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Implementation of a semiclassical light-matter interaction using the Gauss-Hermite quadrature:
A simple alternative to the multipole expansion
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We present an analytical and numerical solution of the calculation of the transition moments for the exact
semiclassical light-matter interaction for wave functions expanded in a Gaussian basis. By a simple manipulation
we show that the exact semiclassical light-matter interaction of a plane wave can be compared to a Fourier
transformation of a Gaussian where analytical recursive formulas are well known and hence, making the
difficulty in the implementation of the exact semiclassical light-matter interaction comparable to the transition
dipole. Since the evaluation of the analytical expression involves a new Gaussian, we instead have chosen to
evaluate the integrals using a standard Gauss-Hermite quadrature, since this is faster. A brief discussion of
the numerical advantages of the exact semiclassical light-matter interaction in comparison to the multipole
expansion along with the unphysical interpretation of the multipole expansion is discussed. Numerical examples
on [CuCl4]2− show that the usual features of the multipole expansion are immediately visible also for the exact
semiclassical light-matter interaction and that this can be used to distinguish between symmetries. Calculation
on [FeCl4]1− is presented to demonstrate the better numerical stability with respect to the choice of basis set in
comparison to the multipole expansion and finally, Fe-O-Fe to show origin independence is a given for the exact
operator. The implementation is freely available in OpenMolcas.
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I. INTRODUCTION

Over the years a large variety of spectroscopies have
been developed which has given a great understanding of
molecules and materials from basic characterization [1]. All
spectroscopies, until recently [2], have come from the in-
teraction between external or internal electromagnetic fields.
While a great deal of information can be extracted from
experimental spectra alone, the more detailed correspondence
between observed properties and molecular structures is often
better illuminated when experimental results are combined
with theoretical results, since individual transitions can be
separated.

In reconstructing the experimental spectra from theory it
is necessary to introduce the given external electromagnetic
fields in the description of the molecular system. The ex-
ternal fields used in the different types of spectroscopy are
often weak in comparison to the atomic fields, or do not
significantly perturb the system before measurement, and can
therefore be treated classically [3–5] and as a perturbation.
Usually, for laser fields, the electromagnetic field is described
by a plane wave where the vector potential is a complex
exponential function. Traditionally, a multipole expansion is
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introduced and truncated at some finite order to describe the
interaction of the external electromagnetic field with the sys-
tem. The first term in this multipole expansion is the electric
dipole, and the next term that is included is typically the elec-
tric quadrupole, followed by other magnetic and electric mul-
tipoles. While simple, the higher-order terms depend on the
choice of origin for the multipole expansion, at least in cases
where there are nonzero terms of lower order. For weak fields,
which can be treated as a perturbation, the problem of origin
dependence was recently solved by Bernadotte et al. [6],
simply by truncating the multipole in the observable wave
vector and not in the nonobservable transition moments tradi-
tionally done. A complete expansion to the second order, most
commonly associated with electric quadrupole, then requires
calculations up to magnetic quadruples and electric octupoles.

Bernadotte et al. [6] showed that origin dependence is exact
when using the velocity gauge. We later showed that origin
independence in a finite basis set can also be accomplished
in the length gauge, but what is typically referred to as the
length gauge is actually a mixed gauge, with the electric and
magnetic components in the length and velocity gauges, re-
spectively [7]. Origin independence, in finite basis sets, is not
conserved in this mixed gauge [8]. Furthermore, the increased
basis set requirement and convergence behavior for every
order in the multipole expansion cannot be overlooked [8,9].

An alternative way to evaluate the oscillator strengths is
to simply use the exact semiclassical light-matter interaction
and not perform any multipole expansion. In this way there
will only be one type of integrand that needs to be evaluated
and not, like for the multipole expansion, many integrands
with different basis set requirements. Only recently have exact
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semiclassical light-matter interactions of a plane wave been
implemented [10,11], along with the dynamic structure fac-
tors [12], which from a numerical viewpoint are very similar.
A possible reason for the delay in the implementation is that
the evaluation of the integrals for the exact semiclassical light-
matter interaction have been described as being very difficult
and a major obstacle in the evaluation of the operator [6,12].
However, the integrals Lehtola et al. [12] encounters, which
are like those for the exact semiclassical light-matter interac-
tion, can actually be solved by using the closure property of
Gaussians and directly computing the values of the Fourier
transforms. Still, in the previous implementations either a
number of new recursive relations need to be programed along
with the need to introduce trigonometric functions [10,11], or
a Fourier transformation of the overlap between basis func-
tions should be performed [12]. We, however, intend to show
that the evaluation of the integrals for the exact semiclassical
light-matter interaction in a Gaussian basis set is even simpler
and can be performed using either analytical formulas or
standard integral evaluation methods in quantum chemistry.

Seeing the ease with which the integrals for the exact
semiclassical light-matter interaction can be implemented
both here and in other codes [10–12], in comparison to the
higher orders of the multipole expansion and the numerical
and origin dependence problems of the multipole expansion,
we no longer see the need for implementing the multipole
expansion for the evaluation of transition moments.

To illustrate the behavior of the exact operator, we will
perform calculations with high-energy photons, which corre-
sponds to large k vectors, rapidly oscillating fields, and thus
larger relative intensity of higher-order terms in the plane-
wave expansion. In x-ray absorption spectroscopy (XAS), the
K edge of first-row transition metals, typically associated
with electric dipole-allowed 1s to 4p transitions, uses photon
energies of thousands of eV. Before the rising edge, there are
weaker pre-edge transitions assigned to 1s to 3d transitions,
which provides insight into the nature of the bonding between
the transition metal(s) and ligands [13–15]. Since the 1s to 3d

is dipole forbidden in centrosymmetric environments, higher-
order terms in the multipole expansion must be included
in order to describe these transitions, or by using the exact
operator [11].

