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Antihydrogen atoms are routinely formed at CERN in a broad range of Rydberg states. Ground-state
antiatoms, those useful for precision measurements, are eventually produced through spontaneous decay.
However given the long lifetime of Rydberg states the number of ground-state antihydrogen atoms usable is
small, in particular for experiments relying on the production of a beam of antihydrogen atoms. Therefore, it
is of high interest to efficiently stimulate the decay in order to retain a higher fraction of ground-state atoms
for measurements. We propose a method that optimally mixes the high angular momentum states with low ones
enabling us to stimulate, using a broadband frequency laser, the deexcitation toward low-lying states, which
then spontaneously decay to the ground state. We evaluate the method in realistic antihydrogen experimental
conditions. For instance, starting with an initial distribution of atoms within the n = 20–30 manifolds, as formed
through the charge exchange mechanism, we show that more than 80% of antihydrogen atoms will be deexcited
to the ground state within 100 ns using a laser producing 2 J at 828 nm.

DOI: 10.1103/PhysRevA.99.013418

I. INTRODUCTION

Recent breakthroughs were achieved in spectroscopy mea-
surements on antihydrogen atoms which led to stringent tests
of the CPT symmetry, the combination of the charge con-
jugation, parity, and time reversal symmetries [1–3]. These
measurements were all performed on magnetically trapped
ground-state antihydrogen atoms which is currently the only
method succeeding in accumulating enough ground-state
atoms for measurements. Indeed, antihydrogen atoms formed
at CERN, using three-body recombination or charge exchange
processes, are produced in a broad range of Rydberg states
including all possible angular momentum states [4,5]. The
highly excited atoms must first decay before a precision
measurement can be performed. Trapped atoms can be held
on for hours [6] so that the produced Rydberg atoms have
ample time to decay. In beam experiments however, the spon-
taneous lifetimes of the Rydberg states are hindering a fast
enough ground-state population [7]. Neglecting first the effect
of external fields on the spontaneous lifetime of a (n, l,m)
state (where |m| � l < n), the lifetime can be approximated
by [8]

τ ≈
( n

30

)3
(

l + 1/2

30

)2

× 2.4 ms.
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This result is also confirmed in a magnetic field envi-
ronment. For instance Ref. [9] shows that within the 1–5 T
field present in antihydrogen experiments and for the three-
body recombination formation mechanism, only 10% of the
population with n < 30 reach the ground state in 100 μs.
A much longer time (∼2 ms) is required to have 50% of
the population reaching the ground state due to the large
proportion of states with high angular momentum. Because
antihydrogen atoms are typically formed with velocities of
1000 ms−1 (corresponding to the mean velocity of a Maxwell-
Boltzmann distribution at ∼50 K), if they are not trapped, they
will hit the walls of the formation apparatus and annihilate
long before any spontaneous deexcitation to the ground state
can occur.

It is therefore of high interest to enhance the decay. It
has been suggested that coupling or mixing high angular
momentum states with low ones may accelerate the decay
[10]. The main idea of the present article is to mix all angular
momenta using an electric field added to the already present
1–5 T magnetic field of the antihydrogen experiments and
use a laser to stimulate the decay from high-lying n states
to a deep-lying one with a short spontaneous lifetime. The
principle of the proposed scheme is sketched in Fig. 1.

We first estimate the feasibility of the method using a
simple model assuming a fully mixed system and confirm that
the laser power required is compatible with existing lasers and
that photoionization can be drastically reduced by choosing a
low enough n′ manifold. We then discuss the validity of the
first-order treatment in the electric and magnetic fields and
show that an optimal configuration of fields can lead to a large
mixing of the states. Finally using this optimal configuration
of fields we study in more detail the effect of the laser power
and polarization.
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FIG. 1. Principle of the stimulated decay of Rydberg antihy-
drogen atoms. Combined electric E and magnetic B fields mix
the Rydberg states to form new |nm1m2〉 states that can then be
stimulated down to n′ at a rate �stim. This state will quickly decay
toward the ground state. The other basis states and the competing
photoionization mechanism are shown.

II. GENERAL CONSIDERATIONS ASSUMING
FULLY MIXED STATES

For the sake of simplicity we focus here on antihydro-
gen formed in a pulsed charge exchange process [11]. The
other formation mechanism used by the antihydrogen experi-
ments is based on “continuous” three-body recombination of
positrons and antiprotons (lasting as long as the antiproton and
positron clouds can be kept in interaction, typically several
hundreds of milliseconds) producing typically n > 40 [4,5].
This “continuous” production mode will be the focus of
another publication where we will show that THz light can
be efficiently used to stimulate the decay [12]. Consequently,
we assume an initial distribution of n = 20–30 states with full
degeneracy in l and m as planned to be produced in the AEgIS
experiment [11].

