, both of which
have the same parity. In Fig. 1(a), the coherence is between
a ground and Rydberg level and, in Fig. 1(b), it is between
two-ground state sublevels. To read out the coherence, a
pulse is applied that is resonant with the c-b transition and
results in phase-matched emission on the a-b transition. We
shall assume that the Rabi frequency �out

bc associated with the
readout pulse is greater than the decay rate �b = 2γb of level
b. The duration Tout of the readout pulse may be greater than
�−1

b ; it is assumed, however, that all motion is frozen on a
timescale of min (γ −1

b , Tout ).
The calculation proceeds in exactly the same manner as

that for the excitation pulse, except it is necessary to use
density matrix equations for a three-level lambda scheme [23]
with a single field acting on the c-b transition. We find that,
for the level scheme of Fig. 1(a) and f (R) = 1,

dρ̃ca

dt
= −i

�out
cb (t )

2
ρ̃ba, (19a)

dρ̃ba

dt
= −i

�out
cb (t )

2
ρ̃ca − γbρ̃ba, (19b)

where

ρ̃ca (kn, t, tout ) = Ucb(kout, tout )
†ρI

ca (t ), (20a)

ρ̃ba (kn, t, tout ) = ρI
ba (t ), (20b)

kout is the propagation vector of the readout pulse, and tout is
the time the readout pulse is applied.

For the level scheme of Fig. 1(b) and f (R) = 1,

dρ̃ca

dt
= −i

�out
bc (t )

2
ρ̃ba, (21a)

dρ̃ba

dt
= −i

�out
bc (t )

2
ρ̃ca − γbρ̃ba, (21b)

where

ρ̃ca (kn, t, tout ) = Ucb(kout, tout )ρ
I
ca (t ), (22a)

ρ̃ba (kn, t, tout ) = ρI
ba (t ). (22b)

It is a simple matter to solve Eqs. (19) or (21) numerically (or
analytically for a square pulse) and then use Eqs. (20) or (22)
to obtain matrix elements of ρI

ca (t ), matrix elements that will
be needed in the evaluation of the phase-matched signal. If,
instead of taking f (R) = 1, we consider the second limiting
case discussed following Eq. (13), then �out

bc (t ) is replaced by
�out

bc (t )fcl (R) in Eqs. (19) and (21).

III. SOURCE-FIELD EXPRESSION FOR THE SIGNAL

The signal recorded at time t at a point detector located at
position Rd is proportional to a quantity S defined by

S = R2
d〈E−(Rd, t ) · E+(Rd , t )〉, (23)

where

E+(R, t ) = i
∑
k,λ

(
h̄ωk

2ε0V

)1/2

eik·Rakλ
(t )ε (λ)

k (24)

is the positive-frequency component of the electric field oper-
ator at position Rd , E−(Rd , t ) = [E+(R, t )]†, ωk = kc,

ε
(1)
k = cos θk cos φkux + cos θk sin φkuy − sin θkuz, (25a)

ε
(2)
k = − sin φkux + cos φkuy (25b)

are the field polarization vectors labeled by the symbol λ, and
V is the quantization volume. The field operators are written
in the Heisenberg representation, but could have equally well
been written as time-independent operators in the Schrödinger
representation. We will return to this point shortly.

In the problem under consideration, a number of classical
field pulses give rise to the creation of previously unoccupied
vacuum field modes. In situations such as this, a powerful
method for obtaining an expression for E+(Rd , t ) is afforded
by the so-called source-field approach [21]. In that approach,
the creation and annihilation operators are written in terms of
their initial values and their dependence on atomic operators.
For example, consider emission on transitions from level b to
a having transition frequency ωba in an ensemble of atoms
whose center-of-mass coordinates are fixed. Level b is taken
to be the m = 0 sublevel of a J = 1 angular momentum state,
while level a is taken to be a J = 0 angular momentum
state. In that case, for an electric dipole interaction of the
form

Vaf (R, t ) = −μ̂(t ) · [E+(R, t ) + E−(R, t )], (26)
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where μ̂(t ) is the atomic dipole moment operator, the Hamil-
tonian in the RWA is given by

H = h̄ωa|a〉〈a| + h̄ωb|b〉〈b|

+
∑
k,λ

N∑
j=1

[
h̄gkλ

eik·Rj e−iωktσ
(j )
ba (t )akλ

(t )

+h̄g∗
kλ

e−ik·Rj eiωkt a
†
kλ

(t )σ (j )
ab (t )

]
, (27)

where

gkλ
= −iμba

(
ωk

2h̄ε0V

)1/2

sin θkδλ,1, (28)

σ
(j )
ab (t ′) [σ (j )

ba (t ′)] is a lowering (raising) operator for atom j

located at position Rj , μba is the z component of the dipole
moment matrix element (assumed real) between states b and
a, and δλ,1 is a Kronecker delta. The annihilation operator at
time t can be expressed as

akλ
(t ) = akλ

(0)e−iωkt

−ig∗
kλ

N∑
j=1

∫ t

0
dt ′e−ik·Rj σ

(j )
ab (t ′)e−iωk (t−t ′ ). (29)

The second term in Eq. (29) is the contribution to the
field operator that can be traced to the atoms, the so-called
source-field term. Including only the source-field contribution
in Eq. (24), it is straightforward to show that the field operator
can be written in a form that mirrors the classical expression
for the electric field produced by an ensemble of electric
dipoles. In particular, assuming that the detector is located in
the radiation zone of the atomic dipoles, one finds [21]

E+(Rd , t ) = −
(

ω2
ba

4πε0c2Rd

)
μba sin θd

N∑
j=1

σ
(j )
ab

(
t (j )
r

)
uθd

,

(30)

where θd is the polar angle of the detector, uθd
is a unit vector

in the direction of increasing θd , and

t (j )
r = t − |Rd−Rj |

c
(31)

is a retarded time.
If the center-of-mass motion of the atoms can be treated

classically, it is a simple matter to extend the source-field
result to include the effects of atomic motion. Equation (30)
remains valid provided that t

(j )
r is defined as the solution of

t (j )
r = t −

∣∣Rd−Rj

(
t

(j )
r

)∣∣
c

, (32)

where Rj (t ) is the position of atom j at time t . On the other
hand, if the center-of-mass motion of the atoms is quantized,
Rj (t ) becomes a Heisenberg operator, and there is no obvious
manner in which to generalize Eq. (30).

To make some progress in the case where the center-of-
mass motion is quantized, we can still use the Heisenberg
representation, but it is necessary to delay the sum over field
modes that lead to the final source-field expression. In other
words, we use Eqs. (23) and (28) with Rj replaced by Rj (t ′)

to write the source-field contribution to the signal as

S = R2
d〈E−(Rd, t ) · E+(Rd , t )〉

= R2
d

∑
k,λ,k′,λ′

(
h̄ωk′

2ε0V

)1/2(
h̄ωk

2ε0V

)1/2

ei(k−k′ )·Rd

× 〈a†
k′

λ′
(t )akλ

(t )
〉
ε

(λ′ )
k′ · ε

(λ)
k

= μ2
baR

2
d

∑
k,k′

N∑
j,j ′=1

(
h̄ωk′

2ε0V

)(
h̄ωk

2ε0V

)

× sin θk sin θk′ei(k−k′ )·Rd ε
(1)
k′ · ε

(1)
k

×
∫ t

0
dt ′
∫ t

0
dt ′′
〈
eik′ ·R̂j ′ (t ′′ )σ

(j ′ )
ba (t ′′)σ (j )

ab (t ′)e−ik·R̂j (t ′ )〉
× eiωk′ (t−t ′ )e−iωk (t−t ′ ), (33)

where R̂j (t ) is a Heisenberg operator. Note that
[R̂j (t ), σ (j )

αβ (t )] = 0, but that [R̂j (t ), σ (j )
αβ (t ′)] �= 0, in general.