The x-ray calculations will be performed using the re-
stricted active space (RAS) method, which is a multicon-
figurational wave-function approach [16,17]. RAS has been
successfully applied to simulate L-edge XAS and resonant
inelastic x-ray scattering (RIXS) of several transition-metal
systems [18–20]. We have also implemented the second-order
expansion of the wave vector to describe XAS and RIXS in
the K pre-edge [21,22].

The presented examples all represent cases with weak
electromagnetic fields. However, in past decades, with the
advent of very short and brilliant laser pulses the perturbative
treatment can break down in and one enters the strong-field
regime where the external and atomic field must treated
on equal footing and a dynamical treatment is necessary
[3–5]. For strong fields, beyond the dipole approximation, the
problem of origin dependence still persists for the multipole
expansion. We will here allude to how the work on the exact
semiclassical light-matter interaction can be carried directly

over to the strong-field regime because all interaction terms
can be evaluated using the same simple integrals. This means
that the method also could be used in simulations of dynamics
of molecules in strong electric and magnetic fields, and this,
we believe, is where the real strength of the approach may lie.

For self-consistency we will in Sec. II A recapitulate the
perturbative treatment of molecules in weak electromagnetic
fields and the multipole expansion. Thereafter, in Sec. II B we
will show how the integrals for the exact semiclassical light-
matter interaction can be evaluated using standard quantum
chemistry integral programs, followed by the isotropically av-
eraged oscillator strengths in Sec. II B 1. For the applications
in Sec. III we demonstrate the advantage of using the exact
semiclassical light-matter interaction instead of the multipole
expansion on different systems, which has been problematic
with the multipole-expansion approach. A perspective on
and the possibility of dynamics simulations with the exact
semiclassical light-matter interaction is given in Sec. IV A and
finally a summary and conclusion in Sec. V.

II. THEORY

In the first of the two parts of this section we will briefly
discuss the well-known formulas for the semiclassical light-
matter interaction and how the oscillator strengths usually
are calculated from perturbation theory along with a short
discussion of the unphysical interpretation of the multipole
expansion often seen. In the second part we will show the how
integrals for the exact semiclassical light-matter interaction
can be evaluated analytically, along with an easy way to
compute the integrals using a standard Gauss-Hermite quadra-
ture. Finally, the isotropic averaging of the exact semiclassical
light-matter interaction is mentioned.

A. Perturbation from weak fields

Throughout this section it is assumed that the electro-
magnetic fields are weak and therefore can be treated as
a perturbation of the molecular system. The zeroth-order
Hamiltonian, in our case, is the Schrödinger equation within
the Born-Oppenheimer approximation,

Ĥ0 =
N∑

i=1

p̂2
i

2me

+ V (r1, . . . , rN ), (1)

which is exposed to a time-dependent perturbation Û (t ):

Û (t ) = − e

mec

∑
i

A(r i , t ) · p̂i + e2

2mec2
A2(r i , t )

− ge

2mec

∑
i

B(r i , t ) · ŝi (2)

= eA0

2mec

∑
i

[
exp(ı(k · r i − ωt ))(E · p̂i ) (3)

+ eA0

4c
(exp(2ı(k · r i − ωt )) + 1) (4)

+ ı
g

2
exp(ı(k · r i − ωt ))(k × E ) · ŝi + c.c.

]
, (5)
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from a monochromatic linearly polarized electromagnetic
wave where k is the wave vector pointing in the direction of
propagation, E the polarization vector perpendicular to k, ω

is the angular frequency, ŝ the spin, A0 the amplitude of the
vector potential, B the magnetic field, and c.c. the complex
conjugate of the previous terms.

Of the terms in Eqs. (3)–(5), often the dipole approxima-
tion is taken, meaning that only the zeroth-order term in the
vector potential ( A) in Eq. (3) is included

exp(ık · r i ) = 1 + ı(k · r i ) − 1
2 (k · r i )

2 + · · · . (6)

While the dipole approximation suffices for optical transi-
tions, for analyzing the K edge x-ray spectroscopy terms up to
second order must be included. The (A2) in Eq. (4) is mostly
relevant for strong fields and will always depend explicitly on
the field strength A0, which makes little sense for weak fields,
treated perturbatively, where this dependence is removed from
the terms in Eqs. (3) and (5). Equation (5) describes the
interaction between the spin and the magnetic field and is
relevant when describing open-shell transitions. Furthermore,
the values of all terms in Eqs. (3)–(5) also depend on the
choice of gauge, though the sum is constant. In the Coulomb
gauge, which is the usual choice in molecular physics, ( A2)
has a minimum [23] and will be neglected in the applications.

Using Fermi’s golden rule, transitions only occur when the
energy difference between the eigenstates of the unperturbed
molecule matches the frequency of the perturbation,

ω = ω0n = En − E0

h̄
, (7)

and the explicit time dependence can be eliminated from the
transition rate

�0n(ω)= 2π

h̄
|〈0|Û |n〉|2δ(ω − ω0n)= πA2

0

2h̄c
|T0n|2δ(ω − ω0n).