Before studying in detail the mixing mechanism in Sec. III
we assume the presence of an electric and magnetic field
resulting in a perfect state mixing. We can already see that
such hypothesis is likely to be valid by estimating the first-
order Zeeman and Stark effects (see Sec. III A) which indicate
that for n ∼ 20–30 (with r ∼ n2a0) an electric field of the
order of F ∼ 100 V/cm is sufficient to produce a Stark effect
bigger than the spacing between Zeeman sublevels leading to
a strong mixing of the (Zeeman) |nlm〉 states.

The assumption of perfect state mixing will allow us to
evaluate the laser properties needed to stimulate the decay.
The first obvious requirement is that the laser has to be
broadband: in order to cover all Rydberg states n = 20–30 we
need a laser linewidth on the order of ∼2π × 5000 GHz. Note
that with such bandwidth we can also cover n = 25–∞.

A. Fully mixed states hypothesis

We assume a fully l, m mixed initial state |ψn〉 ≈∑
lm 1/n|nlm〉 that is coupled to the lower n′ manifold thanks

to a (spectrally Lorentzian) laser of FWHM �L = 2π ×
5000 GHz and of central wavelength λ = 2πc/ω. We first
consider an isotropic polarization of the light. We can then
calculate the stimulated emission and photoionization rates
for a given laser intensity I .

1. Stimulated emission and photoionization rates

The stimulated emission rate �stim under an
unpolarized light is given by the sum over all
polarizations q and over all final states l′m′: �stim =
2Ie2a2

0

h̄2ε0c�L

1
3

∑
q

∑
l′m′ |〈ψn|r (q )/a0|n′l′m′〉|2 = 2Ie2a2

0

h̄2ε0c�L

1
3n2

∑
l′l

|〈n′l′‖r/a0‖nl〉|2, with 〈n′l′‖r/a0‖nl〉 = Cl′0
l0,10

√
2l + 1Rn′l′

nl ,
where Rn′l′

nl is the radial overlap given in Eq. (A4) of the
Appendix.

Similarly, using the extra photon energy above the
ionization threshold given by E = k2Ry = h̄ω − Ry/n2,
we find the photoionization cross section: σ k

n =
1
3

∑
q

∑
l′m′ 4π2αa2

0 ( 1
n2 + k2)|〈kl′m′|r (q )/a0|ψn〉|2 =

1
n2

∑
ll′ (2l + 1)σ kl′

nl , where σ kl′
nl is the photoionization

cross section from nl to kl′ given by σ kl′
nl =

4π2αa2
0

3 ( 1
n2 + k2) max(l,l′ )

2l+1 (Rkl′
nl )2. Rkl′

nl is the radial overlap
given by Eqs. (A8) and (A9) in the Appendix.

Finally, the photoionization rate is �photo = ∫
dω̃ I (ω̃)

h̄ω̃
σ k(ω̃)

n

and, because the cross section (and also the ω value) does not
vary significantly over the laser spectral bandwidth we have
�photo = I

h̄ω
σ k

n .

2. Saturation energy required

In order to have an efficient transfer toward the ground state
we need to transfer the population in a time scale compatible
with the laser pulse and the spontaneous emission lifetime of
the n′ levels.

We study two extreme cases. The first one assumes a
short nanosecond (10 ns) laser pulse for which we calculate
the saturated intensity I = Isat (10 ns) such that the stimu-
lated decay rate is �stim = 1/(10 ns). In the second case we
simply require a pulse duration comparable to the sponta-
neous emission lifetime τ of the n′ manifold and calculate
the saturated intensity Isat (τ ) such that the stimulated decay
rate is 1/τ . Obviously Isat (10 ns) = Isat (τ ) τ

10 ns , but we find
it useful to indicate both values. For this first study we
choose τ−1 = 1

n′2
∑n′−1

l′=0 (2l′ + 1)An′l′ which is the average
decay rate (over all l′m′ levels) of the n′ manifold. It is
calculated using Anl = ∑n−1

n′=1(An′l+1
nl + An′l−1

nl ) where An′l′
nl =

α4c
6a0

( 1
n′2 − 1

n2 )
3 max(l,l′ )

2l+1 (Rn′l′
nl )2 is the spontaneous emission rate

from an nl state toward all n′l′ sub-levels (h̄ω = Ry

n′2 − Ry

n2 is
the transition energy).

