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Many-electron character of two-photon above-threshold ionization of Ar

I. D. Petrov and B. M. Lagutin
Rostov State University of Transport Communications, 344038 Rostov-on-Don, Russia

V. L. Sukhorukov and N. M. Novikovskiy
Institute of Physics, Southern Federal University, 344090 Rostov-on-Don, Russia

Ph. V. Demekhin, A. Knie, and A. Ehresmann
Institute of Physics and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT),

University Kassel, D-34132 Kassel, Germany

(Received 8 October 2018; published 9 January 2019)

The absolute generalized cross sections and angular distribution parameters of photoelectrons for the two-
photon above-threshold 3p ionization of Ar were calculated in the exciting photon energy range from 15.76 to
36 eV. The correlation function technique developed earlier was extended for the case when an intermediate-state
function is of a continuum-type. We show that two-photon ionization of Ar near the 3p4 threshold to a large
extent is determined by the (3p ��� εd )2 two-photon absorption via the giant resonance. This many-electron
correlation causes (i) an increase of the photoionization cross sections by more than a factor of 3; and (ii) the
appearance of resonances in the exciting-photon energy range of the doubly excited states. The predictions
are supported by a good agreement between length and velocity results obtained after taking into account the
higher-order perturbation theory corrections.
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I. INTRODUCTION

Advancements in new intense and tunable free-electron
lasers (FELs) [1–5] covering the ultraviolet and x-ray photon-
energy ranges inspire a renewed interest for a detailed
comprehension of multiphoton processes. Experimental data
obtained using FELs are of great motivation for theory to pro-
vide not only a qualitative but also a quantitative description
of new phenomena.

One of these cases is atomic two-photon above-threshold
ionization (ATI) when the energy of a single photon is suffi-
cient to ionize an atom. It has been shown [6–11] that below
the one-photon ionization threshold, many-electron corre-
lations significantly influence the calculated cross sections
and angular distribution parameters of photoelectrons with
respect to those obtained in a single-electron approximation.
The intermediate-state shake-up correlation studied in [9–11]
resulted in a noticeably closer agreement of the generalized
two-photon ionization cross section (G2PICS) calculated in
length (G2PICS-L) and velocity (G2PICS-V ) forms of the
electric dipole operator. The final-state electron scattering
correlations taken into account in [7–11] decrease noticeably
the absolute values of G2PICS. In contrast, the polarization
of the atomic core by the photoelectron [10,11] increases the
cross sections by 15–20 %.

To the best of our knowledge, there is only one ab initio
theoretical description of the two-photon ATI of Ar [12].
Those calculations were carried out using Herman-Skillman
[13] potential for computing atomic orbitals (AOs) without
considering the collective behavior of electrons.

In this work, we intend to take into account many-electron
correlations in the calculation of the 3p-ATI of Ar. To solve

this problem, the correlation function (CF) technique devel-
oped by us in [10,11] for the exciting-photon energy region
below the one-photon ionization threshold is applied. We
extend the CF technique for the ATI case solving two chal-
lenging problems: (i) computing the CFs for positive energy,
i.e., in the continuum, satisfying the correct boundary condi-
tions; and (ii) computing the free-free dipole transition matrix
elements containing the CF and final-state wave function, both
of continuum-type.

The paper is organized as follows. In Sec. II we describe
the correlation function method for a two-photon transition
amplitude calculation in the above-threshold exciting-photon
energy region. The technique of the matrix element calcula-
tion for the two continuum-state functions is also described in
detail. In Sec. III the developed method is applied to the calcu-
lation of partial and total G2PICS of the 3p shell of Ar above
the 3p threshold. Various correlation effects are considered
and discussed. The influence of many-electron correlations
on the angular-distribution parameters of the photoelectrons
is studied in Sec. IV. We conclude with a brief summary in
Sec. V.

II. TWO-PHOTON TRANSITION AMPLITUDES FOR THE
ABOVE-THRESHOLD PHOTON ENERGIES

To investigate the influence of many-electron correlations
on the ATI of atoms, we considered the two-photon 3p

ionization of argon applying the LS-coupling scheme:

Ar 3p6(1S ) + 2γ → Ar 3p5(2P )ε�(1L) (L = 0; 2). (1)
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Here L and � are the orbital angular momenta of the final
state and photoelectron, respectively. We investigate the case
when the energy of a single photon is sufficient to ionize the
atom. This process is known as above-threshold ionization
(ATI).

The amplitude of the two-photon ionization transition i →
f with photon energy ω in the lowest order of perturbation
theory (LOPT) in the ATI energy region is given by

Ti→f =
∑
m

〈f |D|m〉〈m|D|i〉
Ei + ω − Em + iδ

, δ → 0+, (2)

where Ei and Em are energies of the initial and intermediate
states, respectively, D is the electric dipole operator, δ is
an infinitesimal positive quantity, and the sum contains all
possible intermediate states m including continuum ones. The
contributions accounting for many-electron correlations were
taken into account in addition to the LOPT amplitude (2). We
study all possible correlations that are allowed in the next
order of perturbation theory due to Coulomb interaction of
electrons. These transitions can schematically be presented as
shown below.