(8)

Now the effect of the weak electromagnetic field can be
expressed as a time-independent expectation value. From
Eq. (8) the relation between the transition moments T0n and
the time-independent part Û of Û (t ) in Eq. (2) is seen. From
the transition moments T0n and the oscillator strengths f0n,

f0n = 2me

e2E0n

|T0n|2, (9)

where E0n = En − E0 is the difference in the energy of the
eigenstates of the unperturbed molecule and can then be
calculated. The amplitude of the electric and magnetic field
E0 = B0 = A0k or intensity therefore does not have to be
defined for Eqs. (3) and (5), while for the quadratic A2 term
in Eq. (4) the amplitude is still needed.

Traditionally, a multipole expansion of the exponential
function of the perturbation in Eq. (2) is performed, which
gives rise to the nonobservable electric and magnetic dipole,
and quadrupole and higher-order approximations for the tran-
sition moments T0n. Unfortunately, such an expansion in the
transition moments T0n is only origin independent for the
dipole and in the limit of a complete expansion.

Origin independence, however, appears naturally, provided
that the collection of the terms in Taylor expansion of the

exponential of the wave vector k in Eq. (2) are collected to
the same order in the observable oscillator strengths,

f0n = f
(0)

0n + f
(1)

0n + f
(2)

0n + · · ·

= 2me

e2E0n

∣∣T (0)
0n + T

(1)
0n + T

(2)
0n + · · · ∣∣2

, (10)

as shown by Bernadotte et al. [6]. Lestrange et al. [24] demon-
strated that collecting the terms in the oscillator strengths
according to Eq. (10) does not always ensure a positive total
oscillator strength when truncating the expansion, since the
perfect square of the transition moments is broken. The total
negative oscillator strengths when truncating Eq. (10) appear
to be a basis set problem that can occur for unbalanced basis
sets for some transitions [8].

While the truncation in the oscillator strength eliminates
the problem of origin dependence, the multipole expansion,
however, introduces an increasing demand on the basis set for
every order in the expansion, since the integrand changes for
every order [9]. This means that in order to calculate the K

pre-edge peaks in an x-ray spectrum, the basis set must be able
to accurately describe all terms at least up to second order in
the transition moment, i.e., the electric octupole and magnetic
quadrupole terms. While the higher-order terms could be
expected to be small, these can be grossly overestimated in
some basis sets [8].

The multipole expansion can be a useful model, because
in some systems it gives selection rules that can be used to
rationalize the relative strength of different transitions, which
in turn aids the interpretation between spectra and electronic
structure. As an example, for 1s excitations in metal K

edges of mononuclear metal centers, the electric quadrupole
component can be related to transitions involving the metal
3d orbitals [14]. However, it should be noted that none of the
terms in the multipole expansion in Eq. (10) are individually
observable. The same argument also goes for the origin-
independent oscillator strengths [6], which despite their origin
independence, still are not individually observable. Trying to
interpret spectra in terms of the different orders in the multi-
pole expansion or even as electric or magnetic is not physical,
since only the total can be observed and changes of coordinate
system can significantly alter the interpretation [8]. Therefore
the selection rules traditionally derived and used to explain
spectra are dependent on the choice of coordinate system.
With an origin-independent approach the selection rules can
still be used to aid in the interpretation of electronic structure
by separating transitions into relative strengths according to
the zeroth and second order of the oscillator strengths. We
here note that even though a second-order transition may be
several orders of magnitude weaker than a zeroth order, the
individual terms in the second order can still be significantly
larger than the dipole contribution in an actual calculation due
to the origin dependence of these terms [8].

B. Evaluation of the integrals for the exact semiclassical
light-matter interaction

The evaluation of the integrals for the exact semiclassical
light-matter interaction has been the major obstacle in the
evaluation of the operator [6,12]. We will show that the exact
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semiclassical light-matter interaction of a plane wave can be
thought of as a Fourier transformation of the overlap between
basis functions and that this can be solved analytically. In
the Gaussian basis sets we use just these results in a new
Fourier-transformed Gaussian. The evaluation of the integrals
are therefore very similar to those found for the overlap and
operators in a Gaussian plane-wave basis set [25–27], and
similarities are shared with the plane-wave representations of
the electromagnetic field [28].

In order to evaluate Eq. (8), for the perturbation in Eq. (2)
the matrix element

〈0|Û |n〉 =
∑
μν

UAB
μν γ AB

μν (11)

must be calculated. In Eq. (11) UAB
μν is the integral matrix for

the orbital bases A and B, with indices μ and ν and likewise
defined for the transition density matrix γ AB

μν [29]. For a wave
function expanded in Gaussians, the individual terms in UAB

μν

from Eq. (3) correspond to evaluating integrals of the form

I = 〈χμ|e±ık·r p̂|χν〉, (12)

where the real-valued atomic Cartesian basis functions χμ and
χν are expressed as

χμ(r ) = χi,j,k (r, αμ, A) (13)

= (x − Ax )i (y − Ay )j (z − Az)ke−αμ‖r−A‖2
(14)

= χi (x, αμ,Ax )χj (y, αμ,Ay )χi (z, αμ,Az) (15)

in their different components, where i, j , and k represent the
order of the Cartesian components x, y, and z, respectively.
The integral in Eq. (12) can be factorized into three one-
dimensional integrals,

Ix =
∫ ∞

−∞
χi (x, αμ,Ax )e±ıkxxp̂xχj (x, αν, Bx )dx. (16)

Applying the differentiation operator p̂x = −ıh̄ ∂
∂x

, we find

Ix = −ıh̄εx

∫ ∞

−∞
χi (x, αμ,Ax )e±ıkxx (jχj−1(x, αν, Bx )

− 2ανχj+1(x, αν, Bx ))dx, (17)

that the integral Ix can be expressed as a sum of two terms.
From Eq. (17) it is seen that both terms are of the form∫ ∞

−∞
e±ıkxxχi (x, αμ,Ax )χj (x, αν, Bx )dx. (18)

Using the Gaussian product formula, we see that the ex-
pression in Eq. (18) is akin to a Fourier transformation of a
Gaussian from real space x to kx space. Integrals of the from
in Eq. (18) can be solved analytically using recursive formulas
for the analytical Fourier representation of Gaussians [25].
Equation (18) can also be viewed as the Fourier transforma-
tion of the overlap between two basis functions, as also noted
by Lehtola et al. [12].