The results on the obtained required saturation energy, as-
suming a laser waist of 1 mm (similar to the typical antiproton
plasma size; see, e.g., [13]), as well as the ratio �stim

�photo
, are

shown in Table I and Fig. 2 .
We first see that the competing effect of the photoionization

toward the continuum is relatively weak especially for low
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TABLE I. Study of stimulated deexcitation. The laser linewidth
�L is assumed to be 2π × 5000 GHz. The laser waist is 1 mm.

n n′ λ (nm) τ (ns) Esat (τ ) (mJ) Esat(10 ns) (mJ) �stim
�photo

30 10 10250 1908 0.0043 0.82 0.78
20 10 12150 1908 0.00029 0.056 0.78
30 5 2343 86.5 4.4 38.5 6.0
20 5 2430 86.5 0.51 4.4 6.0
30 4 1484 33 37 124 11.4
20 4 1518.8 33 4.5 14.9 11.4
30 3 828.4 10 548 548 26.3
20 3 839.0 10 68.7 68.7 26.3
30 2 366.1 2.1 20 708 4405 84.6
20 2 368.2 2.1 2670 568 84.6

n′ values. This is due to the fact that the photoionization
cross section drops quickly for high angular momentum states
which are the most numerous states and that lower n′ implies
shorter laser wavelength that also reduces the photoionization
effect.

Obviously, the power required to deexcite increases with
decreasing n′ due to the n′3/2 scaling of the dipole matrix
element and to the fact that fewer angular momenta (|m′| �
l′ < n′) exist and can be coupled to the initial ones.

Based on these results we see that several laser choices are
possible. Toward n′ = 10, power in the watt range is enough
and some CO2 lasers exist that can even allow a continuous
deexcitation scheme for high n values [14,15]. But lower n′
are better to minimize photoionization. Deexcitation toward
n′ = 4 seems feasible using a laser similar to the one used
by AEgIS to excite positronium (a bound state of electron
and positron) to Rydberg states [16]. However the use of a
nanosecond laser with a pulse much shorter than the sponta-
neous emission lifetime of the n′ states will limit the transfer

FIG. 2. (a) Average lifetime τ of the n′ manifold. (b) Ratio of
stimulated emission to photoionization rates. (c) Energy required
to saturate the (fully mixed) n → n′ transition: Esat(10 ns) for an
interaction time of 10 ns. (d) Esat (τ ) for an interaction time of τ .
As above the laser linewidth �L is assumed to be 2π × 5000 GHz
and the waist 1 mm. We find the approximate analytic formulas:
τ (ns) ≈ 0.065n′4.5

, Esat (τ ) (mJ) ≈ 0.77n5n′−9.5
, Esat(10 ns) (mJ)

≈ 0.007n′−5.2
n5, �stim

�photo
≈ 630n′−2.9.

by equalizing population between upper and lower levels.
Therefore, targeting a lower state, like n′ = 3, will improve
the deexcitation efficiency. Furthermore intense lasers that
have a long pulse duration (∼100 ns) in the joule range exist
at this wavelength. This is the case for alexandrite [17] which
can reach λ > 800 nm through heating of the medium [18].

III. MIXING IN ELECTRIC AND MAGNETIC FIELDS

For the next study we therefore restrict ourselves to n′ = 3,
but most of the results will be valid for any other case.

Here we study in more detail the mixing produced by an
electric and a magnetic field. We neglect the spins because
Stark and Zeeman effects in the Rydberg n manifold usually
dominate the fine or hyperfine effects.

A. First-order Stark and Zeeman effects

Considering a given n manifold, we have the following
Hamiltonian:

H = − 1

2n2
+ r · F + 1

2
B · L − 1

8
(r × B)2. (1)

Atomic units will be assumed in this section.
Here, we use perturbation theory in the field values (not to

be confused with the standard state perturbation theory). To
the first order in the fields’ values we simply have to deal
with the perturbation V1 = r · F + 1

2 B · L. We can indeed
neglect the second-order term since it is on the order of
n6F 2 + n4B2/4 in atomic units [so for B/(2.35 × 105 T)
and F/(5.14 × 109 V/cm)] [19–21]. Thus, the second-order
becomes comparable to the first order [that is on the order
of (B + 3nF )n/2] for n � 30 and F < 1 kV/cm for a 1–5 T
field. Therefore, in our configuration, the first order should be
accurate enough to extract the required fields values and laser
energy.

The Hamiltonian (1) has been studied by Pauli who showed
that, for a given n manifold, r = − 3

2nA, where A is the
Runge-Lenz vector. So in this manifold we can define new
angular momenta I1 = L+A

2 and I2 = L−A
2 that commute and

verify I1 = I2 = n−1
2 . We will use the |I1m1〉 ⊗ |I2m2〉 basis

where the eigenvalues m1,m2 (on a given axis) take the val-
ues −(n − 1)/2,−(n − 3)/2, . . . , (n − 1)/2. We define ω1 =
B−3nF

2 and ω2 = B+3nF
2 such that V1 = ω1 · I1 + ω2 · I2.