The LOPT processes are

p6 ��� p5ε′�′ ��� p5ε�, (Ia)

s2p6 ��� s1p6ε� ��� s2p5ε�. (Ib)

Here and below, the dashed arrows denote electric dipole
interaction and solid arrows denote Coulomb interaction of
electrons.

The correlations described by the next order of perturbation
theory are classified as follows:

Intermediate-state interchannel correlation:

p6 ��� p5ε′′�′′ → p5ε′�′ ��� p5ε�. (II)

Ground-state correlations:

p6 → p4ε′�′ε′′�′′ ��� p5ε′�′ ��� p5ε�, (IIIa)

p6 → p4ε′�′ε′′�′′ ��� p4ε�ε′′�′′ ��� p5ε�, (IIIb)

p6 → p4ε�ε′′�′′ ��� p4ε�ε′�′ ��� p5ε�. (IIIc).

Intermediate-state shake-up correlation:

p6 ��� p5ε′�′ → p4ε�ε′�′ ��� p5ε�. (IV).

Intermediate-state electron-scattering correlations:

p6 ��� p5ε′�′ → p4ε�ε′′�′′ ��� p5ε�. (V).

Final-state electron-scattering correlations:

p6 ��� p5ε′�′ ��� p4ε′�′ε′′�′′ → p5ε�, (VIa)

p6 ��� p5ε′′�′′ ��� p4ε′�′ε′′�′′ → p5ε�. (VIb).

A. Correlation function for positive energy

The radial part of the amplitude for process (Ia) is

t (Ia)
ω (L, �, �′) =

∑
ε′>F

〈ε�|dr |ε′�′〉〈ε′�′|dr |3p〉
ω − E

(i)
3p − ε′ + iδ

, (3)

where E
(i)
3p is the ionization potential of the 3p electron in Ar,

dr is the radial part of the dipole transition operator obtained

in the length or velocity form, and the notation ε′ > F denotes
the summation over all unoccupied single-electron states. The
wave function of the photoelectron, |ε�〉, depends on the
orbital momentum L of the final state.

The infinite summation in (3) can be efficiently performed
by the correlation-function (CF) method ([10,11] and refer-
ences therein). In the ATI case, the CF should satisfy the
outgoing-wave boundary conditions, and it is a solution of the
inhomogeneous integrodifferential equation(

h�′ − ω + E
(i)
3p

)
φ�′ (r ) = −drP3p(r ) +

∑
n′<F

Pn′�′ (r )

×〈n′�′|dr |3p〉, (4)

where h�′ is the Hartree-Fock operator for the ε′�′ function in
the configuration 3p5ε′�′(1P ).

To obtain the continuum-type CF, we have used a technique
similar to that presented in [14]. First, the inhomogeneous
equation (4) is solved disregarding the boundary conditions
at large distances (r → ∞). This solution, which we denote
�l′ , has a nonzero contribution from the incoming waves, and
its asymptotic behavior at (r → ∞) can be expressed as

�l′ (r ) = gG(r ) + hH (r ), (5)

where G(r ) and H (r ) are regular and irregular Coulomb
functions, respectively [15], asymptotically denoted as

Gε�(r )
r→∞−→

√
2

πk
sin

(
kr − �π

2
+ Z

k
ln(2kr ) + δ�

)
, (6)

Hε�(r )
r→∞−→ −

√
2

πk
cos

(
kr − �π

2
+ Z

k
ln(2kr ) + δ�

)
. (7)

Here, k is the wave vector of the continuum electron in atomic
units, Z is the asymptotic charge of the ionic core, and δ�

represents the sum

δ� = arg �

(
� + 1 − ı

Z

k

)
+ ϕ�, (8)

where ϕ� is the short-range phase shift. Coefficients g and
h in (5) are defined by matching the respective numerical
solutions of inhomogeneous Eq. (4) starting upward from zero
and downward from infinity.

To obtain the solution of Eq. (4), which has the correct
boundary condition appropriate for the photoionization case,
we add the general solution Pε′�′ (r ) of the homogeneous
equation to �l′ (r ), factorized with a coefficient A,(

h�′ − ω + E
(i)
3p

)
Pε′�′ (r ) = 0. (9)

The solution of Eq. (4), which has the correct boundary
conditions, is thus given by

φl′ (r ) = �l′ (r ) + APε′�′ (r ), (10)

where �l′ (r ) is the solution (5) of Eq. (4) with unphysical
boundary conditions.