Since the Fourier transformation of a Gaussian is a new
Gaussian, we have chosen not to use the analytical form but
instead rewrite the integral in Eq. (18) to a form which easily

can be evaluated by a standard Gauss-Hermite quadrature.
Using the Gaussian product formula of Eq. (18),

I ′
x =

∫ ∞

−∞
e±ıkxxχi (x, αμ,Ax )χj (x, αν, Bx )dx (19)

= e
− αμαν

ζ
(Ax−Bx )2

∫ ∞

−∞
(x − Ax )i (x − Bx )j e−ζ (x−Px )2±ıkxxdx,

(20)

where ζ = αμ + αν and Px = (αμAx + ανBx )/ζ , we can
complete the square in the exponent

I ′
x = e

− αμαν

ζ
(Ax−Bx )2

eγ

∫ ∞

−∞
(x − Ax )i (x − Bx )j e−ζ (x−Qx )2

dx,

(21)

where Qx = Px ± ıkx/(2ζ ) and γ = ζ (Q2
x − P 2

x ). We here
notice that for a mixed Gaussian plane-wave basis set, expres-
sions similar to Eq. (20) for an overlap appear [27].

Making a change of variables z = √
ζ (x − Qx ), the inte-

gral in Eq. (21) can now be transformed to

I ′
x = � lim

R→∞

∫ z=√
ζ (R−Qx )

−z=√
ζ (R−Qx )

(
z√
ζ

+ Qx − Ax

)i

×
(

z√
ζ

+ Qx − Bx

)j

e−z2
dz, (22)

where

� = e
− αμαν

ζ
(Ax−Bx )2

eγ /
√

ζ . (23)

Defining the polynomial

f (z) = �

(
z√
ζ

+ Qx − Ax

)i(
z√
ζ

+ Qx − Bx

)j

, (24)

Eq. (22) can be written a little more compactly,

I ′
x = lim

R→∞

∫ z=√
ζ (R−Qx )

−z=√
ζ (R−Qx )

f (z)e−z2
dz. (25)

Since the integral in Eq. (25) is analytic, the integration is
independent of the path and can therefore be split into

I ′
x = lim

R→∞

∫ z=√
ζR

−z=√
ζ (R−Qx )

f (z)e−z2
dz (26)

+ lim
R→∞

∫ z=√
ζR

−z=√
ζR

f (z)e−z2
dz (27)

+ lim
R→∞

∫ z=√
ζ (R−Qx )

−z=√
ζR

f (z)e−z2
dz. (28)

Since
√

ζ > 0 and the exponential decay of the integrand as
Rz → ±∞, two of the integrals vanish, leaving

I ′
x = lim

R→∞

∫ z=√
ζR

−z=√
ζR

f (z)e−z2
dz =

∫ ∞

−∞
f (z)e−z2

dz, (29)

for which the Gauss-Hermite quadrature is designed to com-
pute. Since z is complex the Gauss-Hermite quadrature must
use complex numbers. With the standard Gauss-Hermite

013419-4



IMPLEMENTATION OF A SEMICLASSICAL LIGHT- … PHYSICAL REVIEW A 99, 013419 (2019)

nodes zn and weights wn, we compute the integral as

I ′
x =

∑
n

wnf (zn), (30)

or equivalently, with the transformed quadrature nodes xn =
zn/

√
ζ + Qx ,

I ′
x = �

∑
n

wn(xn − Ax )i (xn − Bx )j . (31)

The total integral in Eq. (12) can therefore simply be written
as a triple product of the cartesian components

I = I ′
x ∗ I ′

y ∗ I ′
z. (32)

Due to the similarities between the electric term in the
exact semiclassical light-matter interaction for a plane wave
[Eq. (3)], with the quadratic and magnetic terms [Eqs. (4)
and (5)] all these integrals can be evaluated in exactly the same
manner. All three terms are therefore programed in OpenMol-
cas [30]. The coupling between the magnetic field and the
spin in Eq. (5) is only nonzero when the spin-magnetic-field
operator in the RASSI module [31] is used. Equation (4) also
gives a constant nonzero contribution in all directions, but
since Eq. (4) still depends explicitly on the field strength, we
have neglected this term since for the field strengths needed
for Eq. (4) to be influential the perturbative treatment of the
light-matter interaction will break down.

The resulting formulas are not surprisingly like those found
using Gauss-Rys quadrature in a Gaussian plane-wave basis
set as derived by Čarsky and Polášek [26] and does not require
any new recursive relations or expansion in trigonometric
functions as in previous implementations [10,11]. Finally, it
is noted we have here demonstrated that the target integrals
can be computed by a standard Gauss-Hermite quadrature
using complex numbers for z while the roots and weights
are still real. It has in the past been demonstrated, for two-
electron integrals, that there is a direct relation between an
exact quadrature and an integral recursive procedure—in this
case the Gauss-Rys quadrature and the McMurchie-Davidson
scheme [32]. In line with this, it is reasonable to expect that
an extension of the original McMurchie-Davidson scheme, for
one-electron overlap integrals, to complex numbers, as in the
case of the Gauss-Hermite quadrature, would be sufficient for
the computation of the target integrals.