That is trivial to diagonalize using the |I1m1〉ω1 |I2m2〉ω2 =
|nm1m2〉 basis. This notation indicates that m1 is the projec-
tion of I1 on the ω1 axis. So the first-order perturbation theory
gives

�E(1)
m1m2

= ω1m1 + ω2m2, (2)

where ωi = ‖ωi‖.
For a pure electric field we restore the pure Stark ef-

fect �E
(1)
m1m2 = 3

2nF (m1 + m2) with a clear relation to the
parabolic basis |n, k,m〉 linked to Ĥ , Âz, L̂z eigenvalues: k =
−(m1 + m2) and m = m2 − m1 [19,22].

In a pure magnetic field we restore the standard Zeeman
shift �E

(1)
m1m2 = 1

2B(m1 + m2), where m1 + m2 = m because
I1 + I2 = L.

Using L = I1 + I2 and the standard sum of
the two angular momenta leads to |nlm〉B =
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∑
m1m2

Clm
I1m1,I2m2

|I1m1〉B|I2m2〉B or |I1m1〉B|I2m2〉B =∑
ml C

lm
I1m1,I2m2

|nlm〉B = ∑
l C

l,m1+m2
I1m1,I2m2

|nl,m = m1 + m2〉B ,
where the subscript B indicates that the quantization axis z is
along B.

If we define α1 and α2 as the angles between the magnetic
field B axis and the vectors ω1 and ω2, respectively, by the use
of the Wigner D rotation matrix, we have [22] (Eq. 1.4 (35)
of [23])

|I1m1〉ω1 =
m′

1=I1∑
m′

1=−I1

D
I1

m1,m
′
1
(0, α1, 0)|I1m

′
1〉B.

So by combining the equations [we use real Clesch-
Gordan and real Wigner (small) d matrix d

I2

m2,m
′
2
(α2) =

D
I2

m2,m
′
2
(0, α2, 0)] we get

|nm1m2〉ω1,ω2 ≡ |I1m1〉ω1 |I2m2〉ω2

=
n−1∑
l=0

l∑
m=−l

〈nlm|nm1m2〉|nlm〉B, (3)

〈nlm|nm1m2〉 ≡
m′

1=I1= n−1
2∑

m′
1=−I1

m′
2=I2= n−1

2∑
m′

2=−I2

d
I1

m1,m
′
1

(
α

(n)
1

)
d

I2

m2,m
′
2

(
α

(n)
2

)

×Clm
I1m

′
1,I2m

′
2
, (4)

where we have written α
(n)
1 to stress that the angles de-

pend on n and not only on the fields’ values. Similarly
|nlm〉B = ∑

m1,m2
〈nm1m2|nlm〉|nm1m2〉ω1,ω2 . And we have

the closure expression 1n = ∑
m1,m2

|nm1m2〉〈nm1m2| =∑
lm |nlm〉B B〈nlm|.
We can note that using such an (m1,m2) formalism the

states will always be given in a parabolic basis, not in a
spherical basis, so even in a pure magnetic field the eigenstates
|nm1m2〉 will not correspond to the |nlm〉 ones: l is mixed in
the |nm1m2〉 basis.

B. Laser transitions under combined electric
and magnetic fields

In order to choose the electric field which most optimally
mixes the states, we need to calculate all transitions dipole
moments from a given |nm1m2〉 toward each states of the n′
manifold. The Zeeman and Stark effect being small for n′ = 3
we use the |n′l′m′〉 basis. So the stimulated emission rate, for
a q = ±1, 0 polarization, from an |nm1m2〉 state toward all
the n′ manifolds is given by

�
nm1m2;n′;q
stim = 2Ie2a2

0

h̄2ε0c�L

∑
l′,m′

∣∣∣∣〈n′l′m′| r
(q )

a0
|nm1m2〉

∣∣∣∣
2

= 2Ie2a2
0

h̄2ε0c�L

∑
m,l′

∣∣∣∣∣
∑

l=l′±1

〈n′l′ m + q| r
(q )

a0
|nlm〉〈nlm|nm1m2〉

∣∣∣∣∣
2

which can be calculated using Eq. (A3) of the Appendix and
Eq. (4) in Sec. III A.

