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Time-dependent multiconfiguration method applied to laser-driven H2
+
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We apply the extended multiconfiguration time-dependent Hartree-Fock method to the simulation of a
hydrogen molecular ion exposed to an intense laser pulse. By comparing the results obtained by this method
with the results obtained by a method in which the time-dependent Schrödinger equation is solved directly on a
three-dimensional grid, we find that the results obtained by these two methods are in good agreement with each
other when the number of time-dependent expansion terms exceeds 8. We further compare the results with those
obtained by the conventional two-state Born-Oppenheimer approximation. In order to interpret the resultant
time-dependent wave functions, we decompose the total wave function into the natural electronic and protonic
orbitals that diagonalize the single-particle density matrices and find that the pair of electronic and protonic
natural orbitals carrying the largest population describes the vibrational excitation, while the pair carrying the
second largest population describes the dissociation into H + H+. We also examine the time-dependent motion
of the protons in H2

+ in terms of the time-dependent adiabatic potential-energy curves, which are defined as
the instantaneous eigenvalues of the Hamiltonian matrix governing the time-dependent motion of the protonic
orbitals. We show that two potential minima are formed on the lowest-energy adiabatic potential-energy curve
and that the nuclear wave packet localized in the inner minimum corresponds to the bound vibrational motion,
while the nuclear wave packet localized in the outer minimum corresponds to the dissociation.
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I. INTRODUCTION

When a molecule containing hydrogen atoms is exposed to
an intense laser pulse, the hydrogen atoms within the molecule
have been known to move very fast, as has been demonstrated
experimentally for methanol [1,2]. It was shown that the
time scale of the hydrogen migration process, CH3OH+ →
CH2OH2

+, can be estimated to be about 25 fs. For acetylene,
it was also shown experimentally that the isomerization reac-
tion, HCCH+ → CCH2

+, proceeds within 50 fs [3–5].
In order to describe theoretically these ultrafast processes

in which responses of electrons to the external laser field
trigger the subsequent motion of protons or hydrogen atoms, a
method that can treat the time-dependent motion of electrons
and protons on an equal footing is required. In the conven-
tional Born-Oppenheimer (BO) treatment of light-molecule
interaction, we represent the total wave function �BO as [6]

�BO(r, R, t ) =
K∑

j=1

χBO
j (R, t )φBO

j (r; R), (1)

where r is a collective coordinate of all the electrons, R is
a collective coordinate of all the nuclei, φBO

j (r; R) is the
wave function of the adiabatic electronic state j , depending
parametrically on R, χBO

j (R, t ) is the nuclear wave function
in the state j , and K is an integer defining the length of the
expansion. Even though Eq. (1) is exact in the limit of a
complete set of the electronic states φBO

j , we have to truncate
the sum over j to at most a few bound electronic states for
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practical reasons. In this case, because no electronic contin-
uum states are included in the expansion in Eq. (1), we could
not describe hydrogen migration occurring simultaneously
with the ionization. Another drawback of the ansatz (1) is that
it requires the set {φBO

j (r; R)} to be calculated and stored for
each value of the collective nuclear coordinate R. For a non-
linear polyatomic molecule containing N atoms, the number
of the vibrational degrees of freedom is 3N − 6, leading to the
(3N − 6)-dimensional potential-energy surface. Even for a
tetratomic molecule (N = 4), it is not practical to calculate the
electronic states and the potential-energy surface at each value
of R because the number of dimensions is too large. For this
reason, time-dependent simulations of polyatomic molecules
in intense laser fields including electronic excitation is limited
to small-sized molecules such as H2

+ [7–21], H3
2+ [22,23],

O3 [24], NO2 [25,26], LiF [27], or HeH2
+ [28]. There are

other approaches such as the direct dynamics variational
multiconfiguration Gaussian method [29–31] that are based
on the BO approximation. These methods can only be
applicable when we evaluate the potential-energy surfaces by
avoiding the calculation of global potential-energy surfaces.

An alternative ansatz for the total wave function is [32]

�(r, RN, t ) =
Kp∑
j=1

Ke∑
k=1

Cjk (t )χj (RN, t )φk (r, t ), (2)

where RN is a collective coordinate for all nuclei, χj (RN, t )
is a nuclear wave function, φk (r, t ) is an electronic wave
function, Cjk (t ) is an expansion coefficient, and the integers
Kp and Ke specify the number of expansion terms. Because
of Löwdin’s expansion theorem [33], we expect that the
exact wave function can be constructed in the limit of large
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Kp and Ke. The method based on the ansatz (2) is called
the multiconfiguration electron-nuclear dynamics (MCEND)
method [32].

A similar wave function ansatz, which stresses the
fermionic nature of the protons, is [34]

�(r, Rp, Rn, t ) =
Kp∑
j=1

Ke∑
k=1

Cjk (Rn, t )χj (Rp, t )φk (r, t ), (3)

where Rp is a collective coordinate for all the protons in
the molecule, χj (Rp, t ) is a protonic wave function, Rn is
a collective coordinate for all other nuclei, and Cjk (Rn, t )
is an Rn-dependent expansion coefficient. This approach,
pioneered in Ref. [34], is referred to as the extended mul-
ticonfiguration time-dependent Hartree-Fock (Ex-MCTDHF)
method, because it extends the MCTDHF method [35–37]
developed for electrons so that the protonic motion is included
on the same level of approximation as the electronic motion.
In Ref. [34], it was stressed that the protonic part of the wave
function needs to be antisymmetric under the exchange of
two protons because of their fermionic nature. In both the
MCEND method and the Ex-MCTDHF method, the nuclear
degrees of freedom are treated on the same footing as the
electronic degrees of freedom.

The basic idea of the wave functions in Eqs. (2) and (3) that
the different degrees of freedom are described using different
sets of time-dependent basis functions was introduced earlier
in the multiconfiguration time-dependent Hartree (MCTDH)
method [38–42]. The MCTDH method, originally developed
for calculating vibrational wave functions, was extended first
to the description of systems composed of electrons and has
been called the MCTDHF method [35–37], and then, to the
description of systems composed of bosonic particles, and has
been referred to as the MCTDHB method [43–45]. Recently,
the MCTDH method was extended so that it can treat mixtures
of two different fermionic species [46,47]. Therefore, this
extended theory [46,47] can also be applied to a system
composed of electrons and protons.

There are two noteworthy features in Eqs. (2) and (3). First,
the electronic wave function φk (r, t ) depends on time t . This
allows us to describe the electronic excitation in a very flexible
manner because φk (r, t ) no longer represents a particular
electronic state. Therefore, the MCEND and Ex-MCTDHF
methods can describe, in principle, any motion of electrons
and nuclei, such as simultaneous ionization and dissociation.
Second, the electronic wave functions φk (r, t ) do not depend
on the nuclear coordinates R. This is in contrast to the Born-
Oppenheimer approximation (1) in which the electronic wave
functions φBO

j (r; R) depend on R by construction.
The Ex-MCTDHF method has been successfully applied

to H2 in Ref. [48] and to CH3OH in Ref. [49] and the
time-independent electroprotonic wave functions were ob-
tained. However, the Ex-MCTDHF method has not yet been
shown to work efficiently for deriving time-dependent wave
functions. The MCEND method was adopted for calculat-
ing the bound electron motion and nondissociative nuclear
motion of a LiH molecule [50]. In Ref. [51], the MCTDHF
method was extended so that the vibrational motion in di-
atomic molecules can be treated using an electronic basis set
depending on the internuclear distance and was tested for

single-photon ionization [52]. Therefore, it is worthwhile to
examine whether the Ex-MCTDHF method can be applied to
time-dependent strong-field processes involving simultaneous
motions of electrons and nuclei. In particular, we aim to
confirm that the wave function described by the ansatz Eq. (3)
can correctly model molecular dissociation, where electrons
and nuclei have a strong spatial correlation. In the BO ansatz
(1), this spatial correlation is automatically included because
of the R dependence of the electronic states, but it is not
obvious if the Ex-MCTDHF method could describe correctly
the behavior of the total wave function at dissociation because
both the nuclear wave functions and the electronic wave
functions are required to be changed largely in the course of
the dissociation.

In this paper, we apply the Ex-MCTDHF method to sim-
ulate the strong-field ionization and dissociation of H2

+.
Because H2

+ contains only one electron, the electronic wave
functions φk (r, t ) in Eq. (3) are single-electron orbitals and
the protonic wave functions χj (Rp, t ) are protonic orbitals
defined as a function of the internuclear distance Rp = R.
Because neither the electronic part nor the protonic part of the
wave function needs to be antisymmetrized, the Ex-MCTDHF
wave function of H2

+ is equivalent to an MCTDH wave
function [38–42,53] as long as the two degrees of freedom
of an electron are treated by the mode combination [54,55].
A model of H2

+ exposed to an intense laser pulse in which
the motion of the electron was restricted to one dimension
was investigated in Ref. [53], but the correlation among the
electron and the two protons during dissociation was not ex-
plicitly discussed. For larger molecules than H2

+ having sev-
eral electrons and protons, we have to use the Ex-MCTDHF
method in which both the protonic and the electronic parts of
the wave function are antisymmetrized. Because H2

+ is the
simplest system that can be described by the ansatz (3), we
examine the performance of the Ex-MCTDHF method on the
description of H2

+ interacting with an intense laser pulse as
the starting point for its further applications to many-electron
polyatomic molecules.