1. Isotropically averaged oscillator strengths

For the terms in the multipole expansion, well known
isotropically tensor averaged oscillator strengths can be found
in literature [33]. For the exact expression no closed formula
exists. Lebedev and co-workers [34–39] have devised a way
of distributing quadrature points over a unit sphere defining
a Lebedev grid, which gives the propagation directions in-
cluded in the numerical integration for the incoming light.
By averaging over two orthogonal polarization directions for
the different directions for the propagation the exact isotropic
average can be systematically approximated. List et al. [11]
have shown that this converges very rapidly with the number
of quadrature points, and we therefore have also adopted the
Lebedev grid for the isotropic averaging.

While the exact semiclassical light-matter interaction is
cheaper to calculate than the second-order quadrupole intensi-
ties for a single direction for the isotropic averaging, the cost
is approximately the same due to the tensor averaging in the
multipole expansion.

III. APPLICATION

In this section we will study the metal K pre-edge XAS
of two molecular systems, [CuCl4]2− and [FeCl4]1−, as well
as the iron dimer model complex [Fe2O]4+, to highlight
properties specific to the use of the exact semiclassical op-
erator versus standard multipole techniques. In a classical
experiment, the angular dependence of the pre-edge intensity
of single-crystal [CuCl4]2− was used to identify the electric
quadrupole contribution and to identify the symmetry of the
singly occupied 3d orbital. In general, the assignment of
transitions to different multipole contributions has helped to
connect spectra to the electronic structure. With the [CuCl4]2−
example, we will demonstrate how the exact operator repro-
duces the behavior of what is traditionally referred to as an
electric quadrupole transition.

As mentioned above, electric quadrupole transitions are
origin-dependent if the electric dipole contributions are
nonzero. [FeCl4]1− has tetrahedral symmetry, and the non-
centrosymmetric ligand environment leads to intense dipole
contributions and strong contributions from many terms in
the full second-order expansion [6,8,21]. For some basis sets,
the expansion even leads to unphysical negative oscillator
strengths [7,8,24]. These examples are revisited with the exact
semiclassical operator to show its stability in incomplete basis
sets.

Finally, we address an iron dimer where there is no natural
choice of the origin for the multipole expansion of an iron-
centered transition. We show the origin independence of the
exact operator by comparing the results for [Fe2O]4+ to pre-
vious calculations using the multipole expansion in the mixed
gauge. However, before that we describe the computational
details.

A. Computational details

The geometry of the [CuCl4]2− is taken from the x-ray
crystal structure [14]. The complex has a square planar ge-
ometry, formal D2h symmetry, with Cu-Cl bond lengths of
2.233 and 2.268 Å, and Cl-Cu-Cl angles of 89.91◦ and 90.09◦.
The short bonds were placed along the x axis. To show the
effect of the angles, another calculation in D2h symmetry
with Cl-Cu-Cl angles of 90◦ and with all bonds along the x

and y axis, here labeled D2h⊥, were also performed. Finally,
calculations were made in D4h symmetry using an average
bond length of 2.2505 Å.

The geometry of [FeCl4]1− is also taken from an x-ray
structure [40]. The ligand environment is tetrahedral (Td point
group), with four Fe-Cl distances of 2.186 Å. The geometry of
Fe-O-Fe is taken from a BP86/6-311(d) geometry optimiza-
tion of [(hedta)FeOFe(hedta)], which gives C2v symmetry,
Fe-O distances of 1.76 Å, and an angle of 148 degrees [8].

Orbital optimization is performed using state-average
RASSCF, with separate optimizations for ground and
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FIG. 1. Ligand geometries and active spaces for metal K pre-
edge XAS modeling of (a) [CuCl4]2−, (b) [FeCl4]1−, and (c)
[Fe2O]4+.

core-excited states as implemented in OpenMolcas [30]. In
all calculations the metal 1s orbitals are included in RAS1,
constraining to at most one hole. For the calculations of the
core excited states, the weights of all configurations with fully
occupied 1s orbitals have been set to zero. To avoid orbital
rotation, i.e., the hole appears in a higher-lying orbital, the 1s

orbitals have been frozen in the calculation of the final states.
[CuCl4]2− is a formal 3d9 complex with a singly occu-

pied 3dx2−y2 orbital, leading to a doublet ground state. We
focus only on the 1s → 3dx2−y2 transition and use a small
RAS2 space, including seven electrons in four metal-centered
orbitals (see Fig. 1). Due to weak spin-orbit coupling, only
final states of the same spin multiplicity as the ground state
are considered in the calculations. For [CuCl4]2− only one
doublet core excited state is necessary to include.

[FeCl4]1− is a high-spin 3d5 complex with a sextet ground
state. The calculations are similar to those laid out in previous
works [7,8], with 11 electrons in 13 orbitals in RAS2, see
Fig. 1. The orbitals of the sextet excited states were averaged
over 70 states.

The ground state of the iron dimer [Fe2O]4+ is a singlet
with five unpaired electrons on each ferric iron coupled an-
tiferromagnetically. To facilitate RASSCF convergence, cal-
culations are instead performed with ferromagnetic coupling,
giving undetected states. The RAS2 space consists of the three
2p orbitals of the bridging oxygen and the ten 3d orbitals of
the irons, which gives a total of 16 electrons in 13 orbitals,
see Fig. 1. Sixty core-excited states were used, exactly like in
previous work [8].