The laser-driven evolution of these states may be quite
complex with n2 levels coupled to n′2 ones (and to the

continuum). Rate equations are sufficient to treat the prob-
lem assuming that the broadband laser used to stimulate the
deexcitation is incoherent (which is likely to be the case).
Furthermore, because we have chosen the n′ = 3 with a fast
spontaneous emission lifetime, the population of the n′ = 3
levels will be small and the reexcitation process from n′ = 3
to the n manifold will not be severe. We can therefore consider
that the nm1m2 levels are isolated from each other and thus
simplify the picture to a four-level rate equation system as
shown in Fig. 1:

dNH+

dt
= �photoNn,

dNn

dt
= −(�stim + �photo)Nn + �stimNn′ ,

dNn′

dt
= �stim(Nn − Nn′ ) − �sponNn′ ,

dN1

dt
= �sponNn′ . (5)

A cumbersome analytical solution exists for P
(q )
nm1m2 (t ), the

transfer of a given |nm1m2〉 state to the ground state, and we
use it throughout this article. However in this section we can
simplify the solution because, as seen in Table I and Fig. 2, we
can safely neglect the photoionization. We can also assume
an instantaneous spontaneous emission from n′ = 3 to the
ground state if the laser pulse duration is much longer than
the spontaneous emission lifetime of 10 ns (which can be
considered the case for an, e.g., 100-ns-long laser pulse as is
the case for the alexandrite, for example). In this case, the
model becomes a simple two-level model, and the transfer of
a given |nm1m2〉 state to ground state, after the application
of the laser of polarization q and of duration t , is given by

P
(q )
nm1m2 (t ) = 1 − e−t�

nm1m2;n′ ;q
stim .

Assuming an equidistribution of the initial |nm1m2〉 states
we sum over these n2 states to get the total number of atoms
reaching the ground state. The results are given in Fig. 3 as a
function of α1 and α2 for different laser polarizations. We have
used, in Cartesian coordinates with B = (0, 0, B ), the result
3nF
B

= (0, 2 sin(α1 ) sin(α2 )
sin(α1+α2 ) , 2 sin(α1−α2 )

sin(α1+α2 ) ).
The calculation has been performed for n = 20 with a laser

energy of ∼150 mJ and a pulse of 100 ns (but similar results
hold for other n states or other laser power values).

The first important result is that it is possible to efficiently
mix the states by adding an electric field to a magnetic field
validating the assumption taken in the previous section. The
transfer efficiency is very high for several values and orien-
tations of the electric field. As expected, an unfavorable con-
figuration is that where the fields are orthogonal to each other
or in the case of a too small electric field. A typical favorable
configuration is when the electric field axis is oriented with
a small angle with respect to the magnetic field axis and has
a value such that 3nF ∼ B in atomic units. So for instance,
for n = 30, in a 1 T magnetic field, a 280 V/cm electric field
with 160◦ angle (corresponding to α1 = 0.187, α2 = 1.777)
is a good choice to efficiently mix the states as shown by the
dashed lines in Fig. 3(c). These magnetic and electric field
values are small enough to allow the use of the first-order
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FIG. 3. (a) In the inset: Definition of the α1 and α2 angles.
Schematic of the electric F field orientation with respect to the
magnetic B field. The frontiers where the length of the 3nF/B

vector (in atomic units) is 0.5, 1, 1.5, and 2 are shown and no values
larger than 2 are plotted. (b), (c), and (d): Fraction (f ) of the initial
atoms reaching ground state as a function of the mixing induced by
an electric field F for the n = 20 → n′ = 3 case and for a laser of
∼150 mJ energy with a pulse duration of 100 ns, a linewidth �L =
2π × 5000 GHz, and a waist of 1 mm. For a circular polarized laser
(b), for an isotropic laser polarization (c), and for a π -polarized laser
(linear and parallel polarization compared to the B axis) (d). The
dashed lines in (c) indicate a judicious choice of α1 and α2 to achieve
maximal mixing and thus maximal ground-state population.

perturbation theory approach. This is indicated by the contour
of the 3nF/B values in Fig. 3(a) that should be smaller than
∼2 to avoid large second-order effects.

IV. DECAY IN THE OPTIMIZED FIELDS
CONFIGURATION

We now choose the values of α1, α2 marked in Fig. 3(c)
to study more precisely the deexcitation mechanism. Before
doing so we stress that the choice of the initial states created
by the addition of the electric field is not obvious. It is beyond
the scope of this paper to study in detail the dynamical behav-
ior of the states mixing during the application of the electric
field. We can nevertheless mention that, in order to fully mix
the levels, it should not be switched on too fast (meaning in a
fully diabatic manner). In the case of our real and nonoscil-
lating Hamiltonian, the adiabaticity criterion to stay in the
eigenstates |n〉 = |nm1m2〉ω1,ω2 is the standard criterion (with
simplified obvious notations)

∑
m�=n

h̄|〈m|dV1/dt |n〉|
|En−Em|2 [24]. It can

be estimated using simple classical vector arguments [25]:
the rotation rate of ωi must always be slow compared to the
precession rate ωi · I i/h̄ (for i = 1, 2). Such estimation leads
to a rate in the high range of V/cm per ns. Thus a rising time
less than ∼10–100 ns should be safe to ensure adiabaticity.
Because initially antihydrogen is formed in all |nm1m2〉B

FIG. 4. Fraction (f ) of the initial atoms reaching the ground
state from the n = 20 (a) or n = 30 (b) manifolds after stimulated
deexcitation toward n′ = 3 in a 1 T magnetic field and a 280 V/cm
electric field with 160◦ respective angle. Different laser polarizations
are considered; see also Fig. 3 (black for isotropic, red for π , and
green for σ±). The laser has a 5000 GHz linewidth (centered on the
n → n′ = 3 transition) and a waist of 1 mm. In (a) we added the
comparison between our calculations using first-order theory (solid
lines) and the output of the flexible atomic code (FAC) (dashed lines).

states we will assume adiabaticity and so an equidistribution
of the |nm1m2〉ω1,ω2 states before the application of laser
deexcitation.