We show that the Ex-MCTDHF method can describe si-
multaneously ionization, dissociation, and vibrational excita-
tion of H2

+ induced by an intense laser pulse. By comparing
the results obtained by the Ex-MCTDHF method with those
obtained by a direct grid method serving as a reference, we
investigate the convergence properties of the Ex-MCTDHF
wave function with the number of configurations K . We also
compare the Ex-MCTDHF results with those obtained using
the standard BO approximation.

In order to analyze the properties of the time-dependent
wave functions varying as a function of both electronic and
nuclear coordinates, we introduce two methods. In the first
method, we decompose the total wave function into the pro-
tonic and electronic orbitals that diagonalize the respective
single-particle density matrices and show that the two pairs
of protonic and electronic natural orbitals having the largest
populations are assigned to the respective different dynam-
ical channels, that is, one pair corresponds to the dissocia-
tion and the other corresponds to the vibrational excitation.
In the second method, we define time-dependent potential-
energy curves for a time-dependent electronuclear wave func-
tion by diagonalizing the time-dependent Hamiltonian matrix
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governing the nuclear motion, in a manner suggested in
Ref. [56]. On the basis of these time-dependent potential-
energy curves, we investigate the laser-induced dissociation
dynamics of H2

+ and show that dissociation may be in-
terpreted as a vibrational wave packet moving on a time-
dependent potential well.

II. THEORY

We consider a model system of H2
+, in which two protons

are placed on the z axis and the position of an electron
measured from the center of mass of the two protons (Jacobian
coordinates [57]) is represented by the cylindrical coordinate
system (z, ρ, ϕ). We neglect the rotational motion of the
system and assume that the laser polarization direction is
parallel to the z axis. We also assume that the electronic wave
function has σ symmetry, so that it has no dependence on
the azimuthal angle ϕ. The total Hamiltonian is given in the
center-of-mass frame by

H (t ) = he(z, ρ, t ) + hp(R) + U (z, ρ, R), (4)

where

he(z, ρ, t ) = − h̄2

2μe

[
1

ρ

∂

∂ρ

(
ρ

∂

∂ρ

)
+ ∂2

∂z2

]
+ eE(t )νz (5)

is the electronic part of the Hamiltonian,

hp(R) = − h̄2

2μp

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ e2

R
(6)

is the protonic part of the Hamiltonian, and

U (z, ρ, R) = −e2√(
z − R

2

)2 + ρ2
+ −e2√(

z + R
2

)2 + ρ2
(7)

is the attractive Coulomb interaction potential. In Eqs. (5) and
(6), μe = 2Mme/(2M + me ) is the reduced electron mass,
ν = 1 + me/(2M + me ), and μp = M/2, where me is the
electron mass and M ≈ 1836.15me is the mass of the proton
[58]. We note that there is no mass polarization term in the
Hamiltonian for a one-electron system, but the effect of the
separation of the relative coordinates and the center-of-mass
coordinate appears in the reduced electron mass μe. Because
H2

+ is a homonuclear molecule, there is no term representing
the dipole coupling with the laser field in the protonic Hamil-
tonian (6).

The laser field E(t ) in Eq. (5) is expressed by the following
form:

E(t ) =
{
E0 sin(ω0t ) sin2

(
πt
T0

)
when 0 � t � T0,

0 otherwise,
(8)

where E0 is the peak value of the electric field, ω0 is the
angular frequency of the laser pulse, T0 = 2πnc/ω0 is the
total pulse width, and nc is the number of the optical cycles.
The relation between T0 and the full width at half maximum
TFWHM of the intensity envelope is TFWHM ≈ 0.36T0.

The time-dependent Schrödinger equation (TDSE) for the
total wave function �(ρ, z, R, t ) reads

ih̄
∂�(ρ, z, R, t )

∂t
= H (t )�(ρ, z, R, t ). (9)

A. Ex-MCTDHF

In the Ex-MCTDHF method, the total wave function is
written as

�(z, ρ, R, t ) =
K∑

j,k=1

Cjk (t )φj (z, ρ, t )χk (R, t ), (10)

where K is an integer defining the length of the expansion.
Hereafter, we refer to the φj ’s as electronic orbitals, and
the χk’s as protonic orbitals. In the case of a single-electron
system, we should use the same number K for the protonic
and electronic orbitals [40]. The wave function (10) has the
same form as Eq. (3), if we identify r with (z, ρ), Rp with the
internuclear distance R, and set Kp and Ke to be Kp = Ke =
K . The time-dependent coefficients Cjk (t ) do not depend on
the nuclear coordinates because there are no nuclei other than
the two protons, and all the electronic orbitals φj (z, ρ, t ) do
not depend on the azimuthal angle ϕ because the total wave
function does not depend on ϕ.

By applying the time-dependent variational principle
[59–61] 〈δ�|H − ih̄ ∂

∂t
|�〉 = 0, we derive the equations of

motion [34,40],

ih̄
∂φj (z, ρ, t )

∂t
= Qe

(
he(z, ρ, t )φj (z, ρ, t )

+
K∑

k,l,m,n=1

De−1
jk C∗

kmClnU
e
mnφl (z, ρ, t )

)
(11)

for the electronic orbitals,

ih̄
∂χj (R, t )

∂t
= Qp

(
hp(R)χj (R, t )

+
K∑

k,l,m,n=1

D
p−1
jk C∗

mkCnlU
p
mnχl (R, t )

)
(12)

for the protonic orbitals, and

ih̄
dCjk

dt
=

K∑
l,m=1

〈φjχk|H (t )|φlχm〉Clm(t ) (13)

for the coefficients Cjk (t ). In Eqs. (11) and (12), we use the
density matrices D

e,p
jk defined as

De
jk =

K∑
l=1

C∗
j lCkl, (14)

D
p
jk =

K∑
l=1

C∗
ljClk, (15)

and the mean-field potentials

U e
jk (z, ρ, t ) =

∫
R2dRχ∗

j (R, t )χk (R, t )U (z, ρ, R), (16)

U
p
jk (R, t ) =

∫
ρdρdzφ∗

j (z, ρ, t )φk (z, ρ, t )U (z, ρ, R). (17)
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The symbols Qe,p appearing in Eqs. (11) and (12) represent
the projection operators whose actions are defined as

Qef (z, ρ) = f (z, ρ) −
K∑

j=1

φj (z, ρ)〈φj |f 〉 (18)

and

Qpg(R) = g(R) −
K∑

j=1

χj (R)〈χj |g〉 (19)

for arbitrary functions f (z, ρ) and g(R). The projection op-
erators Qe,p guarantee that the orbitals are orthonormal at all
times, that is,

〈φj (t )|φk (t )〉 = δjk (20)

and

〈χj (t )|χk (t )〉 = δjk, (21)

provided that the orbitals are orthonormal at t = 0.
The coefficients Cjk (t ) are normalized at all times as

K∑
j,k=1

C∗
jk (t )Cjk (t ) = 1, (22)

which, together with Eqs. (20) and (21), means that∫
R2dRρdρdz|�(z, ρ, R, t )|2 = 1.

B. Two-state BO model

The two-state BO model of H2
+ in which the two lowest

adiabatic BO electronic states are included in the expansion
of the wave function can be called the “standard” model of
laser-driven H2

+. The total wave function is written as

�BO(z, ρ, R, t ) =
2∑

j=1

φBO
j (z, ρ; R)χBO

j (R, t ), (23)

where a superscript BO is attached to discriminate the orbitals
from the Ex-MCTDHF orbitals in Eq. (10).

This two-state BO model has often been employed in
theoretical studies on the strong-field dissociation of H2

+
[9,10,15,62]. In particular, the two-state BO model has been
used for the interpretation [12,20,21] of the experimental
results on the asymmetric proton ejection in the laser-induced
dissociation, H2

+ → H + H+ [13,16,17], where the ratio be-
tween the number of protons ejected along the direction
parallel to the laser polarization direction and the number
of protons ejected along the antiparallel direction varies as a
function of the carrier-envelope phase of the laser pulse.