The solution of the homogeneous equation (9) in its asymp-
totics (r → ∞) can be determined as

Pε′�′ (r ) = G(r ) − K H (r ), (11)
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where the coefficient K is obtained by matching the respective
numerical solutions of Eq. (9) starting upward from zero and
downward from infinity.

Substituting Eqs. (5) and (11) into (10), applying the Euler
expressions sin x = i

2 (e−ix − eix ) and cos x = 1
2 (e−ix + eix )

with x = kr − �π
2 + Z

k
ln(2kr ) + δ�, and equating a factor at

e−ix to zero, we obtain the following formulas for the coeffi-
cient A in Eq. (10):

ReA = −hK + g

K2 + 1
, ImA = gK − h

K2 + 1
. (12)

After the CF is determined in the form of (10), the radial part
of the transition amplitude (3) takes the following form:

t (Ia)
q,ω (L, �, �′) = 〈ε�|dr |φ�′ 〉. (13)

B. Calculation of the electric dipole transition amplitude
between two continuum-type functions

In Eq. (13) both the CF, φ�′ (r ), and the final-state AO,
Pε�(r ), are of continuum-type. To calculate the dipole integral
(13) between the two continuum wave functions, a special
technique was applied. We used the method described in
[16,17]. According to this method, the dipole integral (13) is
expressed as

〈ε�|dr |φ�′ 〉 =
∫ r0

0
Pε�(r ) dr φ�′ (r )dr + I (r0, ε�, ε

′�′),

(14)

where r0 is a sufficiently large value of r and

I (r0, ε�, ε
′�′) =

∫ ∞

r0

uε�(r ) dr uε′�′ (r )dr. (15)

The radial functions uε�(r ) in (15) are the standard Coulomb
functions, which are the solutions of the equation(

d2

dr2
+ f�(r )

)
uε�(r ) = 0,

f�(r ) = k2 + 2Z

r
− �(� + 1)

r2
(r � r0), (16)

where ε(Ry) = k2.
The solutions of Eq. (16) are asymptotically expressed as

uε�(r ) =
√

2

πξ�(r )
sin

(
�

(1)
� (r ) + δ�

)
. (17)

In Eq. (17), an approximate value of �
(1)
� (r ) with an accuracy

of 1/r4 can be obtained using the formulas presented in
[18,19]:

�
(1)
� = x + 1

m
ln

(
1

m
+ mρ + x

)
− 1

m
− �π

2

+ y − x(3m2t + 4) + mρ(3m2t + 2) + mt

24(1 + m2t )x(x + mρ)

+ 5(ρ − t )

24x3
, (18)

where the abbreviations m = k/Z, ρ = Zr , x = (m2ρ2 +
2ρ − t )1/2, t = �(� + 1), and

y =
{

t+1/8√
t

arccos
[

ρ−t+mtx

(1+m2t )ρ

]
, l > 0;

1
4(x+mρ) , l = 0.

(19)

are used. Note that there is a “sign” misprint in the definition
of x in Eq. (19.44) of Ref. [18], whereas Eq. (16) of Ref. [19]
contains a misprint corrected in the present Eq. (18).

The amplitude function ξ�(r ) appearing in Eq. (17) satisfies
the following differential equation:

ξ 2
� (r ) = f�(r ) + ξ

1/2
� (r )

d2

dr2
ξ

−1/2
� (r ). (20)

Equation (20) can be solved iteratively. A zeroth approxima-
tion is expressed as ξ

(0)
� (r ) = √

f�. The next approximation
can be calculated by [18]

ξ
(1)
� =

√
f� + ξ

1/4
�

d2

dr2
ξ

−1/4
� =

√
f� + 5

16

(
f ′

�

f�

)2

− 1

4

f ′′
�

f�

.

(21)

Integral (15) can be expressed as a difference of two terms:

I (r0, ε�, ε
′�′) = I+ − I−, (22)

where

I± = lim
ε→0

∫ ∞

r0

e−εrξ±(r )g±(r ) cos χ±(r )dr, (23)

ξ±(r ) = ξ
(1)
�′ (r ) ± ξ

(1)
� (r ), (24)

g±(r ) = dr

[
π

(
ξ

(1)
�′ ξ

(1)
�

)1/2
ξ±]−1

, (25)

χ±(r ) = [
�

(1)
�′ + δ�′

] ± [
�

(1)
� + δ�

]
. (26)

After subsequent integration of Eq. (23) by parts, the
following expansion can be obtained [17]:

I± =
{ ∞∑

n=0

[(
1

ξ±
d

dr

)n

g±(r )

]
sin

(
χ±(r ) + nπ

2

)}
r=r0

.

(27)

In the present calculation, we included the first four terms of
expansion (27).

C. Additional computational remarks

The wave functions of the atomic core of Ar were com-
puted on the ground-state configuration 1s22s22p63s23p6

obtained in the Hartree-Fock (HF) approximation. The
final-state wave functions were obtained by solving the
HF equations for a photoelectron in the configurations
3p5εp(1S ), 3p5εp(1D), and 3p5εf (1D) using frozen core
functions. The same frozen core functions were used in the
h�′ operator in Eq. (4).