Qualitatively, there are two types of terms that enter the
double summation over j and j ′ in Eq. (33). Terms with
j = j ′ are difficult to calculate using this approach, but such
terms contribute negligibly to the phase-matched signal. For
completeness, a method for treating the j = j ′ terms is dis-
cussed in the Appendix. The remaining terms involve products
of operators corresponding to different atoms, implying that
the average of the product is equal to the product of the
averages. In other words, for such terms we can write Eq. (33)
as

S = |G(Rd, t )|2, (34)

where

G(Rd , t ) = μbaRd

∑
k,k′

N∑
j=1

(
h̄ωk

2ε0V

)∫ t

0
dt ′
〈
σ

(j )
ab (t ′)e−ik·R̂j (t ′ )〉

× e−iωk (t−t ′ ). (35)

Written in this form, the signal contains extra terms since
terms with j = j ′ are not excluded; however, for a large
number of atoms N in the sample, the j = j ′ terms can be
neglected since they scale as N , whereas the phase-matched
signal scales as N2.

The average in Eq. (35) can be written as

Fj = 〈σ (j )
ab (t ′)e−ik·R̂j (t ′ )〉 = Tr

[
ρ(0)σ (j )

ab (t ′)e−ik·R̂j (t ′ )]
= Tr

[
ρ (j )(t ′)|a〉〈b|e−ik·R̂j

]
, (36)

where ρ (j )(t ) is the density matrix for atom j at time t and
the trace is over motional states. The trace is very difficult to
carry out using Heisenberg operators, but relatively simple to
evaluate using Schrödinger operators. Explicitly, we find

Fj =
∑
q,q ′

ρ
(j )
bq;aq ′ (t ′)〈aq ′|e−ik·R̂j |bq〉

=
∑
q,q ′

ρ
I (j )
bq;aq ′ (t ′)〈aq ′|e−ik·R̂j |bq〉e−iωbq;aq′ t ′e−iωba t

′

=
∑
q,q ′

∫
dR
[
ψ

(j )
aq ′ (R)

]∗
e−ik·Rψ

(j )
bq (R)ρI (j )

bq;aq ′ (t ′)

× e−iωbq;aq′ t ′e−iωba t
′
. (37)
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The key point is that the R appearing in Eq. (37) is no
longer an operator. As a consequence, when this expression
is substituted back into Eq. (35), the sum over field modes can
be carried out as in normal source-field theory. In this manner,
we find

G(Rd , t ) = −μba

(
ω2

ba sin θd

4πε0c2

)∑
q,q ′

N∑
j=1

∫
dR
[
ψ

(j )
aq ′ (R)

]∗

× ρ
I (j )
bq;aq ′

(
t − |Rd−R|

c

)

× exp

[
−iωbq;aq ′

(
t − |Rd−R|

c

)]

× exp

[
−iωba

(
t − |Rd−R|

c

)]
ψ

(j )
bq (R). (38)

Since Rd 
 R we can set |Rd−R| = Rd except in the ex-
ponential containing ωba since ωba corresponds to an optical
frequency. In that term, we set

|Rd−R| ≈ Rd − Rd · R
Rd

(39)

and Eq. (38) reduces to

G(Rd, t ) = −μba

(
ω2

ba sin θd

4πε0c2

)
eikbaRd e−iωba t

×
∑
q,q ′

N∑
j=1

ρ
I (j )
bq;aq ′ (tr )U (j )

aq ′,bq (kba, tr )†, (40)

where

U
(j )
aq ′,bq (kba, tr )†

= e−iωbq;aq′ tr
∫

dR
[
ψ

(j )
aq ′ (R)

]∗
e−ikba ·Rψ

(j )
bq (R), (41)

kba = ωba

c

Rd

Rd

, (42)

and

tr = t − Rd/c. (43)

Equation can be written in the more compact form as

G(Rd , t ) = −μba

(
ω2

ba sin θd

4πε0c2

)
eikbaRd e−iωba t

×
N∑

j=1

Tr
[
ρ

I (j )
ba (tr )U (j )

ba (kba, tr )†
]
, (44)

where both ρ
I (j )
ba (tr ) and U

(j )
ba (k, tr )† are matrices in the mo-

tional states. Recall that Uba (R, k, tr ) is defined in Eq. (12).
The trace in Eq. (44) is over center-of-mass states. Although
we have retained the j superscripts in Eq. (44), the final result
is actually equal to N times the single-atom result since each
atom in our model is essentially the same.

In principle, the calculation is now complete. One calcu-
lates ρ

I (j )
ba (tr ) by piecing together the various transfer matrices

calculated using the method outlined in Sec. II and then carries
out the trace needed in Eq. (44). As specific examples, we

now calculate the signal associated with the level schemes of
Fig. 1.

IV. SPECIFIC EXAMPLE: GROUND LEVEL–RYDBERG
LEVEL COHERENCE IN AN OPTICAL LATTICE

We consider first the level scheme of Fig. 1(a) in which
level a is a J = 0 ground state, level c is a J = 0 Ryd-
berg level, and level b is a J = 1 excited state. Trap fields,
counterpropagating in the X direction and polarized in the
y direction, confine the atoms in the transverse direction and
provide attractive lattice potentials

Vα (X) = −Vα cos2(ktrX), α = a, c (45)

in the longitudinal (X) direction for levels a and c. Any
additional contributions to the trap potentials, such as those
associated with a breakdown of the dipole approximation in
calculating the Rydberg potentials [24], are ignored. The trap
fields can also give rise to a repulsive potential for level b, but
we will see that the potential for level b is unimportant for the
pulse sequence under consideration. At t = 0, a two-photon
pulse resonantly excites atomic coherences ρ

(j )
ca . As a result of

atomic motion, these coherences undergo dephasing. At time
t = T21, a readout pulse that is resonant with the c-b transition
frequency is applied and creates the coherences ρ

(j )
ba . The

phase-matched signal emitted by the sample, which results
from the interaction of the vacuum field with the atoms, is
dependent on the value of ρ