In Eq. (23), it is assumed that the BO electronic states
satisfy

[he(z, ρ, 0) + U (z, ρ, R)]φBO
j (z, ρ; R) = εj (R)φBO

j (z, ρ; R)
(24)

at each value of R. The operators he and U were defined in
Eqs. (5) and (7), respectively. The states φBO

j (z, ρ; R) (j =
1, 2) included in the expansion (23) are the two states having
the lowest energy εj (R), the 1sσg (j = 1) and 2pσu (j = 2)
states, with which the dissociation of H2

+ is described.

Inserting the ansatz (23) into the time-dependent
Schrödinger equation (9), and neglecting the terms containing
∂φBO

j /∂R, which corresponds to the BO approximation, we
obtain the coupled equations of motion for the two protonic
orbitals,

ih̄
∂χBO

j (R, t )

∂t
= [hp(R) + εj (R)]χBO

j (R, t )

+ eE(t )ν
∑

k=1sσg ,

2pσu

〈
φBO

j

∣∣z∣∣φBO
k

〉
χBO

k (R, t ).

(25)

We note that in the two-state BO approximation, the nonadi-
abatic transition matrix element 〈φBO

1sσg
|∂φBO

2pσu
/∂R〉 vanishes

identically because of the different symmetry of the 1sσg and
2pσu states.

III. RESULTS

In this section, we compare the results of simulations
performed by the following three different methods: the Ex-
MCTDHF method, the direct method by which the time-
dependent Schrödinger equation is numerically solved with-
out making a product expansion, and the two-state BO
method. In all the three methods, a grid-type discretization
for the three degrees of freedom (ρ, z, and R) is adopted. The
direct method is referred to hereafter as the three-dimensional
(3D)-grid method. The details of the numerical methods em-
ployed can be found in Appendix. The grid parameters, that
is, the number of grid points and the mesh widths for the
respective degrees of freedom, are set to be the same in the
calculations performed by these three methods.

A. Ground state

Before investigating the time-dependent dynamics, we
need to compute the vibronic ground state of H2

+. In the
Ex-MCTDHF method as well as in the direct 3D-grid method,
the imaginary time propagation method is used for finding
the ground state. We solve Eqs. (11)–(13) (in the case of
Ex-MCTDHF) and Eq. (9) (in the case of the direct 3D-
grid method) with the substitution t → −it , starting from
an appropriate initial guess. In the two-state BO model, the
ground state is obtained by the diagonalization of the grid
representation of the Hamiltonian.

The ground-state energies ε0 obtained by the three
different methods are shown in Fig. 1. We can see that the
ground-state energy obtained by the Ex-MCTDHF method
converges to the ground-state energy obtained by the direct
3D-grid method at K = 4. We have ε

(Ex-MCTDHF)
0 (K = 4) =

−0.584 97Eh, ε
(Ex-MCTDHF)
0 (K � 6) = −0.584 99Eh, and

ε
(3D-grid)
0 = −0.585 00Eh, where Eh ≈ 27.21 eV denotes one

hartree. The accurate value for the nonrelativistic energy of
the rovibronic ground state of H2

+, obtained by the specially
adapted basis sets [63,64] or by the free complement
method [65], is ε

(exact)
0 = −0.597 14Eh [63–65], which

can be used as a reference value. The difference between
ε

(Ex-MCTDHF)
0 (K = 12) and ε

(exact)
0 is ε

(Ex-MCTDHF)
0 (K =

12) − ε
(exact)
0 ≈ 0.01Eh, and can be ascribed to the fact
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FIG. 1. Ground-state energies ε0 of H2
+ obtained by the three

different methods: Ex-MCTDHF, the direct 3D-grid method, and the
two-state BO method. In the Ex-MCTDHF case, the ground-state
energy is shown as a function of the expansion length parameter K ,
representing the total number of terms included in the Ex-MCTDHF
expansion as defined in Eq. (10).

that the numerical grid employed in the present study is
not sufficiently fine for reproducing the exact ground-state
energy. The grid spacings employed in the present study,
�z = �ρ = �R = 0.1a0 (a0 ≈ 0.53 Å is the Bohr radius),
were chosen so that the computational time needed for the
time-dependent simulations falls in an affordable range. We
have confirmed that ε

(Ex-MCTDHF)
0 (K = 12) = −0.596 83Eh

and ε
(3D-grid)
0 = −0.596 83Eh are obtained by decreasing the

mesh width to �z = �ρ = �R = 0.0125 a0 ≈ 0.0066 Å,
showing that both the Ex-MCTDHF method and the 3D-grid
method reproduce the accurate ground-state energy reported
in Refs. [63–65] if the mesh width is sufficiently small.

We obtain the ground-state energy εBO
0 of the two-state BO

method shown in Fig. 1 by solving the vibrational eigenvalue
equation for the electronic ground 1sσg state,[

hp(R) + ε1sσg
(R)

]
χBO

0 (R) = εBO
0 χBO

0 (R), (26)

which is the time-independent equivalent of Eq. (25). As
can be seen in Fig. 1, the resulting energy εBO

0 is lower
than ε

(3D-grid)
0 by approximately 2 × 10−4Eh. Because the

BO ground-state energy εBO
0 is obtained by solving Eq. (26)

having no nonadiabatic corrections in the Hamiltonian, εBO
0

can be lower than ε
(3D-grid)
0 , even though the same numerical

grid is adopted in both methods. If we use the full 3D-grid
Hamiltonian for evaluating the energy of the BO ground-
state wave function, we obtain 〈φBO

1sσg
χBO

0 |H (0)|φBO
1sσg

χBO
0 〉 =

−0.585 003Eh, which is in good agreement with ε
(3D-grid)
0 =

−0.585 004Eh. This shows that the BO ground-state wave
function is an accurate approximation of the exact wave
function, and that the difference between the BO ground-
state energy and the exact ground-state energy originates
from the omission of the nonadiabatic correction terms
in the BO Hamiltonian. As a further confirmation of the
validity of the BO ground-state wave function, we have
checked that the zero-point energy εBO

0 − ε1sσg
(Req ) ≈ 5.0 ×

10−3Eh at the equilibrium internuclear distance Req ≈ 1.06 Å
agrees with the more accurate BO calculations presented

in Ref. [66], where a value of 5.2 × 10−3Eh was obtained
for the zero-point energy. By decreasing the mesh width to
�R = 0.0125a0 we obtain ε

(BO)
0 = −0.597 05Eh, which is in

agreement with the value ε
(exact)
0 = −0.597 14Eh obtained in

Refs. [63–65].

B. Time-dependent dynamics

In this section, we report on the results of a simulation
of H2

+ exposed to an intense laser pulse. The laser field
is assumed to have the form shown in Eq. (8). In all the
simulations presented below we take the laser parameters
of E0 = 0.119e/a2

0 ≈ 61 GV/m corresponding to the peak
intensity of 5 × 1014 W/cm2, ω0 = 0.114Eh/h̄ ≈ 4.7 fs−1

corresponding to the wavelength of 400 nm, and nc = 10
corresponding to the pulse width of T0 = 13 fs, where the
pulse width is defined as the entire time interval where the
laser pulse in nonvanishing.

In each of the three methods we set the initial wave
function �(z, ρ, R, t = 0) to be the ground-state wave func-
tion. An absorbing boundary is used to absorb the electronic
density reaching the boundary of the computational domain.
Details of the numerical methods employed in the present
study can be found in Appendix.

We discuss first the time-dependent dynamics by show-
ing the protonic density P (R, t ), which is defined as the
total wave function squared integrated over the electronic
coordinates,

P (R, t ) = R2
∫

ρdρdz|�(ρ, z, R, t )|2. (27)

The resultant protonic densities P (R, t ) are shown in Fig. 2.
The results obtained by the Ex-MCTDHF method are shown
for six K values (K = 1, 2, 4, 8, 10, and 12). In all the
cases except for Ex-MCTDHF with K = 1, a bifurcation into
two components occurs after the laser pulse vanishes at t ≈
13 fs; one component whose average internuclear distance
〈R〉, defined as 〈R〉 = ∫

dRP (R, t )R, increases with time,
representing dissociation and the other component whose 〈R〉
oscillates and remains in the bound domain, representing a
vibrational wave packet oscillating in the bound well.