The Hartree-Fock operator entering Eq. (4) includes the
nonlocal exchange part of the Coulomb interaction of the
CF with core electrons. In the same way as in [10], a sep-
arate local differential equation is determined for each term
of the exchange Coulomb potential. As a result, the single
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nonlocal integrodifferential equation (4) is transformed to a
system of local differential equations. To solve this system, a
noniterative numerical procedure is applied that is stable and
converges at each energy.

The calculation of the transition amplitude (Ib) via the
3s shell is identical for above (ATI) and below threshold
ionization. The latter case has been described in our pre-
vious work [10]. The correlation transition amplitudes (II)–
(V) were calculated using the CF technique. The respective
inhomogeneous equations were presented and discussed in
[10]. In the ATI energy region, the calculations of the CFs
are different in two cases. First, if the energy denominator in
the expression for the transition amplitude has no pole, then
the corresponding CF is of discrete-type, consists of a real
part only, and is calculated using the technique from Ref. [10].
Second, if the energy denominator has a pole, then the CF is
of continuum-type, consists of real and imaginary parts, and
is computed using the method described above.

III. GENERALIZED TWO-PHOTON IONIZATION CROSS
SECTION FOR ABOVE-THRESHOLD IONIZATION

OF THE 3 p SHELL OF AR

To characterize two-photon ionization quantitatively, we
use the generalized two-photon ionization cross section
(G2PICS) as defined in [7,9,10]. This intrinsic quantity does
not contain the exciting-photon flux and is therefore ideally
suited to characterize this process. The expression for the
G2PICS is

σq (ω) =
∑
L,�

σq (L, �, ω), (28)

where q = 0 and ±1 correspond to a linearly or circularly
polarized incoming radiation, respectively. Each partial gen-
eralized cross section is determined in cm4 s and expressed
via the two-photon transition amplitudes Tq,ω(L, �) [10] as

σq (L, �, ω) = 8π3αa5
0

c
ω±2|Tq,ω(L, �)|2. (29)

In Eq. (29), α = 1/137.036 is the fine-structure constant,
a0 = 5.291 77 × 10−9 cm is the Bohr radius, c = 2.997 92 ×
1010 cm/s is the light velocity in vacuum, and ω is the exciting
photon energy in atomic units; + and − correspond to the
length and velocity form of the electric dipole transition oper-
ator. The major details of the transition amplitude calculation
(particularly the calculation of the angular parts) have been
described in our previous work [10].

A. LOPT approximation

The G2PICS of the 3p shell of Ar calculated in the LOPT
approximation [processes (Ia) and (Ib)] are presented in Fig. 1
in the exciting-photon energy region below the one-photon
ionization threshold (our calculation from [10]) and in the ATI
region (the present calculation). In the same figure, the results
of the G2PICS of Ar computed in [12] in the LOPT approach
are also depicted.

The total G2PICS have been plotted in [12] versus the en-
ergy ε1 = −|ε3p| + ω of the electron in the intermediate state.
In our calculation, the G2PICS are presented as functions of

FIG. 1. The 3p shell total G2PICS in length (L) and velocity
(V ) form for linearly polarized incoming radiation calculated in
LOPT below the one-photon 3p threshold [10] and in the ATI region
(present work). The calculation of [12] and the data obtained in the
average 3p5 relaxed core are also presented for comparison (see text).
The two-photon 3p5(2P3/2) and 3p4(3P2) thresholds and one-photon
3p5(2P3/2) threshold from [20] are depicted as hatched lines.

the exciting-photon energy ω. To compare our data with the
data of [12], we used the experimental one-photon ionization
potential of the 3p-electron E

(i)
3p = 1.158 Ry [corresponding

to the energy level E(2P3/2) = 15.7596 eV [20]] instead of
the Herman-Skillman value |ε3p| = 1.065 Ry used in [12].
This aligns the one-photon ionization thresholds in both cal-
culations (see the hatched line at 15.76 eV in Fig. 1).

The G2PICS obtained in [12] agree fairly well with
our calculation close to the two-photon ionization threshold
(ω = 7.8798 eV). The data of [12] are located between our
G2PICS-L and G2PICS-V and differ from our G2PICS-L by
15%. The deviation is larger in the ATI region, as seen from
Fig. 1. At the one-photon 3p5 threshold, the cross section
from [12] exceeds our G2PICS-L by more than three times,
whereas at high photon energies it decreases more rapidly
than our G2PICS, and after ω = 30 eV it is close to the
present G2PICS-V . We suggest that this disagreement arises
most likely from the different approximations in the CFs
calculation: Herman-Skillman in [12] versus term-dependent
Hartree-Fock 3p5φ�′ (1P ) in the present work.