(j )
ba created by the excitation and

readout fields.
The excitation and readout pulses are all z polarized

and propagate in the ±X direction. The two-photon excita-
tion pulse consists of two fields having propagation vectors
k1 = k1ux and k2 = −k2ux . The excitation pulse has an ef-
fective propagation vector ke = k12 = k12ux , where

k12 = k1 − k2, (46)

an effective two-photon frequency ωe = (|k1| + |k2|)c = ωca ,
and an effective two-photon Rabi frequency �ca (t ), while the
readout pulse has propagation vector kout, frequency ωout =
ωcb, and Rabi frequency �cb(t ). The waists of the excitation
and readout pulses are centered at the center of the atomic
cloud at times t = 0 and T21, respectively. The trap fields are
also centered at the center of the atomic cloud. It is assumed
that the radial extent of the excitation field is much smaller
than that of the trap fields and that the trap-field intensity in
the longitudinal direction is constant over the extent of the
atomic cloud. As a consequence, the trap fields can be taken to
be constant over the excitation volume. Moreover, we assume
that the atoms are sufficiently cold that any transverse motion
can be neglected on a timescale equal to T21. For example, if
the atoms are cooled to 10 μK, they move a distance of order
1.8 μm in 40 μs. For T21 of order 40 μs, the transverse motion
can be neglected if the waist of the excitation pulse is much
greater than 1.8 μm. The pulse durations are sufficiently short
to neglect all motion during the pulses. With these simplifying
assumptions, the atomic density N can be taken as constant
over the excitation volume and the spatial profiles of the
excitation and readout pulses can be considered as classical
functions of atomic position.
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The problem effectively reduces to a one-dimensional
problem for quantized motion in potentials

Vα (X) = −Vα cos2(ktrX) = −Vα + Vα sin2(ktrX),

α = a, c. (47)

It proves convenient to set

Vα = 1

2

Mω̃2
α

k2
tr

, α = a, c (48)

where M is the mass of the atoms, with this definition the
motion near the bottom of the wells is approximately har-
monic with frequency ω̃α . We assume that all the atoms in the
excitation volume are trapped in the lattice wells; transitions
out of the wells are not included.

The evaluation of Eq. (44) for G(Rd, t ) is complicated
since it is necessary to use the quasibound eigenfunctions of
the trap potential. For a potential having Np lobes, the ground
state (and each excited quasibound state) is approximately
Np-fold degenerate. Of the Np-degenerate eigenfunctions,
only two correspond to the periodic Mathieu functions; the
remaining states are symmetric or antisymmetric eigenfunc-
tions of the Np-well potential [25]. Instead of using these
eigenfunctions, we assume atoms are trapped in individual
wells of the potential with no coherence between the wave
functions of the atoms in different wells. As such, the mo-
tional quantum numbers are simply those associated with the
quasibound states of a single lobe of the lattice potential. It is
now a simple matter to piece together the signal.

Using Eq. (16), we find that the excitation pulse results in
a density matrix

ρ̃ (j )
ca (0+) = −i

sin[Ae(ρ)]

2
ρ̃ (j )

aa (0−), (49)

where

Ae(ρ) = fe(ρ)
∫ 0+

0−
dt �ca (t ), (50)

ρ is a vector orthogonal to the X axis, and fe(ρ) is the
(classical) transverse spatial profile of the excitation pulse,
which is the same for all atoms in the excitation volume. From
Eqs. (14b) and (14c), it then follows that

ρI (j )
ca (0+) = U (j )

ca (k12ux, 0)ρ̃ (j )
ca (0+). (51)

Between t = 0 and T21, this coherence decays as a result of
loss of population from level c with rate �c, such that

ρI (j )
ca (T −

21 ) = e−γcT21ρI (j )
ca (0+), (52)

where γc = �c/2. At time tout = T21, the readout pulse trans-
forms the c-a coherence into a b-a coherence which can be
calculated using Eqs. (16) and (20) as

ρ
I (j )
ba (T +

21 ) = ρ̃
(j )
ba (T +

21 ) = −i
sin[Aout (ρ)]

2
ρ̃ (j )

ca (T −
21 )

= −i
sin[Aout (ρ]

2
U

(j )
cb (−k2ux, T21)†ρI (j )

ca (T −
21 ),

(53)

where

Aout (ρ) = fout (ρ)
∫ T +

21

T −
21

dt �cb(t ), (54)

and fout (ρ) is the transverse spatial profile of the readout
pulse. For times t > T +

21,

ρ
I (j )
ba (t ) = e−γb (t−T21 )ρ

I (j )
ba (T +

21 ), (55)

where γb = �b/2 and �b is the rate at which the level b

population decays.
The detector is located at position Rd = Rdux , which is in

the direction of phase-matched emission. As a consequence,
the vector kba appearing in Eq. (40) is

kba = (ωba/c)ux = k1ux. (56)

To achieve phase matching, it is necessary that |k2 − kout|L 	
1, as is assumed (L is the longitudinal length of the sample).
In calculating G(Rd , t ), given in Eq. (44), several factors of
U

(j )
αβ (kux, T21) or its adjoint appear. Using the fact that atom

j is in a potential well centered at X = Xj , it follows from
Eq. (41) that

U
(j )
aq ′,bq (kux, tr ) = eikXj U

(j )
aq ′,bq (kux, tr ), (57)

where

Uaq ′,bq (kux, tr ) = eiωbq;aq′ tr
∫

dX[ψaq ′ (X)]∗eikXψbq (X)

(58)

is independent of j and the integral is carried out over a
single well centered at X = 0. The resulting exponential
factors in the expression for G(Rd , t ) are equal to unity in the
phase-matched direction. As a consequence, we can combine
Eqs. (34), (44), and (49)–(56) to find that the phase-matched
contribution to the signal S emitted on the b-a transition at a
time τ = t − T21 following the readout pulse is given by

S(T21, τ ) = e−�cT21e−�bτr J 2�(τr )|C(T21)|2, (59)

where

J = μbaNL

4

(
ω2

ba

4πε0c2

)∫
dρ sin[Ae(ρ)] sin[Aout (ρ )],

(60)

τr = τ − Rd

c
= t − T21 − Rd

c
, (61)

� is a Heaviside function, and

C(T21) = Tr
[
Uba (k1ux, T21)†ρI

ba (T +
21 )
]

= Tr

[
Uba (k1ux, T21)†Ucb(−k2ux, T21)†

×Uca[k12ux, 0]ρaa (0)

]

= Tr[Uca (k12ux, T21)†Uca (k12ux, 0)ρaa (0)]

=
∑

q,q ′,q ′′
e−iωcq′ ;aqT21B

†
aq;cq ′ (k12ux )

×Bcq ′;aq ′′ (k12ux )ρq ′′q (0). (62)

The matrices B and B† are defined in Eqs. (8). The matrix
Uba (kba, tr )† appearing in Eq. (44) has been evaluated at
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tr = T21, based on the assumptions that the atomic center-
of-mass motion is frozen during the readout pulse and that
|ωbq;aq ′ |Rd/c 	 1. Note that state b has dropped out of the
calculation. Equation (62) can be evaluated for various trap
potentials.

It has been assumed that the trap potential is constant over
the excitation volume and that any transverse motion can be
neglected on a timescale equal to T21. As a consequence, a
normalized signal can be defined by

S̃(T21) = S(T21, τ )

S(0, τ )
= e−�cT21 |C(T21)|2 (63)

that depends only on T21 and the nature of the lattice poten-
tials. In other words, S̃(T21) does not depend on the spatial
profiles of the excitation and readout pulses. Thus, it is not
necessary to specify the excitation and readout fields in the
graphs of |C(T21)|2 that are be presented in this section.