By comparing the Ex-MCTDHF results and the direct
3D-grid result in Fig. 2, we can see that the protonic density
obtained by the Ex-MCTDHF method becomes closer to the
protonic density obtained by the direct 3D-grid method as
K increases, as expected. Therefore, the result obtained by
the direct 3D-grid method can be regarded as a reference
to which the results obtained by the Ex-MCTDHF method
could converge when K becomes larger. A K-convergence
rate similar to the one shown here was reported before in
Refs. [53,67,68], where a method equivalent to Ex-MCTDHF
was used to simulate laser-driven H2

+. The major difference
between the simulations presented in Refs. [53,67,68] and
our simulation is in the dimensionality of the motion of an
electron. In Refs. [53,67,68], an electron was restricted to
move along the z axis in one dimension, while, in the present
study, an electron can move in the two-dimensional cylindrical
space, that is, the three-dimensional space whose dimension
is reduced by one by the cylindrical symmetry. Similarly
to Refs. [53,67,68], we find that K = 8 is required for the
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FIG. 2. Time-dependent protonic density P (R, t ) [see Eq. (27) for the definition] for the laser field with the peak intensity of
5 × 1014 W/cm2 and the wavelength of 400 nm. The total pulse width is T0 = 13 fs, which means that the electric field vanishes when
t > 13 fs. Panels (a)–(f) display the results of the simulation using the Ex-MCTDHF method with different values of the expansion length
parameter K . Panel (g) shows the result of the simulation using the direct 3D-grid method, and (h) shows the result of the two-state BO model
defined by Eq. (25). The temporal variation of the laser field is shown in (a).

Ex-MCTDHF results in order to have a sufficiently good
agreement with the direct 3D-grid results. We also remark that
K = 2 is large enough to reproduce the bifurcation into the
bound component and the dissociating component.

In Fig. 2(h), we show P (R, t ) obtained by the two-state BO
method. Even though the ionization and excitation to the high-
lying excited states are excluded in this model, the protonic
density P (R, t ) still shows a reasonably good agreement with
the result obtained by the direct 3D-grid method shown in
Fig. 2(g).

In order to discuss the differences in the protonic densities
shown in Fig. 2 more precisely, we show in Fig. 3 the protonic
densities at t = 36 fs, the longest propagation time in the
simulation. As shown in Fig. 3, the result obtained by the Ex-
MCTDHF(K = 12) exhibits a certain deviation from the re-
sult obtained by the direct 3D-grid method. For example, the
peak at around 7.7 Å is narrower in the Ex-MCTDHF(K =
12) result than in the direct 3D-grid result, and there is a small
peak at R ≈ 6.7 Å appearing in the Ex-MCTDHF (K = 12)
distribution, which is absent in the 3D-grid distribution.

As can be seen in Fig. 3, a part of the protonic density
representing the dissociation obtained by the Ex-MCTDHF
(K = 4) method is incorrectly centered at around R ≈ 5.7 Å
which is shorter by about 2 Å than R ≈ 7.7 Å. On the
other hand, in the two-state BO method the protonic density
P (R, 36 fs) exhibits a peak at R ≈ 7.7 Å. Therefore, it can
be said that the two-state BO method gives closer results to the
direct 3D-grid result than the Ex-MCTDHF(K = 4) method.
At K = 12, the Ex-MCTDHF result becomes closer to the
direct 3D-grid result than the two-state BO result. Indeed, the
peak at R ≈ 7.7 Å obtained by the two-state BO method is
too broad compared with the direct 3D-grid result, and the
amplitude of the peak in the vibrational wave packet at around
1 Å is too large. We conclude that the protonic density P (R, t )
produced after the laser-molecule interaction is represented

better by the Ex-MCTDHF method than by the two-state BO
method as long as K � 10.

The Ex-MCTDHF method has an advantage over the two-
state BO method because the Ex-MCTDHF method can han-
dle both electronic excitation to the higher-lying states and
ionization, which are excluded in the two-state BO method.
The total probability of ionization pion(t ) can be estimated by
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FIG. 3. Protonic densities P (R, tf ) at tf = 36 fs. The results
obtained by the Ex-MCTDHF method using the three different values
of K are compared with the result obtained by the 3D-grid method
and that obtained by the two-state BO method. The laser parameters
adopted here are the same as in Fig. 2. For better visibility, the

Ex-MCTDHF curves were vertically shifted by +4 Å
−1

(K = 2),

+3 Å
−1

(K = 4), and +2 Å
−1

(K = 12). The 3D-grid curve was

shifted vertically by +1 Å
−1

.
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FIG. 4. Induced dipole moment d (t ) defined by Eq. (29). The
laser parameters are the same as those adopted in Fig. 2: the peak
intensity is 5 × 1014 W/cm2, the wavelength is 400 nm, and the total
pulse width is T0 = 13 fs. In the time range of 0 � t � 15 fs, the
Ex-MCTDHF(K = 12) curve and the 3D-grid curve overlap almost
completely.

the decrease in the total norm of the wave function on the
computational grid,

pion(t ) = 1 −
∫ ρmax

0
ρdρ

∫ zmax

−zmax

dz

∫ Rmax

0
R2dR

× |�(ρ, z, R, t )|2, (28)

as long as the dissociative components of the wave func-
tion do not reach the grid boundary at time t . As shown
in Figs. 2 and 3, at t = 36 fs, the dissociating component
stays in the molecular domain and does not reach the grid
boundary located at Rmax = 13 Å. The ionization probabili-
ties at t = 36 fs evaluated by Eq. (28) are p

(Ex-MCTDHF)
ion (t =

36 fs) ≈ 0.07 for K = 1, p
(Ex-MCTDHF)
ion (36 fs) ≈ 0.16 for

K = 2, p
(Ex-MCTDHF)
ion (36 fs) ≈ 0.17 for K = 4, 8, 10, 12, and

p
(3D-grid)
ion (t = 36 fs) ≈ 0.17, showing that the ionization prob-

ability obtained by the Ex-MCTDHF method with K � 2
agrees well with that obtained by the 3D-grid method.

Another physical property for which the Ex-MCTDHF
method gives better results than the two-state BO method is
the time-dependent induced dipole moment d(t ), defined as

d(t ) = −eν〈z〉 = −eν

∫
ρdρdzR2dR|�(ρ, z, R, t )|2z.

(29)

The temporal variations of the induced dipole d(t ) obtained
by the three different methods are shown in Fig. 4, in
which we can see that the Ex-MCTDHF(K = 12) curve is in
close agreement with the 3D-grid curve even though the Ex-
MCTDHF(K = 2) and Ex-MCTDHF(K = 4) curves exhibit
oscillations in the longer time domain than 13 fs (t > 13 fs)
in the absence of the laser pulse. The amplitude of the os-
cillations becomes smaller as K increases and the oscillation
disappears when K = 12.

The amplitude of the induced dipole moment obtained
by the two-state BO model is in good agreement with that
obtained by the 3D-grid method in the early part of the laser
pulse (t � 5 fs). This is because the two lowest electronic
states (1sσg and 2pσu) are populated almost exclusively.
During the later part of the pulse, higher-lying states become

populated, and consequently, the two-state BO method, in
which higher-lying states are omitted, leads to a significant
underestimation of the amplitude of d(t ).

C. Interpretation of the time-dependent wave function

In this section, in order to examine the temporal variations
of time-dependent wave functions, we adopt two methods,
that is, a method via the natural orbital decomposition in
Sec. III C 1 and a method via the time-dependent potential-
energy curves in Sec. III C 2. Both of these methods are
general in the sense that they can be applied straightforwardly
to larger many-electron molecules. In principle, these two
methods can also be applied to interpret the response of any
kind of wave function to an intense laser field.

1. Natural orbital decomposition

The results obtained by the time-dependent calculations
above can be interpreted in terms of natural orbitals [33,40].
The electronic natural orbitals φ

(nat)
j are defined as the orbitals

that diagonalize the density matrix De
jk ,

φ
(nat)
j (z, ρ, t ) =

K∑
k=1

φk (z, ρ, t )ukj , (30)

where ujk are the complex conjugated eigenvectors of De
jk ,

K∑
k=1

De
jku

∗
kl = ηlu

∗
j l . (31)

Similarly, for the protonic natural orbitals χ
(nat)
k , we have

χ
(nat)
k (R, t ) =

K∑
l=1

χl (R, t )vlk, (32)

with

K∑
k=1

D
p
jkv

∗
kl = ηlv

∗
j l . (33)

The eigenvalues ηl shared by De
jk and D

p
jk are referred to

as the natural populations [40,69] because they take real and
positive values that satisfy

K∑
l=1

ηl = 1. (34)

Hereafter, we assume that the natural orbitals are sorted so that
their populations fulfill the inequalities η1 � η2 � · · · � ηK .

If the natural orbitals are used in the expansion of the wave
function, the coefficient matrix becomes diagonal [40,69] so
that

C
(nat)
jk = δjkc

(nat)
j =

∑
l,m=1

u∗
ljClmv∗

mk. (35)

The relation between the natural populations and c
(nat)
j reads∣∣c(nat)

j

∣∣2 = ηj . (36)
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Therefore, the total wave function can be written using the
natural orbitals as

�(z, ρ, R, t ) =
K∑

j,k=1

Cjk (t )φj (z, ρ, t )χk (R, t )

=
K∑

j=1

c
(nat)
j (t )φ(nat)

j (z, ρ, t )χ (nat)
j (R, t ), (37)

where the expansion coefficients c
(nat)
j (t ) can be chosen to be

real, positive numbers by a suitable adjustment of the phase of
the orbitals.