To support this suggestion, we performed a separate study
by calculating the G2PICS in the LOPT approach using
the average self-consistent 3p5ε′�′ configuration instead of
the term-dependent frozen core 3p5ε′�′(1P ) configuration.
We choose the relaxed 3p5 core because calculation per-
formed within this approach yields the single-photon 3p-
photoionization cross section of Ar close to the Herman-
Skillman result. The two-photon G2PICS-L calculated in the
relaxed 3p5 core presented in Fig. 1 became closer to those
obtained in [12], which supports our assumption.

The value of amplitude (Ib) for the transition via the 3s

shell is less than 0.1% of the amplitude (Ia) and has practically
no influence on the calculated cross section.
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FIG. 2. Partial G2PICS for the transition to the 3p5εf (1D) chan-
nel, computed in length (L) and velocity (V ) form for linearly polar-
ized incoming radiation in LOPT and with accounting for transitions
(I)–(V) [corr (VI) is excluded].

The results depicted in Fig. 1 show that the G2PICS cal-
culated in our work in the LOPT approximation in the length
and velocity forms differ from each other by approximately
two times. This difference indicates the necessity to include
many-electron correlation in the calculation.

B. Correlation processes of third order of perturbation theory

The total two-photon ionization cross section of the 3p

shell of Ar is a sum of three partial cross sections for the

transitions to the εp(1S ), εp(1D), and εf (1D) channels. As
in [12], the εf (1D) channel is found to dominate in the ATI
region: in the LOPT approximation at the one-photon 3p5

threshold, the partial εf (1D) cross sections are about 85% and
89% of the total 3p cross sections in the length and velocity
gauge, respectively. Therefore, the influence of many-electron
correlations will be demonstrated here in detail for the case of
the εf (1D) channel only.

In Fig. 2, the partial G2PICS for the εf (1D) channel
calculated in LOPT are compared with the cross section com-
puted with accounting for the processes (I)–(V) [correlation
(VI) is excluded]. The starting value of the photon energy
corresponds to the one-photon 3p5-ionization threshold ω =
15.7596 eV. In Fig. 2, it is seen that the correlative transitions
(II)–(V) change the G2PICS only quantitatively but without
any qualitative change in their energy dependence.

It turned out that in 3p-ATI, correlation correction (VI) is
much more important than below the one-photon 3p thresh-
old. In ATI, the transition amplitude (VI) is substantially
(one order of magnitude) larger than the other correlation
amplitudes (II)–(V) and changes the computed cross sections
drastically. In the processes (VIa) and (VIb), the first and the
second photon excite a pair of 3p core electrons to virtual
ε′�′ and ε′′�′′ states; then because of the Coulomb interaction,
one electron returns to the core and another changes the
state to the ε� final one. The large value of this correlation
can be explained through the existence of the giant reso-
nance in each of the single-electron 〈εd|dr |3p〉 transition
amplitudes.

The radial part of the transition amplitude (VI) is described
by the following expression:

t (VIa,b)
ω (L, �, �′, �′′) =

∑
ε′,ε′′>F

∑
k

[akR
k (ε�3p, ε′�′ε′′�′′) + bkR

k (ε�3p, ε′′�′′ε′�′)]〈ε′′�′′|dr |3p〉〈ε′�′|dr |3p〉

×
{

1(
2ω − E

(i)
3p2 − ε′ − ε′′)(ω − E

(i)
3p − ε′) + 1(

2ω − E
(i)
3p2 − ε′ − ε′′)(ω − E

(i)
3p − ε′′)

}
, (30)

where E
(i)
3p2 = 3.189 Ry is the experimental 43.3893 eV [20] energy of the 3p4(3P2) level. The ak and bk are numerical

coefficients given in [10], and Rk (ε�3p, ε′�′ε′′�′′) is the Slater integral

Rk (n1�1, n3�3; n2�2, n4�4) =
∫ ∞

0
Pn3�3 (r )Pn4�4 (r )yk (Pn1�1 , Pn2�2 ; r )dr, (31)

yk (Pn1�1 , Pn2�2 ; r ) =
∫ ∞

0

rk
<

rk+1
>

Pn1�1 (r ′)Pn2�2 (r ′)dr ′, (32)

where r< and r> are the smaller and the larger of the radial
coordinates r and r ′.

Since the first factor in the denominator of the two terms
in the curly brackets of Eq. (30) contains both the ε′ and
ε′′ intermediate state energies, the amplitude (30) cannot be
expressed via CFs. Therefore, we performed the calculation
using expression (30) without any additional approximations.
This was possible because in Eq. (30) both the Slater integrals
Rk (ε�3p, ε′′�′′ε′�′) and the dipole integrals 〈ε′�′|dr |3p〉 and
〈ε′′�′′|dr |3p〉 are not divergent due to the presence of a local-
ized 3p function. To perform the summation in Eq. (30) over

the ε′�′ and ε′′�′′, several discrete states and the continuum
states up to 20 Ry were taken into account.