For the correlation treatment all calculations will be at the
RASSCF level, as inclusion of dynamical correlation on the
behavior of the transitions can be assumed to be minor. Scalar
relativistic effects have been included by using a second-order
Douglas-Kroll-Hess Hamiltonian in combination with the
ANO-RCC-VTZP basis set [41–44]. This basis set has been
shown to perform reasonably well for both electronic structure
and for the transition moments [8]. The intensities for the
exact operator and the quadrupole intensities in the mixed
gauge are implemented in the RASSI program [31,45] and
distributed freely in the OpenMolcas package [30]. Simulated
spectra are plotted using a Lorentzian lifetime broadening
with a FWHM of 1.25 eV and further convoluted with a
Gaussian experimental broadening of 1.06 eV.

B. Assignment of K pre-edge XAS contributions for [CuCl4]2−

Metal K pre-edges are weak transitions on the low-energy
side of the rising edge. They are typically assigned to 1s →
3d transitions. In centrosymmetric geometries these are elec-
tric dipole forbidden and only gain intensity through what
is typically referred to as electric quadrupole transitions.
However, vibronic coupling with normal modes that break
centrosymmetry allow for electric dipole contributions also
for complexes with formal centrosymmetry.

In single crystals the orientation of the molecule with re-
spect to the beam can be controlled. The angular dependence
of the normalized peak heights in the Cu K pre-edge of
[CuCl4]2−, taken from Ref. [14], is shown in Fig. 2(a). The
angle φ shows rotation around the molecular z axis, with
0◦ representing the direction of the electromagnetic k vector
relative to the short Cu-Cl bond. The electric quadrupolar
contribution is distinguished by a fourfold periodicity of the
cross section. The highest intensity is observed for orienta-
tions bisecting the Cu-Cl bond, which makes it possible to
assign the half-filled orbital to be 3dx2−y2 [14]. The isotropic
contribution is assigned to an electric dipole contribution that
gains intensity through vibronic coupling.

The angular dependence of the oscillator strengths calcu-
lated using the exact operator is shown in Fig. 2(b). The four-
fold periodicity is reproduced, which is a simple illustration
that the exact operator reproduces the observables that have
been traditionally used to assign transitions to different mul-
tipole components. The isotropic contributions are missing
from the calculated spectra simply because vibronic coupling
is not taken into account in our calculations.

In the real complex the Cu-Cl bonds are not perfectly sym-
metric. In order to see the very slight asymmetry in the angular
spectrum of [CuCl4]2−, one needs to explicitly compare the
oscillator strengths on both sides of the peaks, e.g., 130◦ and
140◦. Due to the lack of data points and reasonably large error
bars in the experiment, distortions from D4h are difficult to
quantify in the experimental spectrum. In Table I the peak
and minimum along with their neighboring values are listed
to show the asymmetry in the spectrum of [CuCl4]2− and how
little the values change with nuclear geometry. From Table I
it is seen that the difference between the points next to the
peak and minimum is a mere 1.0 ∗ 10−8 for D2h, which, of
course, is much lower than the accuracy of the calculation but
still above numerical noise. For D4h the difference between
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FIG. 2. Experimental and calculated angular dependence of the K pre-edge transition in [CuCl4]2−. (a) Normalized K pre-edge peak
heights from Ref. [14]. Reproduced with permission from Elsevier. (b) Oscillator strengths calculated using the exact semiclassical light-matter
interaction with different symmetries.

symmetrically placed points is negligible and a numerical zero
is observed at 180◦, as it should be. Comparing the values
for D2h, D4h, and D2h⊥ directly, the difference is still below
the accuracy of the calculation and discerning between D4h

and D2h⊥ is not possible with the geometry differences here
chosen.

C. Stability of K pre-edge XAS intensities of [FeCl4]1−

[FeCl4]1− has a tetrahedral ligand environment. In Td sym-
metry, the metal 3d orbitals belong to the e and t2 irreducible
representations, see Fig. 1. The iron 4p orbitals also have
t2, which means that they can mix through the interactions
with the Cl ligands. The first two pre-edge transitions are
to the 3d(e) orbitals and are electric dipole forbidden. The
next three are to the t2 orbitals, and they are more intense as
they are electric-dipole allowed through the 4p mixing and
get large contributions from several orders in the multipole
expansion [8,15,21]. Not only will the electric quadrupole

f
(Q2 )

0n term be large, but the electric dipole f
(μ2 )

0n will be very
large and the electric dipole electric octupole f

(μO )
0n term will

also be significant, even when the coordinate system is placed
on the Fe atom.

TABLE I. The oscillator strength around 135◦ and 180◦ for
[CuCl4]2− in different symmetries. Numerals in square brackets
represent the power of 10.

Angle D2h D4h D2h⊥

130 0.13423083[–04] 0.13417817[–04] 0.13415988[–04]
135 0.13832984[–04] 0.13834993[–04] 0.13833106[–04]
140 0.13408657[–04] 0.13417818[–04] 0.13415986[–04]
175 0.40993408[–06] 0.41717685[–06] 0.41711848[–06]
180 0.32151105[–10] 0.16725576[–17] 0.10545833[–16]
185 0.42435937[–06] 0.41717540[–06] 0.41711978[–06]

In previous applications that examined the origin indepen-
dence of the multipole expansion in a mixed gauge, certain
transitions in [FeCl4]1− gave negative oscillator strengths at
the second order, despite the fact that the zeroth order in
the multipole expansion of the oscillator strengths should
be the dominant term [8]. The strong negative oscillator
strengths, however, only appeared in the cc-pVDZ and AUG-
cc-pVDZ basis sets but not in the ANO-RCC basis sets.
Since the oscillator strengths for the exact operator are in-
herently positive, it would therefore be interesting to see
what values the multipole expansion should converge to, and
second, to make a comparison of the numerical stability
and performance of the exact operator and the multipole
expansion.