It was recently suggested that the time-dependent natural
orbitals for a model H2

+ molecule in which its electron is
restricted to move along the one-dimensional molecular axis
can be obtained numerically as a solution of the equations of
motion for the natural orbitals of a two-particle system [67].
Contrarily, in our approach, we do not calculate the natural or-
bitals directly as a solution of an equation of motion. We find
it more straightforward to obtain the time-dependent wave
function in the form described in the first row of Eq. (37),
and then, the natural orbitals by the diagonalization of the
one-particle density matrices as described in Eqs. (30)–(33).

In Fig. 5 we show the natural protonic orbitals
|χ (nat)

j (R, t )|2 at three instants in time, t = 0 fs (before the
laser-molecule interaction), t = 14 fs (after the laser pulse
vanishes), and t = 36 fs (at the end of the simulation). Also
shown in Fig. 5 is the total protonic density P (R, t ) defined
in Eq. (27). The natural orbitals and the total density are
related to each other as R2 ∑K

j=1 ηj |χ (nat)
j (R, t )|2 = P (R, t ).

In Fig. 6, we show the electronic natural orbital densities inte-
grated over ρ,

∫
ρdρ|φ(nat)

j (z, ρ, t )|2, and the total electronic z

density Pe(z, t ), defined as the total wave function integrated
over R and ρ,

Pe(z, t ) =
∫

ρdρR2dR|�(ρ, z, R, t )|2. (38)

In both Figs. 5 and 6, the three natural orbitals having the
largest natural populations ηj are shown.

We see in Figs. 5(a) and 6(a) that the total wave func-
tion is dominated initially by one pair of natural orbitals,
φ

(nat)
1 (z, ρ, t ) and χ

(nat)
1 (R, t ), reflecting η1(t = 0) = 0.99.

The third electronic natural orbital φ
(nat)
3 (z, ρ, t = 0) has

sharp peaks around the positions of the protons. The mag-
nitude of these peaks decreases rapidly in the ρ direction,
and therefore appear as the narrow peaks in the ρ-integrated
density at around z = ±0.5 Å as shown in Fig. 6(a).

As a result of the laser-molecule interaction, the natural
orbitals almost unpopulated initially become populated. As
shown in Figs. 5(b) and 6(b), just after the laser pulse van-
ishes (t = 14 fs), we obtain η1 = 0.69 and η2 = 0.11, and,
as shown in Figs. 5(c) and 6(c), after the further field-free
propagation (t = 36 fs), we obtain η1 = 0.66 and η2 = 0.10.

In Fig. 5(c), we see that the two natural orbitals χ
(nat)
1

and χ
(nat)
2 having the highest populations are distributed in

the completely separated regions of the internuclear distance
R. The natural orbital χ

(nat)
1 describes the bound vibrational

motion of H2
+, while χ

(nat)
2 describes the dissociating part
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FIG. 5. Protonic natural orbital densities R2|χ (nat)
j (R, t )|2 for the

three natural orbitals with the highest populations ηj at (a) t = 0 fs,
(b) t = 14 fs, and (c) t = 36 fs. The natural orbitals are obtained from
the Ex-MCTDHF wave function with K = 12. The laser parame-
ters adopted here are the same as in Fig. 2; I = 5 × 1014 W/cm2,
λ = 400 nm, and nc = 10. In all panels, the dotted line shows the
total protonic density P (R, t ) multiplied by a factor of 2 for better
visibility.

of the wave packet. The third most occupied natural orbital
χ

(nat)
3 mainly describes the vibrational motion, but it also

contributes to the dissociating part of the wave packet to a
small extent. In the bound domain (R < 3 Å), we obtain

the squared norm as
∫ 3 Å

0 dRR2|χ (nat)
3 (R, t = 36 fs)|2 ≈ 0.89,

and in the domain corresponding to dissociation (R > 3 Å),
we obtain

∫ ∞
3 Å dRR2|χ (nat)

3 (R, 36 fs)|2 ≈ 0.11. An inspection
of the corresponding electronic natural orbitals shown in
Fig. 6 confirms the picture obtained from the analysis of the
protonic natural orbitals, that is, as shown in Fig. 6(c), the
electronic natural orbital φ

(nat)
1 represents the localized wave

packet at around z = 0 and the natural orbital φ
(nat)
2 represents

the outgoing wave packet located at z ≈ ±4 Å at t = 36 fs.
In a wave function calculated by the Ex-MCTDHF method,

both the electronic orbitals and the protonic orbitals change
dynamically in time. The attractive Coulomb interaction
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FIG. 6. Electronic natural orbital densities
∫

ρdρ|φ (nat)
j (z, ρ, t )|2

integrated over ρ for the three orbitals with the highest populations ηj

at (a) t = 0 fs, (b) t = 14 fs, and (c) t = 36 fs obtained from the Ex-
MCTDHF wave function with K = 12. The laser parameters adopted
are the same as in Fig. 2; I = 5 × 1014 W/cm2, λ = 400 nm, and
nc = 10. The dotted line shows the total electronic z density Pe(z, t )
multiplied by a factor of 2.

ensures that the term c
(nat)
2 (t )φ(nat)

2 (z, ρ, t )χ (nat)
2 (R, t ) in the

total wave function represents a dissociating H2
+ molecule

in the form of a superposition of the dissociation products
H+ + H and H + H+. The electronic orbital φ

(nat)
2 (z, ρ, t ) and

the protonic orbital χ
(nat)
2 (R, t ) adjust their shapes so that a

dissociating wave packet is formed.
Even though the total wave function used in the calculation

shown in Figs. 5 and 6 contains K = 12 configurations, we
find that two of the most populated natural orbital pairs,
(χ (nat)

j , φ
(nat)
j ), with j = 1, 2 are sufficient for describing the

two main channels of the bound vibrational motion and the
dissociation. This suggests that a minimal requirement for
an Ex-MCTDHF wave function is K = “the number of final
channels,” and that one pair of natural orbitals, (χ (nat)

j , φ
(nat)
j ),

describes the j th final channel. This is consistent with the
results shown in Fig. 2(b), showing that the Ex-MCTDHF
result with K = 2 reproduces the bifurcation of the vibra-
tional wave function into one dissociating component and
one vibrationally excited component, even though it exhibits
a certain deviation from the direct 3D-grid result. It can be
said that the natural orbitals with K � 3 having only small

populations need to be included for reproducing quantitatively
the wave function. As shown in Figs. 5(c) and 6(c) for t = 36
fs, we have ηj = 0.66, 0.10, 0.035, 0.018, 0.0056, 0.0024,
0.0013, and 0.0010 for 1 � j � 8 and ηj < 10−3 for 9 � j �
12, showing that η1 and η2 are much larger than ηj for j > 2.

2. Adiabatic potential-energy curves

In this section, we introduce the concept of time-dependent
potential-energy curves and show how they can be constructed
based on the Ex-MCTDHF wave function. Previously, several
different approaches were proposed for constructing time-
dependent potential-energy curves. Probably the best-known
concept is the adiabatic and “field-following” potential-energy
curve [8,70,71]. This time-dependent potential-energy curve
is defined by the diagonalization of the electronic Hamiltonian
having the laser-molecule interaction term. This means that
at each point in time, Eq. (24) whose he(z, ρ, 0) is replaced
by he(z, ρ, t ) is solved, yielding a set of adiabatic potential-
energy curves εj (R, t ), which vary depending on both R

and t .
Recently, the idea of the time-dependent BO approxima-

tion [72–74] and the idea of an exact factorization of an
electron-nuclear wave function [75–83] were proposed and
their applicabilities were demonstrated. In these cases, the
electronic part of the factorized wave function can be used
to define a single time-dependent potential-energy surface.