A. State-independent potentials

In general, Eq. (62) must be used to calculate C(T21),
with matrix elements given by Eqs. (8). However, for state-
independent potentials, the internal state does not have to be
specified in calculating the matrix elements. In that case,

C(T21) =
∑
q,q ′

〈q|eiHaT21/h̄e−ik12Xe−iHcT21/h̄eik12X|q ′〉

× ρq ′q (0) = 〈e−ik12X̂(T21 )eik12X̂(0)〉, (64)

where X̂(Ts ) and X̂(0) are Heisenberg operators. Of course,
Eq. (64) is all but impossible to evaluate except for free atoms
or for atoms moving in a harmonic potential. For our specific
choice of potentials, we have

Va (X) = Vc(X) = V (X) = −V0 + V0 sin2(ktrX), (65)

with

V0 = 1

2

Mω2

k2
tr

. (66)

1. Harmonic potential

In the harmonic approximation, that is, when the level a

and c potentials are replaced by

V (X) ∼ −V0 + 1
2Mω2X2, (67)

it is possible to evaluate Eq. (64) directly, without reverting to
Eq. (62). For Eq. (67) to be a good approximation, a necessary
condition is

V0

h̄ω
= 1

2

Mω2

h̄ωk2
tr

= 1

4ζ 2
tr


 1, (68)

where

ζtr = ktr

√
h̄

2Mω
(69)

is the trap-field Lamb-Dicke parameter.
In the harmonic approximation

k12X̂(T21) = k12

[
X̂(0) cos(ωT21) + P̂ (0)

Mω
sin(ωT21)

]

= ζ [ae−iωT21 + a†eiωT21 ], (70)

where

ζ = k12

√
h̄

2Mω
(71)

is the effective Lamb-Dicke parameter for the excitation field,

a = ξ̂ + iν̂√
2

, (72a)

a† = ξ̂ − iν̂√
2

, (72b)

ξ̂ =
√

Mω

h̄
X̂(0), (73a)

ν̂ = 1√
h̄Mω

P̂ (0), (73b)

such that

C(T21) = 〈e−iζ [ae−iωT21 +a†eiωT21 ]eiζ [a+a†]
〉

= e−iζ 2 sin(ωT21 )
〈
eσ (T21 )a†−σ (T21 )∗a 〉 (74)

with

σ (T21) = iζ [1 − eiωT21 ]. (75)

The evaluation of the characteristic function〈
eσ (T21 )a†−σ (T21 )∗a 〉

for various initial states can be found in standard texts [26].
a. Coherent state. For atoms prepared in a coherent state

|α〉,
C(T21) = e−iζ 2 sin(ωT21 )e−|σ (T21 )|2/2eσ (T21 )α∗−σ (T21 )∗α (76)

and

|C(T21)| = e−|σ (T21 )|2/2, (77)

with

|σ (T21)|2 = 2ζ 2[1 − cos(ωT21)]. (78)

There is minimal dephasing for a small Lamb-Dicke parame-
ter. This dephasing is a pure quantum effect, which vanishes
in the limit that h̄ → 0. In the analogous classical problem,
|C(T21)| = 1 since all atoms have the same initial conditions.

b. Density matrix diagonal in number basis. If the atoms
are prepared in a state having a density matrix that is diagonal
in the number representation

ρnn′ (0) = Pnδn,n′ , (79)

then [26]

C(T21) = e−iζ 2 sin(ωT21 )e−|σ (T21 )|2/2
∞∑

n=0

PnLn(|σ (T21)|2), (80)

where Ln(z) is a Laguerre polynomial.
For atoms prepared in a number state Pq = δq,n,

|C(T21)| = e−|σ (T21 )|2/2Ln(|σ (T21)|2). (81)

The value of C(T21) is identical for an initial coherent state
and an initial vacuum state since the spatial widths of both
packets are identical and do not change in time.
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For a thermal state with

Pn = (1 − e−β )e−nβ, β = h̄ω

kBT
, (82)

|C(T21)| = e−|σ (T21 )|2/2(1 − e−β )
∞∑

n=0

e−nβLn(|σ (T21)|2)

= e− 1
2 |σ (T21 )|2 coth(β/2) = e−ζ 2[1−cos(ωT21 )] coth(β/2).

(83)

For a Poissonian distribution,

Pn = e−n̄ n̄n

n!
, (84)

|C(T21)| = e−|σ (T21 )|2/2e−n̄

∞∑
n=0

n̄n

n!
Ln(|σ (T21)|2), (85)

which must be evaluated numerically. For large n̄, the result is
similar to the result for a number state having n = n̄.

c. Squeezed vacuum. For a squeezed vacuum with squeeze
parameter z = reiθ [26],

|C(T21)| = |〈0|eg(T21 )a†−g(T21 )∗a|0〉| = e−|g(T21 )|2/2, (86)

where

g(T21) = σ (T21) cosh r + σ ∗(T21)eiθ sinh r. (87)

For a squeezing parameter r 
 1, |C(T21)| 	 1, in general.
Of course, C(T21) = 1 at the revival times when ωT21 is an
integral multiple of 2π . However, there is an additional time
during each period when there is a complete revival, occurring
when ωT21 = θ ± (2n + 1)π . For example, when θ equals
zero, additional revivals occur for values ωT21 that are odd
integral multiples of π . In this case, from Eq. (70),

k12[X̂(T21 = π/ω)] = −k12X̂(0). (88)

Since the momentum operator no longer appears, the signal
can be optimized by squeezing the spatial distribution. For
values ωT21 = θ ± (2n + 1)π , it is some combination of the
momentum and coordinate distributions that is squeezed.

In Fig. 2, we plot |C(T21)|2 as a function of ωT21 for
initial pure number-state and Poissonian distributions, with
ζ = 0.23. It is seen that if n̄ of the Poissonian distribution
equals n of the number-state distribution, the two results
do not differ by much. In Fig. 3, we plot |C(T21)|2 as a
function of ωT21 for initial coherent state (solid red curve) and
squeezed vacuum state distributions (dashed blue and solid
black curves), with ζ = 0.23. The dashed blue curve is for
squeezing parameters r = 1.5, θ = 0 and the solid black for
r = 4, θ = 0. The extra peaks at ωT21 = (2n + 1)π are a
clear signature of the quantum nature of the initial motional
state associated with the squeezed vacuum.

d. Classical limit. We can take a classical limit of Eq. (64)
by ignoring the commutator of X̂(Ts ) and X̂(0) and replacing
the operators by their classical counterparts to arrive at

Ccl (T21) ∼ 〈e−ik12[X(T21 )−X(0)]
〉

= 〈e−ik12[X0[cos(ωT21 )−1]+(v0/ω) sin(ωT21 )]
〉
, (89)

FIG. 2. Plots of |C(T21)|2 as a function of ωT21 for a state-
independent, harmonic lattice potential and for initial number state
and Poissonian distributions, with ζ = 0.23. The (upper) solid red
and (lower) green curves are for initial number-state distributions
with n = 1 and 15, respectively. The dashed upper blue and lower
black curves are for initial Poissonian distributions with n̄ = 1 and
15, respectively.

where the average is now a classical average over the distribu-
tion of initial conditions. For a thermal distribution,

W0(X0, v0) = Mω

2πkBT
exp

[
−1

2

Mv2
0 + Mω2X2

0

kBT

]
, (90)

we find

|Ccl (T21)| = e−2ζ 2[1−cos(ωT21 )]/β

= exp

[
−kBT

2V0

k2
12

k2
tr

[1 − cos(ωT21)]