As before, we assume an abrupt application of a laser of
duration t = 100 ns. The total population transfer toward the
ground state is plotted in Fig. 4 as a function of the laser
power for two initial n manifold (n = 20 and n = 30) and
three laser polarizations: σ±, π , or isotropic. More precisely
the total population transfer is calculated as the sum of the
population transfer of the initially populated |nm1m2〉 levels:
1
n2

∑
m1,m2

P
(q )
nm1m2 (t ). P

(q )
nm1m2 (t ) is calculated using Eqs. (5)

with the stimulated decay rate �
nm1m2;n′;q
stim , the photoionization

rate of the nm1m2 levels to the states of energy k in the
continuum (determined by the laser central wavelength) �photo

and the spontaneous emission rate �spon = 1/τ .
For n = 30 to n′ = 3, an efficient transfer of more 80% is

obtained for a 2 J laser energy. For the n = 20 case the transfer
requires, as expected, less laser energy because of the larger
transition dipole moment. But despite the fact that the field
configuration is not optimal for n = 20 (in that case we have
the following values: α1 = 0.151 and α2 = 0.756), we still
obtain around 60% transfer. In order to study the validity of
our assumptions we perform the exact diagonalization of the
Hamiltonian using the flexible atomic code (FAC: a software
package for the calculation of various atomic processes [26])
for the same field configuration and including all states in
the n = 1, 3, 20 manifolds as well as the photoionization to
the continuum. The code takes into account the fine structure
and the full Stark and Zeeman effects (including the quadratic
Zeeman effect). We compare in Fig. 4(a) those results to our
first-order calculation. A relatively good agreement is found.
Interestingly, FAC predicts an even better mixing (which
might be due to the quadratic Zeeman effect) showing that
our estimated deexcitation efficiencies are probably slightly
underestimated.
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V. CONCLUSION

We find that adding an electric field to the magnetic field
already present in the antihydrogen apparatus will allow us to
very efficiently stimulate the decay of Rydberg states toward
the ground state. A continuous deexcitation might be possible
using an intense CO2 laser (that could also be used to directly
create the antihydrogen atoms through stimulated radiative
recombination [27–29]). A pulsed deexcitation toward n′ = 3
can be achieved using a heated alexandrite laser or toward
n′ = 4 using an amplified OPG laser. For narrower n distri-
bution, the laser power requirement will be more favorable
because a smaller bandwidth will be required and thus less
laser power would be needed to drive the transitions; the
photoionization would also be reduced in the same ratio. In
order to further reduce the laser power we could also consider
modifying the electric field strength during the laser pulse in
order to more efficiently mix all levels. It may also be possible
to mix the states using a radio-frequency field resonant to
m → m ± 1 magnetic transitions or to add THz sources to
stimulate the transitions n → n − 1 between Rydberg states
[12].

Once in the ground state the atoms can be manipulated and
reexcited to a well-defined state for targeted manipulations.
The presented method will thus be very useful in mecha-
nisms which envision the creation of an intense antihydrogen
beam via well-controlled Stark acceleration [30] or magnetic
focusing [31]. It can also allow a better trapping efficiency
if a subsequent excitation is done in a state with a high
magnetic moment (this will be the subject of an upcoming
publication [12]). We therefore think that our proposal opens
exciting future prospects to enhance the production of useful
antihydrogen atoms.

APPENDIX

We find it useful to recall here some basic formulas to
calculate hydrogen properties especially because overlap of
the radial wave functions of hydrogen, if well known [32],
have often been misprinted in several articles (Eqs. (25)–(27)
of [33], (2.34) of [34], and (27) of [32]) and textbooks (Eq.
(3.17) of [35]).

1. Radial wave function

We use calligraphic notation (Rnl or REl) for SI units and
the usual typography (Rnl or REl) for atomic units.

The wave function of hydrogen atoms for bound states of
energy E = −Ry

n2 , where Ry = hcR∞ (R∞ = mecα
2

2h
) is the

Rydberg energy, is given by ψnlm(r, θ, φ) = Rnl (r )Ylm(θ, φ)
with Rnl (r ) = 1

a
3/2
0

Rnl (r/a0), ρ = r/a0, and

Rnl (ρ) = 2

n2
e− ρ

n

√
(n − l − 1)!