The time-dependent potential-energy curves introduced in
this section are regarded as a reference with which we can
understand the time-dependent behavior of the wave function.
In order to construct the time-dependent potential-energy
curves, we first need to have a total time-dependent wave
function of the system. We start our discussion by deriving
an alternative form of the Ex-MCTDHF equation of motion
for the protonic orbitals. We first define an auxiliary protonic
orbital as

ξj (R, t ) =
K∑

k=1

Cjk (t )χk (R, t ), (39)

so that the total wave function (10) reads

�(z, ρ, R, t ) =
K∑

j=1

φj (z, ρ, t )ξj (R, t ). (40)

As discussed later in Eqs. (52)–(54), the same results are
obtained for the effective potentials when ξj (R, t ) is defined
in terms of the natural orbitals χ

(nat)
j (R, t ) as

ξ
(nat)
j (R, t ) = c

(nat)
j (t )χ (nat)

j (R, t ), (41)

so that the total wave function is written like

�(z, ρ, R, t ) =
K∑

j=1

φ
(nat)
j (z, ρ, t )ξ (nat)

j (R, t ). (42)

Unlike the protonic orbital χj (R, t ) in the Ex-MCTDHF ex-
pansion (10), the ξj ’s do not form an orthonormal set, that is,
〈ξj (t )|ξk (t )〉 = De

jk �= δjk . By substituting the wave function
(40) into the TDSE (9), we derive the equation of motion
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for ξj as

ih̄
∂ξj (R, t )

∂t
=

K∑
k=1

〈φj |H (t )|φk〉ξk (R, t )

= hp(R)ξj (R, t ) +
K∑

k=1

Hjk (R, t )ξk (R, t ),

(43)

where Hjk (R, t ) is defined as

Hjk (R, t ) = 〈φj |he(t )|φk〉 + U
p
jk (R, t ). (44)

One can show that Eq. (43) is equivalent to the two equations,
Eq. (12) for χj (R, t ) and Eq. (13) for Cjk (t ).

As first suggested in Refs. [56,84], the form (40) can be
employed for the construction of time-dependent adiabatic
potential-energy curves, which can be used for the interpre-
tation of the nuclear motion. We first write

ξk (R, t ) =
K∑

j=1

Akj (R, t )ζj (R, t ), (45)

where Akj (R, t ) is an R- and t-dependent unitary matrix. In
Eq. (45), ζj (R, t ) is a transformed protonic orbital that can be
interpreted as the protonic wave function propagating on the
j th adiabatic potential-energy curve Vj (R, t ) derived below
in Eq. (51). After substituting (45) into Eq. (43), we obtain
the equation for ζj (R, t ),

ih̄
∂ζj (R, t )

∂t
= hp(R)ζj (R, t ) +

K∑
k=1

H̃jk (R, t )ζk (R, t )

+
K∑

k=1

[Yjk (R, t ) − iBjk (R, t )]ζk (R, t ),

(46)

where

H̃jk (R, t ) =
K∑

l,m=1

A∗
lj (R, t )Hlm(R, t )Amk (R, t ), (47)

Yjk (R, t ) = −h̄2

2μp

K∑
l=1

[
A∗

lj (R, t )
1

R2

∂

∂R

(
R2 ∂Alk (R, t )

∂R

)

+ 2A∗
lj (R, t )

∂Alk (R, t )

∂R

∂

∂R

]
, (48)

and

Bjk (R, t ) = h̄

K∑
l=1

A∗
lj (R, t )

∂Alk (R, t )

∂t
. (49)

If we neglect Yjk (R, t ) and Bjk (R, t ), which corresponds
to an adiabatic approximation with respect to R and t as
explained below, and if we choose Ajk (R, t ) so that H̃jk (R, t )
becomes a diagonal matrix at each value of R and t , the cou-
pled Schrödinger equation (46) is decoupled into K equations

for the respective protonic orbitals ζj (R, t ),

ih̄
∂ζj (R, t )

∂t
=

[
− h̄2

2μp

1

R2

∂

∂R

(
R2 ∂

∂R

)
+ Vj (R, t )

]
ζj (R, t ).

(50)

The diagonal terms

Vj (R, t ) = H̃jj (R, t ) + e2

R
(51)

are interpreted as time-dependent potential-energy curves on
which the protonic orbitals ζj (R, t ) are being propagated
[56,84]. Because the potential-energy curves Vj (R, t ) are
defined in terms of the electronic orbitals, Vj (R, t ) can be
used for the interpretation of the time-dependent behavior of
the wave function only when the electron and the protons
are located approximately in the same spatial region. If the
electronic orbitals are spatially located at around z ∼ z0, we
do not expect that Vj (R, t ) provides useful information at the
internuclear distances R 
 z0 even if Vj (R, t ) is mathemati-
cally well defined for all R.

The definition (51) of the adiabatic potential-energy curves
Vj (R, t ) is invariant under unitary transformations of the
electronic orbitals, as shown below. Therefore, we can use any
orbital set obtained by a unitary transformation of the original
orbital set, such as the natural orbitals φ

(nat)
j (z, ρ, t ) defined in

(30), to evaluate the adiabatic potential-energy curves. If we
assume that a set of orbitals φ′

j (z, ρ, t ) is transformed from the
original set of orbitals φj (z, ρ, t ) by a unitary transformation
ujk as

φ′
j (z, ρ, t ) =

K∑
k=1

ukjφj (z, ρ, t ), (52)

the Hjk (R, t ) matrix expressed in terms of the transformed
orbitals becomes

H ′
jk (R, t ) =

∑
lm

u∗
ljHlm(R, t )umk. (53)

If Hjk (R, t ) is diagonalized by Ajk (R, t ), H ′
jk (R, t ) is diago-

nalized by A′
jk (R, t ) = ∑

l u
∗
ljAlk (R, t ), because∑

lm

A′∗
lj H

′
lm(R, t )A′

mk =
∑
lm

A∗
ljHlm(R, t )Amk

= H̃jj (R, t ), (54)

and consequently H ′
jk (R, t ) has the same eigenvalues as

Hjk (R, t ).
The approximation of dropping both Yjk (R, t ) and

Bjk (R, t ) can be regarded as an adiabatic approximation
with respect to the two variables, the internuclear distance
R and the time t . This approximation becomes appropriate
only when Ajk (R, t ) varies slowly as a function of both R

and t . In the limit of the slow change of Ajk (R, t ) with
variations of R and t , the adiabatic approximation becomes
exact, and no transitions would occur between the different
potential-energy curves. This means in particular that the
norm

∫
dRR2|ζj (R, t )|2 of each nuclear wave packet is con-

stant in time.
The nonadiabatic transitions are governed by the matrix

operators Yjk (R, t ) and Bjk (R, t ). We also note that the
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adiabatic potential-energy curves Vj (R, t ) can be calculated
independently of the nonadiabatic coupling matrices Yjk (R, t )
and Bjk (R, t ). Furthermore, as shown in Eqs. (47)–(49),
differentiation of the unitary transformation matrix Ajk (R, t )
with respect to R is only needed for the evaluation of Yjk (R, t )
and Bjk (R, t ), not for the evaluation of Vj (R, t ).

By inserting Eq. (45) into Eq. (40), we obtain

�(z, ρ, R, t ) =
K∑

j,k=1

φj (z, ρ, t )Ajk (R, t )ζk (R, t )

=
K∑

k=1

ϕk (z, ρ, R, t )ζk (R, t ). (55)

In the second line of Eq. (55), we define the time- and R-
dependent adiabatic electronic states

ϕk (z, ρ, R, t ) =
K∑

j=1

φj (z, ρ, t )Ajk (R, t ). (56)

In terms of the adiabatic electronic states ϕk (z, ρ, R, t ), we
can write the adiabatic potential curve Vj (R, t ) as

Vj (R, t ) =
∫

ρdρdzϕ∗
j (z, ρ, R, t )[he(t ) + U (z, ρ, R)]

× ϕj (z, ρ, R, t ) + e2

R
. (57)

The expression (55) for the total wave function looks very
similar to that in Eq. (23) for the BO approximation, but
the adiabatic electronic states ϕk (ρ, z, R, t ) depend on t in
Eq. (55) while the corresponding adiabatic electronic states
φBO

j (z, ρ; R) in Eq. (23) do not depend on t .
In Fig. 7, we show the instantaneous adiabatic potential-

energy curves Vj (R, t ) defined in Eq. (51) at the three differ-
ent instants in time, t = 0, t = 14 fs, and t = 36 fs, which
are the same as those adopted in Figs. 5 and 6. At t = 0,
as shown in Fig. 7(a), we also draw the two lowest en-
ergy BO potential-energy curves V BO

j (R) (j = 1sσg , 2pσu),
defined as

V BO
j (R) = e2

R
+ εj (R), (58)

where εj (R) is a solution of Eq. (24). We see in Fig. 7(a) that
the adiabatic potential-energy curve with the lowest energy
perfectly overlaps with the 1sσg BO potential-energy curve in
the region R < 2 Å. The second lowest adiabatic potential-
energy curve V2(R, t = 0), shown with a red solid line in
Fig. 7(a), is much higher in energy than the V BO

2pσu
(R) curve.

In general, the higher-lying adiabatic potential-energy curves
at t = 0 are expected to exhibit a certain deviation from the
excited-state BO potential-energy curves, because the orbitals
from which the adiabatic potential-energy curves are extracted
are optimized for the electronic ground state.