In Table II the total dipole, quadrupole, and exact intensi-
ties for the transition from the ground to selected core-excited
states in [FeCl4]1− are shown in the ANO-RCC-VTZP and
AUG-cc-pVDZ basis sets. The G → C1 transition reaches the
3d(e) orbital, while both C3 and C5 are 3d(t2) final states.
C12 is a two-electron excitation, with both core and valence
electrons excited simultaneously, and is typically weaker than
the main transitions.

For the G → C1 transition, the second-order contributions
(f (2)

0n ) dominate the multipole expansion and the electric

dipole f
(μ2 )

0n approach numerical noise, see Table II. The
total oscillator strengths in the multipole expansion are then
rather similar in the two basis sets. Instead, looking at the

C3 and C5 transitions, they have large f
(μ2 )

0n contributions,
which should lead to more intense transitions than for C1.
However, the presence of large electric dipole contributions
leads to large and unstable second-order contributions, even to
the point where the total oscillator strength becomes negative
for the AUG-cc-pVDZ basis set. Finally, the C12 transition
illustrates that even if the total oscillator strength is positive,
the multipole expansion leads to unphysical negative second-
order contributions [8].
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TABLE II. The total dipole- and quadrupole, second-order and exact oscillator strengths for the transition from the ground (G) to selected

core-excited (CX) state in [FeCl4]1− without spin-orbit coupling. The second order (Total) is the sum of the electric dipole f
(μ2 )

0n and the

second-order contribution f
(2)

0n of the multipole expansion. The dipole is given in both the length gauge f
(μ2 )

0n and velocity gauge f
(μ2 )p

0n .
Numerals in square brackets represent the power of 10.

Basis Transition f
(μ2 )

0n f
(μ2 )p

0n f
(2)

0n Total Exact

ANO-RCC-VTZP G → C1 0.157[–12] 0.151[–12] 0.407[–05] 0.407[–05] 0.371[–05]
AUG-cc-pVDZ G → C1 0.765[–06] 0.447[–06] 0.258[–05] 0.335[–05] 0.472[–05]
ANO-RCC-VTZP [8] G → C3 0.283[–04] 0.273[–04] 0.144[–05] 0.427[–04] 0.305[–04]
AUG-cc-pVDZ [8] G → C3 0.281[–04] 0.168[–04] –0.585[–04] –0.304[–04] 0.209[–04]
ANO-RCC-VTZP G → C5 0.283[–04] 0.273[–04] 0.144[–05] 0.427[–04] 0.305[–04]
AUG-cc-pVDZ G → C5 0.234[–04] 0.169[–04] –0.539[–04] –0.305[–04] 0.210[–04]
ANO-RCC-VTZP G → C12 0.555[–09] 0.419[–09] –0.353[–09] 0.202[–09] 0.484[–09]
AUG-cc-pVDZ G → C12 0.730[–08] 0.627[–08] 0.752[–08] 0.148[–07] 0.624[–08]

Instead, looking at the results for the exact operator, the
differences between the basis sets are significantly smaller,
even for transitions where the second-order expansion gives
total negative oscillator strengths. For transitions with strong
dipole contributions, the exact operator is every time close to

f
(μ2 )p

0n , which is not surprising since we use the exact operator
in the velocity gauge and the integrand for the exact operator

is closer to f
(μ2 )p

0n than f
(μ2 )

0n .
In the ANO-RCC-VTZP we see good agreement between

the second-order and exact oscillator strengths. This is also
reflected in the spectra, as seen in Fig. 3, where only minor
differences in height of the peaks can be observed. Unlike
for the multipole expansion, the peaks in the spectrum using
the exact operator in the AUG-cc-pVDZ are now all posi-
tive. The better agreement between different basis sets could
indicate that the exact operator is numerically more stable
and reliable than the multipole expansion, though further
numerical and theoretical investigation would be needed to
conclude this. Studies along these lines are currently being
undertaken.

FIG. 3. A comparison of the spectra for [FeCl4]1− using the exact
operator and the second-order expansion in the AUG-cc-pVDZ and
ANO-RCC-VTZP basis sets. Note that the spectra are energetically
shifted due to different descriptions of the core orbitals. The spectra
for the second order was previously published in Ref. [8].

D. Origin dependence of metal K pre-edge XAS of iron dimer

As shown by Bernadotte et al., the full second-order ex-
pansion is origin independent in the velocity gauge [6,12]. We
showed that this also holds in the true length gauge but not
in the mixed gauge that is typically referred to as the length
gauge [7,8]. This becomes an issue for an iron dimer that lacks
a natural origin for the multipole expansion. As the individual
iron sites in the dimer are asymmetric, metal 4p orbitals mix
into the valence space, giving dipole-allowed transitions in
the pre-edge, which leads to instability for the second-order
expansion.

In [8] we showed that if the origin was placed close to
the center of mass, the change in the spectrum for the so-
called origin-independent quadrupole oscillator strengths in
a mixed gauge was minor, while at slightly larger distances
significant changes in the spectrum could be observed, see
Fig. 4. The intensity of the second peak is most sensitive,
which is consistent with larger electric-dipole contributions.

From Fig. 4 we see that the exact operator and the oscillator
strengths in the mixed gauge agree rather well, both with
respect to the shape and the total intensity of the spectrum.
Previous K pre-edge calculations using the mixed gauge are
therefore most likely of acceptable quality.