(l + n)!

(
2ρ

n

)l

L2l+1
n−l−1

(
2ρ

n

)

= 2

n2(2l + 1)!
e− ρ

n

√
(l + n)!

(n − l − 1)!

(
2ρ

n

)l

× 1F1

(
l − n + 1; 2l + 2;

2ρ

n

)
. (A1)

The functions are normalized 1 = ∫ ∞
0 Rnl (r )2r2dr =∫ ∞

0 Rnl (ρ)2ρ2dρ.
For continuum states ψElm(r, θ, φ) = REl (r )Ylm(θ, φ)

with energy E = k2Ry.
Several normalizations (in energy, wave number, k2, . . .)

are possible [36]. We choose here the energy normaliza-
tion δ(E − E′) = ∫ ∞

0 REl (r )r2RE′l (r )dr . So with REl (r ) =
1

Ry1/2a
3/2
0

Rkl (r/a0) we have the normalization through δ(k2 −
k′2) = ∫ ∞

0 Rkl (ρ)ρ2Rk′l (ρ)dr (so with a factor π different
compared to Ref. [33]). We have (up to a phase factor)

Rkl (ρ) = 1

(2l + 1)!
eikρ

√
2

∏l
s=0(1 + s2k2)

1 − e− 2π
k

(2ρ)l

× 1F1

(
l − i

k
+ 1; 2l + 2; −2ikρ

)
. (A2)

The wave functions are similar to the bound state ones
(through the modification n → ik due to the energy defini-
tion) [36,37].

2. Reduced dipole matrix element

The Wigner-Eckart theorem indicates that (bound-bound
or bound-continuum) dipole d = er matrix elements between
|nlm〉 and |n′l′m′〉 states (or with k in place of n′ for
continuum states) are given by

〈n′l′m′|r (q )/a0|nlm〉 = Cl′m′
lm,1q

〈n′l′‖r/a0‖nl〉√
2l′ + 1

= Cl′m′
lm,1qC

l′0
l0,10

√
2l + 1√
2l′ + 1

Rn′l′
nl . (A3)

The overlap Rn′l′
nl = ∫ ∞

0 Rnl (ρ)ρRn′l′ (ρ)ρ2dρ = Rn′l′
nl /a0 is

directly the atomic unit value:

Rn′l−1
nl = (−1)n

′−l

4(2l − 1)!

√
(l + n)!(l + n′ − 1)!

(−l + n − 1)!(n′ − l)!

(4nn′)l+1(n − n′)n+n′−2l−2

(n + n′)n+n′

×
[

2F1

(
l − n + 1, l − n′, 2l,− 4nn′

(n − n′)2

)
− (n − n′)2

(n′ + n)2 2F1

(
l − n − 1, l − n′, 2l,− 4nn′

(n − n′)2

)]
. (A4)

One common case is when the atoms are evenly distributed
among all 2l + 1 possible m initial states. Using the sum

rule
∑

mq |〈n′l′m′|r (q )|nlm〉|2 = |〈n′l′‖r‖nl〉|2
2l′+1 we see that for

unpolarized light (intensity 1/3 for σ+, 1/3 for π , 1/3 for
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σ− transition) the probability transition is independent
of the initial state. Another useful sum rule is∑

m′q |〈n′l′m′|r (q )|nlm〉|2 = |〈n′l′‖r‖nl〉|2
2l+1 .

3. Spontaneous system

The spontaneous emission rate between an nlm and n′l′m′
level with photon angular frequency ω is given by

An′l′m
nlm = ω3e2a2

0

3πε0h̄c3
|〈n′l′m′|r (q=m′−m)/a0|nlm〉|2. (A5)

So when summed over the final states the spontaneous emis-
sion rate between an nlm level and (all) n′l′ levels is given by

An′l′
nlm = e2a2

0ω3

3πε0 h̄c3
|〈n′l′‖r/a0‖nl〉|2

2l+1 which does not depend on m and

can be noted An′l′
nl the spontaneous emission rate from an nl

toward all n′l′ levels. Using h̄ω = Ry

n′2 − Ry

n2 we find

An′l′
nl = e2ω3

3πε0h̄c3

max(l, l′)
2l + 1

(
Rnl

n′l′
)2

= α4c

6a0

(
1

n′2 − 1

n2

)3 max(l, l′)
2l + 1

(
Rn′l′

nl

)2

= e2a2
0ω

3

3πε0h̄c3

|〈n′l′‖r/a0‖nl〉|2
2l + 1

= An′l′m
nlm(

Cl′m′
lm,1q=m′−m

)2 2l+1
2l′+1

= An′l′m′
nlm(

Clm
l′m′,1(−q )=(m−m′ )