In Fig. 3, partial GSPICS for the transition to the
3p5εf (1D) channel calculated considering the correlations
(II)–(V) only and with all correlations (II)–(VI) are compared.
A drastic difference between the two results is evident: (i) the
G2PICS in length form is enhanced by an order of magnitude,
resulting in a pronounced maximum at ω = 32 eV; (ii) the
correlation (VI) gives rise to doubly excited state resonances
below the two-photon 3p4 double-ionization threshold. The
resonances become apparent at those photon energies when
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FIG. 3. Partial G2PICS for the transition to the 3p5εf (1D)
channel, computed in length (L) and velocity (V ) form for linearly
polarized incoming radiation with accounting for transitions (I)–(V)
[corr (VI) is excluded] and with accounting for all correlations
(I)–(VI) [corr (VI) is included]. The two-photon 3p4(3P2) ionization
threshold is indicated by the hatched line. We show the energetically
lowest calculated 3p44s3d doubly excited state resonance only.

the denominators in Eq. (30) containing 2ω are vanishing. The
first, energetically lowest 3p43d4s resonance in the partial
3p5εf (1D) G2PICS is shown in Fig. 3. In both cross sections,
G2PICS-L and G2PICS-V , this resonance is located at the
same energy and has an identical narrow shape. Therefore,
the profiles are overlapped and are not resolved in Fig. 3.
We restricted our presentation to this resonance because the
precise calculation of the doubly excited state energies is a
cumbersome problem on its own (see, e.g., [21–23]). The
energies of the respective doubly excited state resonances
are expected to be larger than they appear in the relaxed
3p4n′�′n′′�′′ configuration. The two-photon double-ionization
threshold equal to 0.5E

(i)
3p2 is depicted in Fig. 3 by the hatched

line. It indicates the upper limit of the doubly excited state
resonances.

The revealed strong influence of many electron correlations
on G2PICS including the resonance structure is beyond a sim-
ple single-electron picture of two-photon ionization, and its
experimental verification is of great fundamental importance.

C. Many-electron correlations of higher orders
of perturbation theory

G2PICS calculated in length and velocity gauges consid-
ering all the transitions (I)-(VI) still differ substantially, as is
seen from Fig. 3. At ω = 32 eV the G2PICS-L (dashed-dotted
line) is four times larger than G2PICS-V (dash-double-dotted
line). In our work [10], a good agreement between computed
G2PICS-L and G2PICS-V was achieved after inclusions
of higher-order PT correlations. Those effects were (i) the
polarization of the atomic core by the photoelectron, and
(ii) the correlational decrease of the Coulomb interaction in
the description of the correlative processes (II)–(VI). Ad-
ditional calculations showed that in the ATI region, taking
into account these higher-order PT correlations (i)–(ii) is

FIG. 4. Partial G2PICS for the transition to the 3p5εf (1D)
channel, computed in length (L) and velocity (V ) form for linearly
polarized incoming radiation with accounting for all the correlations
(I)–(VI) (corr) and, in addition, the higher-order PT correlations (CI-
HFCP). The two-photon 3p4(3P2) ionization threshold is indicated
by the hatched line. The first calculated 3p44s3d doubly excited state
resonance is shown only.

not sufficient to make an agreement between G2PICS-L
and G2PICS-V close. The reason is the anomalously large
contribution of the correlation (VI) discussed above. In the
present work, we take into account intrashell correlations [24]
in addition to correlations (i)–(ii) when computing the matrix
elements 〈ε′�′|dr |3p〉 and 〈ε′′�′′|dr |3p〉.

The ab initio core polarization potential V CP(r ) [25] was
included in the HF operator h�′ (r ) entering the equations
for the CFs and for the final-state electrons. In addition, the
matrix elements of the Coulomb interaction describing the
correlations (II)–(VI) have been reduced by a factor of 1.25
[10]. Here and below, the calculation with taking into account
the processes (I)–(VI), intrashell correlations, polarization of
the atomic core by the photoelectron, and the correlational
decrease of the Coulomb interaction will be designated as
the configuration interaction Hartree-Fock approach with core
polarization (CIHFCP).

The CIHFCP partial cross sections for the εf (1D) channel
are depicted in Fig. 4 (solid and dashed curves for length and
velocity form, respectively). In the same figure, the cross sec-
tions calculated with taking into account processes (I)–(VI)
but without higher-order PT corrections are also presented
(dash-dotted and dash-double-dotted curves) for comparison.
It is clearly seen that accounting for higher-order PT correc-
tions results in a very close agreement between the G2PICS-L
and G2PICS-V both above the two-photon double-ionization
threshold (to the right of the hatched line in Fig. 4) and in the
region of the 3p44s3d resonance. The following changes in
the calculated G2PICS can be seen from Fig. 4:

(i) The energy of the 3p44s3d resonance shifted by 0.15 eV
to the low-energy side. The reason for the shift is the polariza-
tion of the atomic core by the photoelectron, which decreases
energies of the excited electrons.