IV. PERSPECTIVE

While the results in Sec. III and implementation in Sec. II B
does show that the exact semiclassical light-matter interaction
is easier to implement and numerically better than the mul-
tipole expansion for the weak-field limit, we believe that the
real strength of the approach lies in the strong-field regime.

A. Real-time-dependent light-matter interaction

For strong fields, where the perturbative treatment of the
light-matter interaction breaks down, the multipole expansion
is still used and the light-matter interaction is usually treated
in the dipole approximation,

Ĥ = Ĥ0 − E(t )μ. (33)

If the wave function is expanded in a Gaussian basis, then the
exact same evaluation of the exact semiclassical light-matter
interaction presented in Sec. II B could be used without any
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FIG. 4. A comparison of the spectra for Fe-O-Fe with the origin
in the oxygen atom (Ox=0), origin moved along the x axis (Ox=d ),
where d is the distance, the origin in the middle between the two
Fe atoms (Fe-Fe), and the origin placed on one of the Fe atoms (Fe)

and the exact operator in the ANO-RCC-VTZP basis set. The f
(μ2 )

0n

and f
(2)

0n contributions are shown with the origin placed between
the two Fe atoms. The data from the origin-independent quadrupole
oscillator strengths in a mixed gauge is taken from Ref. [8].

significant added cost to a more general Hamiltonian,

Ĥ = Ĥ0 + Û (t ), (34)

where Û (t ) is given by Eq. (2), to significantly improve the
description of a laser pulse interacting with a target. Going
beyond the dipole approximation is particularly interesting for
x-ray spectroscopy, and in general, for very short wavelengths
where the pulse varies over the size of the molecule, very
strong time-dependent magnetic fields, and for multiphoton
processes where the field becomes strong enough to see
contributions from the ( A2) in Eq. (4). While the differences
in oscillator strengths seem minor with well-behaving basis
sets in the static case (see Fig. 4), these differences should
quickly become apparent in the dynamic case, where it is the
interaction with the laser field that drives the dynamics, since
small initial differences in interaction can quickly grow large.
In the real-time-dependent description the explicit strength
and shape of the field would also have to be included, though
these are merely the values of a time-dependent function
describing the envelope and strength of the field.

V. CONCLUSION

We have presented a very easy way to implement the exact
semiclassical light-matter interaction from Eq. (2), where the
integrals either can be calculated analytically or extending
the standard Gauss-Hermite integral evaluation to complex
numbers. We show that the integral evaluation is akin to a
Fourier transformation from real to k space of the overlap
of the basis functions and that the electric, magnetic, and
quadratic term ( A2) can be evaluated in the same way.

The main advantages of the exact operator is eightfold:
(i) it is cheaper to calculate than higher-order terms in the
multipole expansion for single directions, (ii) there are never

negative oscillator strengths, (iii) it is always origin indepen-
dent, (iv) it is easier to implement than higher orders in the
multipole expansion, (v) it is easy to extend to time-dependent
calculations, (vi) it appears to be more numerically stable, and
(vii) it is less sensitive to the choice of basis set, since the
basis set only has to work for a single type of integrand and
not a multitude of different integrands as in the multipole ex-
pansion [9]. Additionally, (viii) using the exact operator also
avoids the faulty interpretation of electric and magnetic terms
in the multipole expansion, because this interpretation always
will depend on the choice of coordinate system since none of
these terms are observable. Finally, due to the ease with which
the exact semiclassical light-matter interaction can be imple-
mented, as well as the numerical, theoretical, and interpreta-
tion advantages, we do not see the need for using the multipole
expansion anymore in the calculation of transition moments.

We show numerical examples of the exact operator
on [CuCl4]2− where the angle between beam and
sample is known and on [FeCl4]1− and Fe-O-Fe,
where an isotropic averaging is performed. For the
bis(creatinium)tetrachlorocuprate(II) crystal we have shown
that with an angular-resolved spectrum we can discern the
symmetry of the [CuCl4]2− unit. The numerical stability of
the exact operator, even in basis sets performing poorly for the
multipole expansion, has been demonstrated for the [FeCl4]1−
molecule. In the AUG-cc-pVDZ basis set, even for transitions
with negative second-order oscillator strengths the exact oper-
ator gave results close to those obtained for the exact operator
in the better ANO-RCC-VTZP basis set, where the second-
order oscillator strengths were positive. In fact, the difference
between the oscillator strengths for the exact operator in the
ANO-RCC-VTZP and AUG-cc-pVDZ basis sets is about the
same as the difference between the exact operator and the sec-
ond order in the ANO-RCC-VTZP basis set. The very good
numerical performance of the exact operator, with respect to
the basis size, seen in these preliminary calculations is cur-
rently being investigated. Finally for Fe-O-Fe we reproduce
the spectrum previously published [8], which together with
the results for [FeCl4]1− in the ANO-RCC-VTZP basis shows
that when good basis sets are used then the multipole expan-
sion does produce results close to those of the exact operator.

While using the exact operator does give a significant
improvement over the multipole expansion for weak fields, we
do believe that the real strength of the approach will be in the
dynamics of strong fields. We are therefore currently explor-
ing the options of using the exact operator in time-dependent
calculations, since this will give more accurate dynamics for
molecules in strong laser fields, particularly for very short
wavelengths, such as x rays, where the field varies over the
range of the molecule or an atom, where terms above the
dipole become important or where the A2 becomes important.

The implementation of the exact operator for electric and
magnetic fields along with the integrals the for quadratic term
( A2) are freely available in OpenMolcas [30].
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