]
, (91)

independent of h̄. The classical [Eq. (91)] and quantum
[Eq. (83)] results agree for β 	 1 (high-temperature limit).
Somewhat remarkably, even for β = 1, the difference between
the classical and quantum predictions is small if the Lamb-
Dicke parameter is less than or of order unity. For β 
 1
(low-temperature limit), |Ccl (T21)| ∼ 1, whereas |C(T21)| ∼
e− 1

2 |σ (T21 )|2 . A comparison of the classical and quantum results
is shown in Fig. 4, with ζ = 0.23. The solid curves are the
quantum results and the dashed curves the classical results.
It is seen that, even for β = 0.5, the two results practically

FIG. 3. Plots of |C(T21)|2 as a function of ωT21 for a state-
independent, harmonic lattice potential and for initial coherent state
(solid upper red curve) and squeezed vacuum state distributions
(dashed blue curve r = 1.5, solid lower black curve r = 4), with
ζ = 0.23.
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FIG. 4. Plots of |C(T21)|2 and |Ccl (T21)|2 as a function of ωT21

for a state-independent, harmonic lattice potential and for initial ther-
mal distributions, with ζ = 0.23. The solid lower red and upper green
curves are the quantum results with β = 0.5 and 10, respectively.
The dashed lower blue and upper black curves are the corresponding
classical results.

overlap. On the other hand, for very cold atoms, β = 10,
the classical result is almost equal to unity, whereas the
quantum result still exhibits dephasing owing to the spread
of momentum in the ground-state wave function.

2. Anharmonic motion

If the potential is not sufficiently deep for the harmonic
approximation to be valid, it is necessary to use the eigen-
functions and eigenenergies for a potential that varies as
V0 sin2 (ktrX0) (the −V0 part of the potential can be dropped
since it plays no role in this calculation). The periodic eigen-
functions and eigenvalues for a sin2 (ktrX0) potential are the
so-called An and Bn+1 Mathieu functions [27]. As long as the
potential is sufficiently deep and the temperature sufficiently
low, the only eigenfunctions of importance are those associ-
ated with the quasibound states of the potentials for which
the An and Bn+1 Mathieu functions are nearly identical, as
are the eigenenergies associated with these eigenfunctions.
This is the only limit we will consider.

The calculation of Eq. (62) must now be carried out
numerically. For ζ = 0.23 and ζtr = 0.16, results are shown
in Figs. 5 and 6 as the solid red curves for β = 0.41 and

FIG. 5. Plots of |C(T21)|2 and |Ccl (T21)|2 as a function of ωT21

for a state-independent, anharmonic lattice potential and for an initial
thermal distribution with ζ = 0.23, ζtr = 0.16, and β = 0.41. The
solid red curve is the quantum result, the dashed blue curve is the
classical result, and the dotted black curve is the quantum result for
the corresponding harmonic potential.

FIG. 6. Same as Fig. 5, but with β = 3.

β = 3, respectively. The integrals of the type given in Eq. (58)
are restricted to a single well using appropriately normalized
Mathieu functions. The anharmonicity leads to a reduction of
the amplitude of oscillation, as well as a decay of the signal,
owing to the continuous range of frequencies present in the
response. For comparison, the results for the corresponding
harmonic potential are shown as the dotted black curves in the
figures. Even in the case of cold atoms, β = 3, when the har-
monic approximation is expected to be good, the anharmonic
and harmonic results begin to diverge at longer times, owing
to the fact that small changes in frequency can still lead to
significant phase shifts for sufficiently long times.

Classical limit. The fact that the classical and quantum
results for a harmonic potential are nearly identical for β � 1
when ζ < 1 suggests that the quantum and classical results for
a potential that varies as V0 sin2 (ktrX) might also be nearly
identical. The total energy associated with the center-of-mass
motion of an atom can be written as

E = 1

2

[
M

(
dX

dt

)2

+ Mω2

k2
tr

sin2(ktrX)

]
, (92)

where ω is defined by Eq. (66), and X and dX/dt are the
position and velocity of the atom. Setting ktrX = z and ωt =
τ, and using Eqs. (71) and (82), we can rewrite the energy as

E = βkBT

4ζ 2
tr

(ż2 + sin2 z), (93)

where the dot signifies differentiation with respect to τ .
The equation of motion for an atom moving in this poten-

tial is

z̈ = − sin z

2
. (94)

The solution of this equation can be written as

z(τ ) = JacobiAmplitude

[
EllipticFunctionF

(
z0; 1

ε

)
+√

ετ, 1
ε

]
, (95)

where

ε = (ż2
0 + sin2 z0

)
, (96)

z0 = z(0), and ż0 = ż(0), and JacobiAmplitude and Ellip-
ticFunctionF are built-in functions in Mathematica. It then
follows that, for a thermal distribution with E given by
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FIG. 7. Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-
dependent, harmonic lattice potential and for a thermal initial state
with ζ = 0.23, β = 3, and s = 1.05 (black, dotted curve), s = √

2
(blue, dashed curve), and s = 1.5 (red, solid curve).

Eq. (93),

|Ccl (T21)|2

=
∫ π/2
−π/2 dz0

∫√
1−sin2 z0

−
√

1−sin2 z0

dż0e
− β

4ζ2
tr

(ż2
0+sin2 z0 )−i[z(ωT21 )−z0]

∫ π/2
−π/2 dz0

∫√
1−sin2 z0

−
√

1−sin2 z0

dż0e
− β

4ζ2
tr

(ż2
0+sin2 z0 )

,

(97)

where the integrals have been restricted to bound-state mo-
tion. The integrals can be evaluated numerically. In Figs. 5
and 6, |Ccl (T21)|2 is plotted as the dashed blue curves for
β = 0.41 and 3, respectively. As can be seen, the classical
and quantum results are in good agreement for β = 0.41, but
differ somewhat for cold atoms, β = 3, when the classical
picture is expected to fail.

B. State-dependent potentials

When the potentials are state dependent, it is necessary to
revert to Eq. (62). We could consider both harmonic and an-
harmonic potentials. However, both anharmonicity and state
dependence produce dephasing that can be attributed to more
than one frequency in the problem. By limiting the discussion
to harmonic potentials, we can isolate the contribution of the
state dependence to this dephasing. In the harmonic limit,
Eq. (47) for the potentials reduces to

Vα (R) ≈ −Vα + 1
2Mω̃2

αX2, α = a, c. (98)

From Eq. (62), it is seen that, for incommensurable frequen-
cies ω̃a and ω̃c of the motional states of the level a and c

potentials defined in Eq. (48), there are no complete revivals
of the signal. On the other hand, if ω̃c = (m/n)ω̃a , where both
m and n are integers and n is the least common denominator,
then revivals occur at integral multiples of ω̃aT21 = 2nπ . In
Figs. 7 and 8, we plot |C(T21)|2 as a function of ω̃aT21 for a
thermal initial state with ζ = 0.23, β = 3 or 0.41, and several
values of s = ω̃c/ω̃a .