)2 . (A6)

4. Stimulated emission rate �′

The stimulated emission rate �′ between an excited nlm

and n′l′m′ level can be calculated in the same way. The general
formula for 2 levels e and g (separated in energy by h̄ωeg,
a dipole deg = ea0〈n′l′m′|r (q=m−m′ )/a0|nlm〉 transition, and a
laser polarization vector ε) is

�′ =
∫

L(ω)I (ω)dωπ|deg.ε|2
h̄2ε0c

,

where L(ω) = 1
π

�/2
(ω−ωeg )2+(�/2)2 is the Lorentzian spectral

spectrum for the spontaneous emission and I (ω) is the laser
irradiance spectral distribution (throughout the article we use
improperly the word intensity).

For example for a Lorentzian spectrum I (ω) =
I
π

�L/2
(ω−ω0 )2+(�L/2)2 [I = ∫

I (ω)dω is the full laser irradiance

so the laser electric field is E = √
2I/ε0c], we have

�′ = �2/2
(ω0−ωeg )2+[(�L+�)/2]2

�L+�
2 , where � = deg.E/h̄ is the

Rabi frequency.
For a broadband laser, where �L � �, the final rate at

resonance is

�′ = �2

�L
= 2I |degεq |2

h̄2ε0c�L
. (A7)

Therefore an average rate for a fully mixed state
|ψn〉 ≈ ∑

lm 1/n|nlm〉 under an isotropic (unpolarized)
light is given by the sum over all l′m′ transition rates

and so is �′ = 2Ie2a2
0

h̄2ε0c�L

1
3

∑
q

∑
l′m′ |〈ψn|r (q )/a0|n′l′m′〉|2 =

2Ie2a2
0

h̄2ε0c�L

1
3n2

∑
lm

∑
q

∑
l′m′ |〈nlm|r (q )/a0|n′l′m′〉|2 =

2Ie2a2
0

h̄2ε0c�L

1
3n2

∑
l′l |〈n′l′‖r/a0‖nl〉|2.

5. Photoionization cross section

Using Rkl′
nl = ∫ ∞

0 Rnl (ρ)ρRkl′ (ρ)ρ2dρ, the photoioniza-
tion cross section from nl to kl′ is given by

σ kl′
nl = 4π2ωa02Ry

3c

max(l, l′)
2l + 1

(
Rkl′

nl

)2

= 4π2αa2
0

3

(
1

n2
+ k2

)
max(l, l′)

2l + 1

(
Rkl′

nl

)2

= 4π2αa2
0

3

(
1

n2
+ k2

) |〈kl′‖r/a0‖nl〉|2
2l + 1

.

It is the cross section assuming that the atoms are evenly
distributed among all 2l + 1 possible m initial states. So, for
a light of given polarization q, σ kl′

nl = 1
2l+1

∑
m σ

kl′m′=m+q

nlm ,

where σ
kl′m′=m+q

nlm is the photoionization cross section from
nlm to kl′m′ given by

σ kl′m′
nlm = 3

(
Cl′m′

lm,1q=m′−m

)2 2l + 1

2l′ + 1
σ kl′

nl

= 3
(
Clm

l′m′,1m−m′
)2

σ kl′
nl

= 4π2αa2
0

(
1

n2
+ k2

)
|〈kl′m′|r (m′−m)/a0|nlm〉|2.

Rkl′
nl is given for l′ = l + 1 and for l′ = l − 1 by

Rkl+1
nl = −i

4k(2l + 1)!

√
1

2

(n + l)!
∏l+1

s=1(1 + s2k2)

(n − l − 1)!(1 − e− 2π
k )

(
4n

1 + n2k2

)l+2

e− 2
k

arctan(nk)

(
n − i/k

n + i/k

)n−l−2

×
[

2F1

(
l + 2 − i/k, l + 1 − n; 2l + 2; − 4n i/k

(n − i/k)2

)

−
(

n − i/k

n + i/k

)2

2F1

(
l − i/k, l + 1 − n; 2l + 2; − 4ni/k

(n − i/k)2

)]
, (A8)
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Rkl−1
nl = −1

4(2l + 1)!

√
1

2

(n + l)!
∏l−1

s=1(1 + s2k2)

(n − l − 1)!(1 − e− 2π
k )

(
4n

1 + n2k2

)l+1

e− 2
k

arctan(nk)

(
n − i/k

n + i/k

)n−l−1

×
[

2F1

(
l − i/k, l + 1 − n; 2l; − 4n i/k

(n − i/k)2

)
−

(
n − i/k

n + i/k

)2

2F1

(
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)]
. (A9)

We do not treat here the continuum-continuum transition (it is given in [32]).
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