(ii) The polarization potential attracts the photoelectron
AOs to smaller distances (see also Fig. 1 in [26]), which

013408-6



MANY-ELECTRON CHARACTER OF TWO-PHOTON ABOVE- … PHYSICAL REVIEW A 99, 013408 (2019)

(a)

(b)

FIG. 5. Partial G2PICS for the transitions to the 3p5εp(1D)
channel (a) and to the 3p5εp(1S ) channel (b), computed in length (L)
and velocity (V ) form for linearly polarized incoming radiation in
LOPT and with taking into account both the correlations (I)–(VI) and
higher-order PT correlations (CIHFCP). The two-photon 3p4(3P2)
ionization threshold is indicated by the hatched line.

causes the G2PICS to increase on the one-photon threshold
(ω = 15.76 eV) by about two times and shifts the maximum
in the σ (ω) dependence above the two-photon 3p4 threshold
by ∼6 eV to the low-energy side.

The computed partial G2PICSs for the transitions to the
3p5εp(1D) and 3p5εp(1S ) channels are depicted in Figs. 5(a)
and 5(b), respectively. Dash-dotted and dash-double-dotted
lines represent results computed in the LOPT, and solid
and dashed lines represent CIHFCP results. Similar to the
3p5εf (1D) channel, one can recognize a strong increase the
G2PICSs, the appearance of the doubly excited state reso-
nances, and a better agreement between length and velocity
results.

In the insets of Figs. 5(a) and 5(b), the doubly excited state
resonance region of the G2PICS-L is presented on an enlarged
scale. For the 3p5εf (1D) channel, the lowest resonance corre-
sponds to the 3p44s3d state (see Figs. 3 and 4), whereas in the
3p5εp(1D) and 3p5εp(1S) channels the 3p44s2 and 3p44s5s

states are also present. As was already mentioned, precise cal-
culation of the resonance energies is a separate cumbersome
problem. In more detail, in the present calculation the energy
of the 4s electron is equal to ε4s = −0.303 Ry. When using
the experimental value of the ionization potential E

(i)
3p2 =

3.189 Ry, the first terms in both denominators in Eq. (30)
are vanishing at ω = 0.5 E

(i)
3p2 + ε4s = 17.57 eV. This energy

FIG. 6. Partial G2PICS for the transition to the 3p5εp(1S ) chan-
nel, computed in length (L) and velocity (V ) form for linearly
polarized incoming radiation without (CIHFCP shake-up excluded)
and with (CIHFCP) taking into account the shake-up correlation
(IV). The two-photon 3p4(3P2) ionization threshold is indicated by
the hatched line.

corresponds to the position of the 3p44s2 resonance in Fig. 5.
The experimental energy of the 3p44s2 resonance is at ω =
13.475 eV [27]. The main reason for this discrepancy is the
approximate (frozen-core) value of ε4s .

In [9–11], a large influence of the intermediate-state shake-
up (IV) correlation on the computed G2PICS was revealed,
particularly on the 3p5εp(1S ) partial cross section. In the
ATI case, this influence is of similar size, as demonstrated
in Fig. 6. Correlation (IV) influences both the real and the
imaginary part of the transition amplitude and pulls together
the 3p G2PICS computed in the length and velocity gauges.

Concluding this section, we demonstrate the effect of a
successive inclusion of different correlations in the calculated
total 3p shell G2PICS in Fig. 7. In Fig. 7(a), we compare
the G2PICS computed in LOPT approximation with the cross
sections obtained with taking into account correlations (II)–
(VI). The drastic change of σ (ω) is obvious: a resonance
structure appears below the two-photon 3p4 threshold, and
a considerable enhancement of the above-threshold cross
section together with a change of the shape of σ (ω) from a
monotonic decrease to a curve with a broad maximum occurs.
Those changes are mainly due to the electron-scattering cor-
relation (VI), i.e., a (3p ��� εd )2 absorption of two exciting
photons at the giant resonance with a subsequent Auger-
type interaction εdεd − 3pεf . This mechanism should also
influence the two-photon ATI of Xe in the range of its giant
4d ��� εf resonance. An experimental proof by determining
the two-photon G2PICS in Ar or Xe close to their respective
3p4 and 4d8 thresholds would be highly desirable.

In Fig. 7(b), the influence of the polarization of the atomic
core by the photoelectron on the computed total cross section
is presented. It results in a shift of the maximum of σ (ω)
to lower photon energies and makes the humped curve more
vivid. At the two-photon 3p4(3P2) threshold the G2PICS
increases by ∼33%.