For cold atoms, β = 3, most of the initial population is in
the ground state and only the frequencies associated with the
lowest transitions in both wells appear in the signal (Fig. 7).
For s = 1.05, these frequencies are not resolved and we see
a slight damping of the signal. For s = 1.5 and

√
2, both

FIG. 8. Graphs of |C(T21)|2 as a function of ω̃aT21 for a state-
dependent, harmonic lattice potential and for a thermal initial state
with ζ = 0.23, β =0.41, and s =1.05 (black, dotted curve), s =√

2
(blue, dashed curve), and s = 1.5 (red, solid curve).

frequencies are evident, as is the complete revival of the signal
at ω̃aT21 = 4π for s = 1.5. For s = 1.05 there is a complete
revival (not shown) at ω̃aT21 = 40π .

The situation changes for hotter atoms, β = 0.41, since
many transitions contribute to the signal and tend to wash
out the signal, as shown in Fig. 8. For s = 1.05, the signal
is damped, a complete revival would occur at ω̃aT21 = 40π .
For s = 1.5, the complete revival is seen at ω̃aT21 = 4π .
Somewhat surprisingly, there is a partial revival for incom-
mensurate frequencies, s = √

2. It is not difficult to under-
stand why this occurs. If we write s = 1 + σ and insert this
into Eq. (62), we see that, for times ω̃aT21 = 2nπ/σ , the
expression reduces to that for a state-independent harmonic
potential having frequency ω̃a . The value of |C(T21)|2 for
a state-independent potential is calculated using Eq. (83)
as exp {−2ζ 2[1 − cos (ω̃aT21)] coth(β/2)}. For β = 0.41 and
ζ = 0.23, |C(T21)|2 � 0.35 so a partial revival is seen at
integral multiples of ω̃aT21 = 2π/σ .

An additional effect enters the calculation that is not
present for state-independent potentials. Owing to the differ-
ence in the values of Vα the energy levels in the harmonic po-
tentials are displaced by different amounts. In other words, we
have assumed in Eq. (98) that both ω̃α and Vα are independent
of the transverse coordinate ρ. If this assumption is not valid
for Vα, C(T21) must be multiplied by an additional factor
exp {−i[Vc(ρ) − Va (ρ )]T21/h̄} and included in the average
over the excitation field spatial profiles. This would result in a
damping of the signal with increasing T21, making it difficult
to observe the revivals when the potentials differ significantly.

V. SPECIFIC EXAMPLE: RAMAN
COHERENCE–TRANSIT-TIME EFFECTS

We now turn our attention to the level scheme of Fig. 1(b)
and assume copropagating excitation fields with k1 ≈ k2. In
this limit we can ignore the spatial phase factors in Eqs. (8).
We still assume that the trap potential is constant over the
excitation volume but no longer neglect the transverse motion
of the atoms. As such, the only net effect that we study
in this section is one of transit-time loss and revival. The
excitation fields carve out an excitation volume, but atomic
motion takes atoms out of this volume, an effect that is
monitored by the readout pulse. In essence, this is a quantum
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treatment of transit-time effects, which can be compared with
the classical results for free atoms [28] or atoms in traps. We
consider only harmonic traps and state-independent, harmonic
potentials having characteristic frequency ω. It is not much
more difficult to generalize the results to state-dependent
potentials, but they have little effect on the transit-time effects
under investigation in the section. Their only effect would
be to degrade the periodic revivals of the emitted signal that
would occur for harmonic traps at half-integral multiples of
the trap period. The readout field and two fields comprising
the excitation field are assumed to have the same waist we.

A. Classical limit

We consider first the classical limit, for which the normal-
ized signal can be written as

S̃(T21) = S(T21, τ )

S(0, τ )
= S̃cl (T21), (99)

where

S̃cl (T21) =
∣∣∣∣Ccl (T21)

Ccl (0)

∣∣∣∣
2

, (100)

Ccl (T21) = 1
4

〈
sin
[
Aee

−2ρ(0)2/w2
e

]
sin
[
Aoute

−ρ(T21 )2/w2
e

]〉
,

(101)

ρ(0) = ρ0, (102a)

ρ(t ) = ρ0 cos(ωt ) + v0

ω
sin(ωt ), (102b)

and the average is taken with the classical Maxwell-
Boltzmann distribution given in Eq. (90). We can no longer
write the normalized signal S̃(T21) as a function of C(T21)
alone since the transverse spatial profiles of the excitation
and readout fields no longer factor out of the expression
for the signal when the transverse motion of the atoms is
included (in the calculation involving the optical lattice, the
transverse motion was neglected). With a change of variables
to dimensionless coordinates, we can wite Eq. (101) as

Ccl (T21) = 1

16π2

∫ ∞

−∞
dy

∫ ∞

−∞
dvy

∫ ∞

−∞
dz

∫ ∞

−∞
dvze

−(y2+v2
y )/2e−(z2+v2

z )/2 sin
(
Aee

−κ2(y2+z2 )
)

× sin

(
Aout exp

{
−κ2

2

[
(y2 + z2) cos2(ωT21) + (v2

y + v2
z ) sin2(ωT21) + (yvy + zvz) sin(2ωT21)

]})
, (103)

where

κ =
√

2kBT

Mω2w2
e

= wth

we

, (104)

and

wth =
√

2kBT

Mω2
(105)

is the spatial width associated with the classical Boltzmann distribution at temperature T .
If the sin functions are expanded, all the integrals can be evaluated analytically and the result expressed as

Ccl (T21) = 1

4

∞∑
n,m=0

(−1)n+mA(2n+1)
e A

(2m+1)
out

(2n + 1)!(2m + 1)!

1

1 + κ2(3 + 2m + 4n)+2κ4(2n + 1)(2m + 1) sin2(ωT21)
. (106)

In the perturbation theory limit Ae,Aout 	 1,

Ccl (T21) ∼ AeAout/4

1 + 3κ2 + 2κ4 sin2(ωT21)
(107)

and

S̃cl (T21) ∼
[

1 + 2κ4 sin2(ωT21)

1 + 3κ2

]−2

. (108)

In Fig. 9, S̃cl (T21) is plotted as a function of ωT21 for β =
0.1, κ = 1, 5 and (A1, A2) = (0.1, 0.1), (π/2, π/2). The
signal decays owing to transit-time effects, but eventually
revives for ωT21 = nπ ; that is, any atoms that leave the
excitation volume return to it after each half-period of oscil-
lation. There is not much difference in the normalized signal
for weak pulses and (optimal) π/2 pulses. The transit-time
regime is shown in Fig. 10 for κ = 3, 8 and (A1, A2) =
(0.1, 0.1), (π/2, π/2).

To a good approximation, the weak-field result for κ2 
 1
and ωT21 	 1 is the square of a Lorentzian,

S̃cl (T21) ∼ 1[
1 + 2κ2(ωT21 )2

3

]2 , (109)

having half-width

ωT21 =
√

3(
√

2 − 1)/2

κ
. (110)

The classical results can be given a simple interpretation.
In this picture involving classical center-of-mass motion, any
atom j that is in the initial excitation volume has a coherence
ρ

(j )
ac created by the excitation field. When probed by the

readout field, atom j will contribute to the phase-matched
signal, provided it is still in the excitation volume at the time
of the readout pulse. The time it takes an atom to leave the
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FIG. 9. Plots of S̃cl (T21) as a function of ωT21 for a state-
independent, transverse harmonic potential and for initial thermal
distributions, with β = 0.1 and κ = 1 (upper red and blue curves);
κ = 5 (lower black and green curves). The solid curves are for pulse
areas (A1, A2) = (0.1, 0.1) and the dashed curves for (A1, A2) =
(π/2, π/2).

excitation volume is of order tcl = we/uth, where

uth =
√

2kBT

M
(111)

is the velocity width associated with the classical Boltzmann
distribution at temperature T . Therefore, we would expect a
transit-time width of order

ωtcl = ωwe/uth = 1/κ, (112)

which is what we found. Of course, at half-integral multiples
of the trap period, any atom that was excited initially is back
in the excitation volume.