After the interaction with the laser pulse at t = 14 fs,
we can see in Fig. 7(b) that the two lowest-energy adiabatic
potential-energy curves, V1(R, 14 fs) and V2(R, 14 fs), be-
come close in energy in the region around R = 3 Å and that
the lower curve V1(R, 14 fs) develops a broad well having
a minimum at R ≈ 1 Å and a flat region at R ≈ 3.5 Å. At

0 2 4 6 8 10
R [Å]

-0.5

0

0.5

1

E
ne

rg
y 

[h
ar

tr
ee

] (a)
t = 0 fs

 adiabatic PEC 1
 adiabatic PEC 2

 BO 1s g
 BO 2p u

0 2 4 6 8 10
R [Å]

-0.5

0

0.5

1

E
ne

rg
y 

[h
ar

tr
ee

] (b)
t = 14 fs

adiabatic PEC 1

adiabatic PEC 2

0 2 4 6 8 10
R [Å]

-0.5

0

0.5

1
E

ne
rg

y 
[h

ar
tr

ee
] (c)

t = 36 fs
adiabatic PEC 1

adiabatic PEC 2

FIG. 7. Adiabatic potential-energy curves (PECs) Vj (R, t ) ob-
tained from the Ex-MCTDHF wave function with K = 12. The laser
parameters are I = 5 × 1014 W/cm2, λ = 400 nm, and nc = 10,
which are the same as those adopted in Figs. 2, 5, and 6. In (a),
the 1sσg and 2pσu BO potential-energy curves are shown using thin
lines. The BO 1sσg curve and the adiabatic PEC 1 perfectly overlap
in the region R < 2 Å.

t = 36 fs, as shown in Fig. 7(c), the potential wells stretches
further towards the longer internuclear distance region until at
R ≈ 9 Å.

In Fig. 8, we show the normalized adiabatic protonic
orbital densities P

(adb)
j (R, t ), defined as

P
(adb)
j (R, t ) = R2|ζj (R, t )|2

Nj (t )
, (59)

where

Nj (t ) =
∫

dRR2|ζj (R, t )|2 (60)

is the squared norm of the protonic orbital ζj . We show
in Fig. 8 the normalized protonic orbitals at the same time
instants as the corresponding potential-energy curves shown
in Fig. 7. In Fig. 8, the numerical values N1 and N2 for
the two adiabatic orbitals are also shown. In Fig. 8(a), in
which the adiabatic orbital densities are shown at t = 0,
we see that the ζ1(R, t = 0) is centered at the equilibrium
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FIG. 8. Normalized density P
(adb)
j (R, t ) (j = 1, 2) defined in

Eq. (59) of the adiabatic protonic orbitals. The two adiabatic protonic
orbitals having the largest squared norms Nj are shown. The dotted
line indicates the total protonic density P (R, t ) defined in Eq. (27),
multiplied by a factor 2. In (a), the wave function of the vibrational
ground state χBO

0 (R) defined in Eq. (26) is also shown, which is
obtained by the BO method. The adiabatic protonic orbitals are ob-
tained from an Ex-MCTDHF wave function with K = 12. The laser
parameters are the same as those in Fig. 7; I = 5 × 1014 W/cm2,
λ = 400 nm, and the number of optical cycles nc = 10.

internuclear distance Re ≈ 1.1 Å, and that R2|ζj (R, 0)|2
overlaps completely with the BO ground state density
R2|χBO

0 (R)|2, where χBO
0 (R) stands for the BO vibrational

ground-state wave function defined in Eq. (26). The density
of the adiabatic protonic orbital ζ2(R, 0) for the first excited-
state potential-energy curve has a very small squared norm of
2 × 10−8.

As a result of the laser-molecule interaction, nonadiabatic
transitions to the excited potential-energy curves are induced.
As shown in Fig. 8(b), at t = 14 fs, the bifurcation of the
protonic wave packet proceeds and the squared norm of the
excited protonic orbital ζ2(R, t = 14 fs) increases to 0.099.
The squared norm of ζ2(R, t ) then decreases to 0.005 at
t = 36 fs, as can be seen in Fig. 8(c). At t = 36 fs, the largest
contribution to the total wave function comes from the orbital
ζ1(R, 36 fs), which contains one component localized in the
region 0.5 Å < R < 2.5 Å representing the bound vibrational

motion and the other component centered at R ≈ 7.7 Å. These
two components are consistent with the two potential wells
located at R ≈ 1 Å and at R ≈ 8 Å in the adiabatic potential-
energy curve at t = 36 fs shown in Fig. 7(c).

Based on the adiabatic time-dependent potential curves
shown in Fig. 7 and the adiabatic protonic orbitals shown in
Fig. 8, we can interpret the motion of the nuclear wave packet
as follows:

(i) Before the laser-molecule interaction, the nuclear wave
function can be represented by a single protonic orbital local-
ized in the bound well of the lowest adiabatic potential-energy
curve.

(ii) The laser pulse induces nonadiabatic coupling between
the lowest potential-energy curve and the excited potential-
energy curve, so that, after the laser-molecule interaction, the
protonic wave function is split into one protonic orbital on the
lowest adiabatic potential-energy curve and the other protonic
orbital on the second lowest adiabatic potential-energy curve.

(iii) The orbital evolving on the lowest adiabatic curve,
shown with a solid green line in Figs. 8(b) and 8(c), splits into
two components; one corresponding to the bound vibrational
motion and the other corresponding to the dissociation.

(iv) These two components follow the position of the two
potential wells appearing in the lowest adiabatic potential-
energy curve in Figs. 7(b) and 7(c). This idea of disso-
ciation as a bound vibrational wave packet evolving on
a time-dependent potential is different from the idea of a
time-dependent wave packet moving on a time-independent
potential-energy curve.

(v) The orbital evolving on the excited adiabatic curve,
shown with a red solid line in Figs. 8(b) and 8(c), is gradually
transferred to the lowest adiabatic curve by the nonadiabatic
coupling described by Yjk (R, t ) in Eq. (48) and Bjk (R, t ) in
Eq. (49).

(vi) Finally, almost all the population on the excited adia-
batic curve vanishes, and at t = 36 fs, we have a population
of only N2(36 fs) ≈ 0.005 as can be seen in Fig. 8(c). The
adiabatic electronic state ϕ1(z, ρ, R, t = 36 fs) correspond-
ing to the lowest adiabatic potential-energy curve V1(R, t =
36 fs) can describe both the vibration in the bound well and
the dissociation into H + H+, because the electronic density
varies depending on R: around R ≈ 1 Å, ϕ1(z, ρ, R, 36 fs) is
nonzero for |z| < 1 Å, and around R ≈ 8 Å, ϕ1(z, ρ, R, 36 fs)
is distributed at around z ≈ ±4 Å.

There are two forms of the nonadiabatic coupling, one
related to the nonadiabaticity in t described by the matrix
Bjk (R, t ) in Eq. (49) and the other related to the nonadiabatic-
ity in R described by the matrix Yjk (R, t ) in Eq. (48). In order
to examine which one of Bjk (R, t ) and Yjk (R, t ) gives a larger
contribution to the nonadiabatic transition of ζ2(R, t ) from
V2(R, t ) to V1(R, t ), we evaluate numerically Bjk (R, t ) and
Yjk (R, t ) for j = 1 and k = 2. The matrix Bjk (R, t ) can be
conveniently evaluated by differentiating Eq. (47) with respect
to time as [71]

Bjk (R, t )

= h̄

∑K
l,m=1 A∗

lj (R, t ) ∂Hlm(R,t )
∂t

Amk (R, t ) − δjk
∂Vk (R,t )

∂t

Vk (R, t ) − Vj (R, t )
,

(61)
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where ∂Hlm(R, t )/∂t can be obtained numerically using the
definition Eq. (44) and the equation of motion (11). The
numerical values of A∗

lj (∂/∂R)Alk and A∗
lj (∂2/∂R2)Alk ap-

pearing in the definition (48) of Yjk (R, t ) are obtained using
the same finite-difference scheme as adopted for the protonic
kinetic-energy operator (see Appendix for details).

We find that at t = 14 fs, as shown in Figs. 7(b) and
8(b), |B12(R, t )ζ2(R, t )| 
 |Y12(R, t )ζ2(R, t )| for 0 < R <

10 Å. This is because of the small factor of 1/μp ≈ 0.001
in Y12(R, t ). We find B12(R = 2.5 Å, 14 fs) ≈ 0.1Eh at the
internuclear distance R = 2.5 Å around which ζ2(R, 14 fs) is
located as shown in Fig. 8(b).

IV. CONCLUSIONS AND SUMMARY

We have shown that the Ex-MCTDHF methods works well
to describe dissociation and excitation of H2

+ induced by the
irradiation of an intense laser pulse. As long as the number of
expansion terms K included in the Ex-MCTDHF expansion
is equal to or larger than 2, the wave-packet bifurcation
into a dissociating component and a vibrationally excited
component is reproduced, and for K > 8, a good quantitative
agreement between the results obtained by the Ex-MCTDHF
method and those obtained by the direct 3D-grid method is
achieved.