In Fig. 7(c), the influence of the intrashell correlation on
the dominating process (VI) and the effect of the correlational
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(a)

(b)

(c)

FIG. 7. The computed total 3p shell G2PICS in length (L)
and velocity (V ) form for linearly polarized incoming radiation.
(a) LOPT approach and considering all the correlations (I)–(VI)
(corr); (b) polarization of the atomic core by the photoelectron (cor-
rCP) is included in addition to (a); (c) higher-order PT correlations
(CIHFCP) are included in addition to (b). The two-photon 3p4(3P2)
ionization threshold is indicated by the hatched line.

decrease of the Coulomb interaction on the transitions (II)–
(VI) is shown. These higher-order PT corrections bring the
cross sections computed in length and velocity form in the
considered photon-energy regions together.

IV. ANGULAR DISTRIBUTION OF PHOTOELECTRONS

The expression for the differential G2PICS is as follows:

dσq (ω)

d�
= σq (ω)

4π

[
1 + β

q

2 (ω)P2(cos θ ) + β
q

4 (ω)P4(cos θ )
]
,

(33)

where β
q

λ are angular distribution parameters for photo-
electrons, Pλ are Legendre polynomials, and θ is the angle
between the momentum of the photoelectron and the electric
field vectors for linearly polarized incident radiation (q = 0)
or between the momentum of photoelectron and the direc-
tion of propagation vectors of circularly polarized incoming
radiation (q = ±1). The photoelectron angular distribution

(a)

(b)

(c)

FIG. 8. Angular-distribution parameters β
q

λ for photoelectrons
computed for the two-photon 3p ATI of Ar in length (L) and velocity
(V ) form in the LOPT approximation and with taking into account
all the considered correlations (CIHFCP). The two-photon 3p4(3P2)
ionization threshold is indicated by the hatched line.

parameters β
q

λ are expressed via the transition amplitudes
Tq,ω(L, �) discussed above. The corresponding expressions
and numerical coefficients are reported in [10].

The results of the present calculation are depicted in
Figs. 8(a)–8(c) for the β0

2 , β0
4 , and β±1

4 parameters, respec-
tively. The β0

2 and β0
4 parameters describe the case of linearly

polarized incoming radiation and β±1
4 is related to circularly

polarized photons. The β±1
2 parameter is not presented in

Fig. 8 because it is determined by the connection with β±1
4

via β±1
2 = −1 − β±1

4 [10]. In all cases, taking into account
many-electron correlations improves the agreement between
length and velocity results.

The comparison between β(ω) computed in the LOPT
approximation and with taking into account all the considered
correlations exhibits a considerable change in β(ω) depen-
dencies in the range where the doubly excited resonances are
situated. The influence of many-electron correlations on β(ω)
at ω � 22 eV is less pronounced than in the G2PICS case. To
a large extent, this fact is connected with the prevalence of the
3p5εf channel in the two-photon photoionization of Ar due
to the influence of the 3p ��� εd giant resonance.
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V. CONCLUSIONS

In the present work, the two-photon ionization of the
3p shell of Ar in the above-threshold ionization (ATI) re-
gion was studied theoretically. For this purpose, we ex-
tended a noniterative correlation function (CF) technique
developed earlier [10] to the case when both the CF and
the final-state function are of continuum-type. We achieved
an adequate degree of accuracy of the present calcula-
tions supported by good agreement between the results ob-
tained in length and velocity form of the dipole transition
operator.

The many-electron correlation, which can be treated as the
(3p ��� εd )2 absorption of the two exciting photons at giant
resonance, plays a decisive role in two-photon ionization of Ar
near the 3p4 threshold. Taking into account this correlation
results in (i) an increase of the computed G2PICS by ap-
proximately three times and (ii) the appearance of resonance
profiles in the energy range of the doubly excited 3p4n′�′n′′�′′
states (15.76 < ω < 21.69 eV).

Taking into account all remaining single and double elec-
tron excitations in computing the transition amplitudes re-
sults in better agreement between G2PICS-L and G2PICS-V .
Nevertheless, a three time difference between them in some
partial photoionization channels still remains. This difference
was removed after taking into account higher-order PT correc-
tions. These corrections were included by (i) the polarization
of the atomic core by the photoelectron, realized by incorpo-
ration of an ab initio polarization potential in the Hamilto-

nian; (ii) the effective correlational decrease of the Coulomb
interaction, taken into account by computing respective reduc-
tion coefficients; and (iii) the intrashell correlations, taken into
account via a technique described in [24]. Good agreement
between length and velocity results for angular distribution
parameters was also obtained after inclusion of the many-
electron correlations described above.

Finally, our ab initio computation clarified that the two-
photon above-threshold 3p ionization of Ar near the 3p4

threshold is almost entirely a collective-electron process. An
experiment to benchmark the present prediction of the broad
maximum in the G2PICS dependence above the two-photon
3p4 threshold and narrow resonances before this threshold is
desirable.
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