The quantity wth is the width of the Boltzmann distribu-
tion. For κ2 	 1, the excitation field width we is much larger
than wth; as a consequence, almost all the atoms are excited
by the field. The Maxwellian velocity distribution results in
some loss of population from the excitation volume as time
progresses, but this is a minimal loss since very few atoms
move outside this large excitation volume in a trap period,
implying that S̃cl (T21) ∼ 1. For 1 < κ2 	 10, about a half

FIG. 10. Plots of S̃cl (T21) illustrating transit-time decay as a
function of ωT21 for a state-independent, transverse harmonic po-
tential and for initial thermal distributions, with β = 0.1 and κ = 3
(upper red and blue curves); κ = 8 (lower black and green curves).
The solid curves are for pulse areas (A1, A2) = (0.1, 0.1) and the
dashed curves for (A1, A2) = (π/2, π/2).

to a quarter of the atoms are excited by the first pulse. The
velocity distribution of the chosen atoms is still given by
the initial Maxwellian distribution since there is no velocity
selection in the excitation process. Between the revival times
a significant percentage of this population migrates out of
the excitation region, leading to a signal loss that depends on
T21. For κ2 
 10 only a very small fraction of the atoms are
excited and they quickly migrate out of the excitation volume.
The signal in this case is a series of spikes of unit amplitude at
the revival times, with virtually no signal between those times.

B. Quantum calculation

We want to derive the corresponding results for a quantum
thermal distribution. We expect that a quantum description is
needed if either of two conditions are not met. First, when
β 
 1, most of the initial-state population is in the quantum
ground state, which introduces quantum corrections. That
is, the quantum and classical results will differ whenever
β 
 1, even though these differences may be small in an
absolute sense if κ 	 1. The second condition can be inferred
from Eq. (83), where, even for β 	 1, there are quantum
corrections of order βζ 2. In the transit-time calculation, ζ is
replaced by ζe = √h̄/2Mωw2

e and

βζ 2 → βζ 2
e = β2κ2/4. (113)

Thus, we can expect quantum corrections to contribute when
βκ > 1, even if β 	 1. This is related to the fact that the
narrow spatial distribution that is excited when κ 
 1 can
lead to uncertainties in the momentum distribution (owing to
the uncertainty principle) that are larger than those already
present in the thermal momentum distribution.

Since the normalized signal does not depend strongly on
the pulse areas, it suffices to calculate S(T21) in the quan-
tum case assuming pulse areas much less than unity. The
normalized signal, written using dimensionless coordinates,
factors into equal contributions from each of the transverse
coordinates. As a consequence, we can write

S̃(T21) =
∣∣∣∣C(T21)

C(0)

∣∣∣∣
4

, (114)

where

C(T21) =
∞∑

q,q ′,q ′′=0

e−iωcq′;aqT21〈q|e−βκ2ξ 2 |q ′〉

× 〈q ′|e−βκ2ξ 2/2|q ′′〉ρaq ′′;aq (0), (115)

ξ is a dimensionless coordinate, and the q’s are quantum num-
bers of a one-dimensional oscillator potential. Transit-time
effects enter implicitly through the exponential time factors
in Eq. (115). The needed matrix elements can be evaluated
explicitly using

〈q|e−g2ξ 2 |q ′〉 = (−2g2)
q+q′

2 �
( 1+q+q ′

2

)
√

πq!q ′!(1 + g2)
1+q+q′

2

× 2F1

(
−q,−q ′,

1 − q − q ′

2
,

1 + g2

2g2

)
,

(116)
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FIG. 11. Plots of S̃cl (T21) and S̃cl (T21) as a function of ωT21

for a state-independent, transverse harmonic potential, perturbative
excitation and readout pulses, and for initial thermal distributions,
for β = 0.1 and κ = 5 (upper solid red curve); κ = 10 (middle solid
brown curve), and κ = 20 (lower solid black curve). The dashed blue
curves are the classical results for the same parameters.

where � is the gamma function and 2F1 is a hypergeometric
function.

If the initial density matrix is diagonal,

ρqq ′ (0) = Pqδq,q ′ , (117)

then

C(T21) =
∞∑

q,q ′=0

Pqe
−i(q ′−q )ωT21〈q|e−βκ2ξ 2 |q ′〉〈q ′|e−βκ2ξ 2/2|q〉.

(118)

For a thermal state with Pq = (1 − e−β )e−qβ (β = h̄ω/kBT ),
Eq. (118) is evaluated numerically using Eq. (116) for differ-
ent values of β and κ2.

In Fig. 11, S̃(T21) is plotted as a function of ωT21 for
β = 0.1 and κ = 5; (βκ = 0.5), κ = 10; (βκ = 1), and κ =
20 (βκ = 2), along with the classical result S̃cl (T21). With in-
creasing values of βκ , the classical and quantum results begin
to deviate. In Fig. 12, S̃(T21) is plotted as a function of ωT21

for κ = 1 and β = 1, 5, 10, along with the classical result

FIG. 12. Plots of S̃cl (T21) and S̃cl (T21) as a function of ωT21

for a state-independent, transverse harmonic potential, perturbative
excitation and readout pulses, and for initial thermal distributions
for κ = 1 and β = 1 (upper solid blue curve); β = 5 (middle brown
curve), and β = 10 (lower black curve). The dashed red curve is the
classical result which is the same for all β if κ is held fixed.

S̃cl (T21). With increasing β, the signal deviates significantly
from the classical result.

We can estimate the signal for β 
 1. In the limit of large
β, Pq ≈ δq,0 and the sum in Eq. (118) can be carried out
analytically. Using Eqs. (114)–(118), we find

S̃(T21) ∼ 1

1 + 4 sin2(ωT21 )(β4κ8+3β3κ6+2β2κ4 )
(2+3βκ2 )2

. (119)

The result depends only on powers of βκ2, whereas the classi-
cal result (114) depends only on powers of κ . If κ � 1, β 
 1
and ωT21 	 1,

S̃(T21) ∼ 1

1 + 4(ωT21 )2β2κ4

9

(120)

which is a Lorentzian having half-width 3/(2βκ2).

VI. SUMMARY

We have presented a theory of coherent transients in
which a sequence of optical pulses is incident on a sample
of trapped atoms and gives rise to phase-matched emission
from the sample. The trapping potential for the atoms is state
dependent, in general, necessitating a quantum treatment of
the center-of-mass motion. To carry out the calculation, we
used a source-field approach, modified to account for the
quantized motion of the atoms. In the simplest version of
the theory, all atomic motion is frozen during the excitation
pulses and during the time in which the signal is emitted. For
state-independent potentials, a comparison was made with a
theory in which the motion is treated classically.