We have also introduced two methods that can be used for
the interpretation of a time-dependent electroprotonic wave
function. First, we expanded the total wave function in terms
of the natural orbitals and found that different natural orbitals
correspond to different channels, that is, one natural orbital
pair represents the vibrational excitation while the other pair
represents the dissociation. This shows that, using the Ex-
MCTDHF method, we can describe a dissociating wave func-
tion representing the spatially correlated motion of electrons
and nuclei bound through the attractive Coulomb interaction.
In the second method, we calculated time-dependent adiabatic
potential-energy curves by diagonalizing the Hamiltonian
governing the motion of the protonic orbitals. We showed that
the lowest adiabatic potential-energy curve is composed of
one time-independent well located at around R = 1 Å and one

broad time-dependent well whose outer barrier moves towards
the longer internuclear distance as time goes on. The part
of the protonic wave packet trapped in the time-independent
well corresponds to the bound vibrational motion, and the part
located in the time-dependent part of the adiabatic potential-
energy curve corresponds to the dissociation. Our results
show that dissociation in general can be interpreted as a
bound vibrational wave packet evolving on a time-dependent
potential-energy curve.

The present study on laser-driven H2
+ can be regarded

as the first step toward the application of the Ex-MCTDHF
method to many-electron polyatomic molecules interacting
with a light field, in which both the electronic and protonic
parts of the wave function need to be antisymmetrized. The
next step would be to investigate time-dependent dynamics
of laser-driven H2, whose ground-state wave function has
already been obtained by the Ex-MCTDHF method [48].
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APPENDIX: NUMERICS

1. Ex-MCTDHF

The orbitals are discretized on an equidistant grid with
mesh width �z = �ρ = �R = 0.053 Å (=0.1a0). The spa-
tial extent of the computational box is |z| < zmax = 13.3 Å,
R < Rmax = 13.3 Å, and ρ < ρmax = 5.3 Å. We write the
electronic orbitals as

φj (z, ρ) = f (z, ρ)√
ρ

, (A1)

and define

fp,q = f (zp, ρq ), (A2)

where (zp, ρq ) is a point on the computational grid; p =
1, . . . pmax and q = 1, . . . , qmax with ρ1 = �ρ. The part of
the kinetic-energy operator depending on ρ is approximated
as described in Ref. [85],

1√
ρ

∂

∂ρ

(
ρ

∂

∂ρ

f (zp, ρq )√
ρ

)
≈

⎧⎨⎩
1

(�ρ)2

(− ρ3/2

ρ1
fp,1 + ρ3/2√

ρ1ρ2
fp,2

)
if q = 1,

1
(�ρ)2

( ρq−1/2√
ρq−1ρq

fp,q−1 − ρq+1/2+ρq−1/2

ρq
fq,p + ρq+1/2√

ρq+1ρq
fp,q+1

)
if 1 < q < qmax,

(A3)

where ρq+1/2 = (ρq + ρq+1)/2. Equation (A3) correctly in-
corporates the boundary condition ∂φj (z, 0)/∂ρ = 0. For the
second derivatives with respect to z, we employ a symmetric
three-point formula,

∂2f (zp, ρq )

∂z2
≈ fp−1,q − 2fq,p + fp+1,q

(�z)2
. (A4)

The protonic orbitals are discretized on a grid with grid points
Rk = k�R, k = 1, . . . , kmax. We employ a formula similar to
Eq. (A4) to approximate ∂2/∂R2 appearing in the protonic
kinetic-energy operator.

An absorbing imaginary potential is employed to prevent
unphysical reflections from the boundary of the computational

domain. Using the function

w(a, x) =
{−i(|x| − a)3 for |x| > a,

0 otherwise,
(A5)

the total absorbing potential added to the Hamiltonian is
defined as

W (z, ρ, R) = W e(z, ρ) + W p(R)

= w(γ zmax, z) + w(γρmax, ρ) + w(γRmax, R),
(A6)

where γ = 0.8.
The mean-field potentials defined in Eqs. (16) and (17) are

calculated in a way similar to that presented in Ref. [86]. We
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first define the discrete version of the Coulomb potential,

Upq,k = U (zp, ρq, Rk ), (A7)

where U (z, ρ, R) is defined in Eq. (7). As a second step,
we compute an approximate singular value decomposition of
Upq,k ,

Upq,k ≈
�max∑
�=1

s�upq,�vk�, (A8)

where s� are the singular values. For all calculations shown in
the present study, we include �max = 75 of the largest singular
values in the sum over � in Eq. (A8).

After calculating the singular value decomposition of
Upq,k , we approximate the mean-field potentials (16) and (17)
as

U e(zp, ρq ) = 〈χ (R)|U (zp, ρq, R)|χ ′(R)〉

≈ �R

�max∑
�=1

upq,�s�

∑
k

vk�χ
∗(Rk )χ ′(Rk )R2

k ,

(A9)

U p(Rk ) = 〈φ(z, ρ)|U (z, ρ, Rk )|φ′(z, ρ)〉

≈ �ρ�z

�max∑
�=1

vk�s�

∑
pq

upq,�φ
∗(zp, ρq )φ′(zp, ρq )ρq.

(A10)

Without making the approximation (A8), the computa-
tional time required for obtaining U p(Rk, t ) at all grid
points Rk (k = 1, . . . , kmax) would be proportional to N =
pmaxqmaxkmax. However, when we use Eq. (A10), the com-
putational time is proportional to N ′ = pmaxqmax�max, which
makes this approach favorable if �max < kmax. In the calcula-
tions presented in the present paper, this condition is satisfied,
because kmax ≈ 250 and �max = 75.

The time stepping of the electronic orbitals is done in the
following way. We first write the equation of motion (11) for
the electronic orbitals as

ih̄
∂φ(t )

∂t
= [Tkin + eE(t )νz + W e(z, ρ)]φ(t ) + B(t )φ(t ),

(A11)

where φ = (φ1, φ2, . . . , φK )T is an array of orbitals, Tkin is the
kinetic-energy operator, and B(t ) contains all other nonlinear
terms in Eq. (11). We assume that B(t ) is constant during a
short time step �t , and evolve the orbitals in time according
to

φ(t + �t ) ≈ e−iτ [eE(t )νz+W e (z,ρ)]e−iτTkine−i2τ B(t )e−iτTkin

× e−iτ [eE(t )νz+W e (z,ρ)]φ(t ), (A12)

where τ = �t/2h̄. The exponentiation of the eE(t )νz and
We(z, ρ) is trivial, since these operators have a diagonal
grid representation. The term e−iτTkinφ is evaluated with the
Crank-Nicolson method [87], and e−i2τ B(t )φ with the Lanc-
zos method [88]. We use �t = 0.0025h̄/Eh ≈ 0.06 as. The
integration of the equation of motion (12) for the protonic
orbitals is performed in a similar way as the integration for the
electronic orbitals described above. The equation of motion
(13) for the coefficients Cjk (t ) is integrated by using the
Lanczos method in which 〈φjχk|H (t )|φlχm〉 is assumed to be
constant during a short time step �t .

2. Two-state BO model

In order to obtain the 1sσg and 2pσu potential-energy
curves, we solve the eigenvalue equation (24) at the different
values of R at Rk = k�R, k = 1, . . . , kmax, corresponding to
the same R grid as that adopted in the calculation of the pro-
tonic Ex-MCTDHF orbitals. We solve Eq. (24) using the same
discretization of the electronic wave functions as described
above in Appendix 1. After obtaining εj (Rk ), j = 1sσg, 2pσu

and 〈φBO
1sσg

|z|φBO
2pσu

〉, we solve Eq. (25) assuming the same R

discretization as that adopted for the protonic Ex-MCTDHF
orbitals, using the Crank-Nicolson method to exponentiate the
kinetic-energy operator, and the Lanczos method for the other
operators. We adopted an absorbing potential W p(R) defined
in Eq. (A6) to prevent reflections of outgoing parts of the
protonic wave packet.

3. 3D-grid method

The total wave function is represented as a 3D array,

�pqk (t ) = �(zp, ρq, Rk, t ), (A13)

where zp, ρq , and Rk are the same grid points as those used
in the Ex-MCTDHF method and the two-state BO model.
The kinetic-energy operators are approximated using the same
finite-difference scheme as that used for the Ex-MCTDHF
method, for example, as

∂2�(zp, ρq, Rk, t )

∂z2

≈ �(p−1)qk (t ) − 2�qpk (t ) + �(p+1)qk (t )

(�z)2
. (A14)

For the time stepping, we use a split-operator scheme similar
to Eq. (A12), and employ the Crank-Nicolson method to
evaluate the exponentiation of the kinetic-energy operators.
We adopted the same absorbing potential given by Eq. (A6)
to prevent reflections from the grid boundary.
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