Coherent transients from trapped atoms differ in a fun-
damental way from those for free atoms. In the case of
free atoms, the Doppler phases accumulated by the various
coherences in the problem are linear functions of time. As
a result, it is possible to use echo techniques to effectively
eliminate effects related to inhomogeneous broadening. With
trapped atoms, no such methods can be used since the mo-
tional phases are not linear in time. As such, the general
use of coherent transients in trapped atoms is to establish a
long-lived coherence between two atomic levels that is only
marginally affected by the motion in the trapping potentials.
In this manner, quantum coherence can be stored in the sample
and read out at a later time. Any deterioration of the signal
resulting from motional effects can be calculated using the
techniques developed in this paper.

Two examples were given. In the first, a long-lived coher-
ence was established between a ground and Rydberg level for
atoms trapped in a lattice potential. Phase-matched emission
is produced with the use of a readout pulse. The coherence
loss produced by harmonic, anharmonic, and state-dependent
potentials was investigated. In the second example, a long-
lived coherence was established between two, ground-state
sublevels for atoms in a dipole trap, and also probed by a
readout pulse. The dynamics of transit-time loss was probed
in this example.
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APPENDIX

We would like to return to the non-phase-matched contri-
bution to the signal given by Eq. (33) with j = j ′. This term
can be written as

Snpm = R2
d〈E−(Rd , t ) · E+(Rd, t )〉 = Nμ2

baR
2
d

∑
k,k′

(
h̄ωk′

2ε0V

)

×
(

h̄ωk

2ε0V

)
sin θk sin θk′ei(k−k′)·Rd ε

(1)
k′ · ε

(1)
k

×
∫ t

0
dt ′
∫ t

0
dt ′′
〈
eik′ ·R̂(t ′′ )σba (t ′′)σab(t ′)e−ik·R̂(t ′ )〉

× eiωk′ (t−t ′ )e−iωk (t−t ′ ), (A1)

where N is the number of atoms. We have dropped the label
j since all atoms contribute equally to the signal, R̂(t ′′)
and σba (t ′′) and Heisenberg operators of a given atom. It
is not simple to evaluate this expression in the Heisenberg
representation if quantized motion must be taken into account.
In fact, the best method for evaluating this term is to use a
Schrödinger equation approach [29].

Going back one step in the calculation, we write

Snpm = NR2
d

∑
k,k′

(
h̄ωk

2ε0V

)1/2(
h̄ωk′

2ε0V

)1/2

ε
(1)
k · ε

(1)
k′ 〈a†

kak′ 〉

× e−i(k−k′ )·Rd . (A2)

We have anticipated the fact that only the λ = 1 polarization
enters the calculation for the z-polarized excitation and read-
out pulses we are using. Only states that are diagonal in the
atomic quantum numbers contribute to the average value of
〈a†

kak′ 〉; moreover, in the RWA, the only nonvanishing terms
involve the ground internal states

〈a†
kak′ 〉 =

∑
q

ρaq,k;aq,k′ (t )e−iωkk′ t =
∑

q

ρI
aq,k;aq,k′ (t )e−iωkk′ t ,

(A3)

where ωkk′ = ωk − ωk′ .
The Hamiltonian is

H = h̄ωa|a〉〈a| + h̄ωb|b〉〈b|
+
∑

q

[h̄ωaq |aq〉〈aq| + h̄ωbq |bq〉〈bq|]

+
∑

k

[h̄fke
ik·Re−iωktσbaak + h̄f ∗

k e−ik·Reiωkta
†
kσab],

(A4)

where

fk = −iμba

(
ωk

2h̄ε0V

)1/2

sin θk. (A5)

From Schrödinger’s equation, it then follows that [29]

ρ̇I
aq,k;aq,k′ = ifk′

∑
p

Ubp;aq (k′)ei(ω0−ωk′ )t eiωbp;aq tρI
aq,k;bp,0

−if ∗
k

∑
p

U
†
aq,bp(k)e−i(ω0−ωk )t eiωaq;bptρI

bp,0;aq,k′ ,

(A6a)

ρ̇I
bp,0;aq,k′ = −γbρ

I
bp,0;aq,k′ + ifk′

∑
p′

Ubp′,aq (k′)

× ei(ω0−ωk′ )t eiωbp′ ;aq tρI
bp,0;bp′,0, (A6b)

along with the complex conjugates of these equations. In these
equations, the zero subscript stands for the vacuum state of the
field, ω0 is the b-a transition frequency, and

Ubp,aq (k) =
∫

dR[ψbp(R)]∗eik·Rψaq (R), (A7a)

U
†
aq,bp(k) =

∫
dR[ψaq (R)]∗e−ik·Rψbp(R), (A7b)

such that

∑
q

Ubp,aq (k)U †
aq,bp′ (k) =

∑
q

U
†
bp,aq (k)Uaq,bp′ (k) = δp,p′ .

(A8)

Equations (A6) are in a form that is identical to the equations
in Ref. [29] and can be solved iteratively and substituted back
into Eq. (A2) as in that paper. The only difference is that the
matrix elements of U must be left in the form of Eqs. (A7).
In this manner, we obtain [see Eqs. (22), (23a), and (25) of
Ref. [29]]

Snpm = N

(
μbaω

2
0 sin θ

4πε0c2

)2

�(τ )
∑

q,p,p′

∫
dR
∫

dR′[ψbp′ (R)]∗

×ψaq (R)[ψaq (R′)]∗ψbp(R′)e−γb (tR′−tR )eiω0tReiωbp′ ;aq tR

× ρI
bp,0;bp′,0(tR )e−iω0tR′ eiωaq;bptR′ + c.c., (A9)

where

tR = t − tout − |Rd−R|
c

≈ τ + Rd ·R
Rdc

, (A10)

tR′ = t − tout − |Rd−R′|
c

≈ τ + Rd ·R′

Rdc
, (A11)

τ = t − tout − Rd

c
. (A12)

When these equations are substituted into Eq. (A9) and the
terms involving the dot products are retained only in the
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exponential terms containing ω0, we obtain

Snpm = 2N

(
μbaω

2
0 sin θ

4πε0c2

)2

�(τ )
∑

q,p,p′
Ubp′;aq (kd , τ )U †

aq;bp(kd , τ )ei(ωbp′ −ωbp )τ ρI
bp,0;bp′,0(τ ), (A13)

where

kd = ω0Rd/c (A14)

and

Ubp′;aq (kd , τ ) = 〈bp′|eiHb (R)τ/h̄eikd ·Re−iHa (R)τ/h̄|aq〉, (A15)

U
†
aq;bp(kd , τ ) = 〈aq|eiHa (R)τ/h̄e−ikd ·Re−iHb (R)τ/h̄|bp〉. (A16)

Finally, using Eq. (A8), we arrive at

Snpm = 2N

(
μbaω

2
0 sin θ

4πε0c2

)2

ρbb(τ )�(τ ), (A17)

where ρbb(τ ) is the total population of level b at the retarded time. Equation (A17) is a somewhat intuitive result: Since the
atomic motion is constrained to distances that are much less than Rd , any retardation effects related to different motional states
are not important and the non-phased-matched signal arises only from the total population in level b at time τ . Although this
result is intuitive, we have not found a way to derive it using the Heisenberg representation.
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