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Role of initial-state electron correlation in one-photon double ionization of atoms and molecules
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By decomposing the initial-state wave function into its unique natural orbital expansion, as defined in the
1950s by Lowdin and used in modern studies of entanglement, we analyze the role of electron correlation in
the initial state of an atom or molecule in determining the angular distribution of one-photon double ionization.
Final-state correlation of the two ejected electrons is treated completely in numerically accurate calculations as
the initial states of He, H™, and H; are built up from correlating configurations in strict order of decreasing natural
orbital occupations. In the two-electron atoms it is found that the initial-state correlation plays a sometimes
modest but generally measurable role. In striking contrast, for H, a large number of correlating configurations
in the ground state is often necessary to produce angular distributions even approximately resembling the
correct ones. One-photon double photoionization of oriented H; is found to be particularly sensitive to left-right

correlation along the bond.
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I. INTRODUCTION

A central argument motivating a long history of theoret-
ical and experimental interest in single-photon double pho-
toionization of atoms and molecules is that this process is
particularly sensitive to the effects of electron correlation.
The two ejected electrons must share the energy of a single
photon, but the operator for interaction of the electrons with
the electromagnetic field is a one-body operator, which for
the conditions of most experiments is simply the dipole oper-
ator. This fact strongly suggests that the dynamics of double
photoejection are correlated, and that expectation has been
verified by a large number of experimental measurements
showing strong correlation in the angular dependence of the
two ejected electrons in double photoionization of both atoms
[1-9] and molecules [10-19], only a selection of which we
cite here.

The history of theoretical studies of one-photon double
photoionization is characterized by an evolution of ever more
sophisticated treatments of electron correlation in the context
of overcoming the considerable difficulties imposed by the
incorporation of appropriate boundary conditions for three-
body Coulomb breakup. A sample of that literature employing
various theoretical and computational approaches includes
many studies of double photoionization of atoms [20-46]
and of the more challenging problem of single-photon double
photoionization of molecules [47-61].

A number of these calculations, especially the more recent
ones, seek to treat the problem exactly in principle. In other
words, to the degree such calculations are converged, they
can completely treat electron correlation in both the initial
and final states. The focus of these studies is generally on
the calculation of the triply differential cross section (TDCS)
for double photoionization which depends on the emission
directions of the two electrons and on the energy sharing
between them. Thus the TDCS contains the signatures of the
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contributions of various types of electron correlation to the
dynamics. The implicit assumption in all these studies is that
correlation in both the initial and final states must be treated
well to achieve accurate results. The literature contains numer-
ous detailed comparisons between these methods, for exam-
ple, between the time-dependent close-coupling method, the
convergent close-coupling method, and the exterior scaling
approach we use here, that verify their agreement and validity
[33], and there is now no question that we can calculate the
TDCS accurately for two-electron systems by a variety of
means.

In this study we explore the effects of electron correlation
in the initial state of a neutral atom or molecule on the
final angular distribution of the ejected electrons. We seek
to answer the following question: “To what degree does the
observation of one-photon double photoionization of an atom
or molecule measure the degree and nature of correlation in
the initial neutral system?” The theoretical studies mentioned
above have focused extensively on the nature of correlation
in the final state and the dynamics of the double-ionization
process. To our knowledge, although there are certainly some
previous studies that have addressed the question in one way
or another [36,40,57], there have been, somewhat suprisingly,
no quantitatively systematic studies of the degree to which the
correlation of the two ejected electrons in the neutral system
prior to double photoionization leaves a distinct signature in
the TDCS. To make such a study we must treat final-state
correlation completely and accurately, independent of the
approximation being used to treat the initial state as it is made
more correlated, and we will describe in Sec. III how we can
do that using grid methods and exterior complex scaling of the
electronic coordinates.

To make this analysis meaningful, we need a rigorous and
systematic way of increasing the degree of correlation in the
initial state. Fortunately, there is a well-established way to do
so using the idea of the natural orbital expansion of the exact
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wave function, which was introduced in 1955 by Lowdin [62].
The special properties of the natural orbital expansion for
two-electron systems were initially explored by Lowdin and
Shull [63] in the early days of electronic structure theory. The
concept of the expansion of the exact wave function “as a
sum of Slater determinants of all ‘ordered’ configurations”
originates with that early work, and natural orbital expansions
have become a standard tool in modern electronic structure
theory [64,65]. For a two-electron system, the natural orbital
occupations give the ordering of the configurations in terms of
their coefficients in an expansion of the exact wave function,
as explained in Sec. IV. For two electrons the natural orbital
expansion is a special case of the Schmidt decomposition of
the density matrix of a quantum system into reduced density
matrices of two (in this case identical) subsystems. In the
context of quantum information theory it plays a central role
in discussions of entanglement [66—71] and its quantification
in particular [66].

The procedure we will follow to analyze the role of initial-
state correlation in one-photon double photoionization is to
start with an effectively converged, highly correlated wave
function for the ground state of three systems, He, H™, and
H,, and decompose them in terms of their natural orbital
expansions. For these systems we can effectively calculate
converged final states and construct the TDCS to observe how
it changes as correlation contributions are added to the initial
state. We find dramatic differences between the signature in
the TDCS of the correlation in the initial state in the atoms
versus that in H,. This is a surprising result because the degree
to which H, is correlated compared to H™, for example,
does not immediately suggest such radical differences in the
sensitivity of the TDCS to small contributions of correlating
configurations. The implication is that in other molecules one-
photon double ionization may be a more sensitive and specific
probe of initial-state correlation in bonds than of electronic
correlation in general.

The outline of this paper is as follows. In Sec. II we define
the double photoionization amplitude and show how it can be
effectively decomposed into contributions of each correlating
term in the initial-state wave function. Section III briefly
summarizes our computational approach to solving both for
the initial state and for the double photoionization amplitude
using a combination of a finite-element discrete variable rep-
resentation of the wave function with exterior complex scaling
(ECS) of the electronic coordinates. Then in Sec. IV we
review the natural orbital expansion for two-electron singlet
states and its particular form for the ground states of the sys-
tems we consider here, making a connection with the recent
literature on Schmidt decomposition of fermionic systems
in the context of discussions of entanglement in quantum
information theory. We present the results of calculations on
He and H™ in Sec. V on the sensitivity of the TDCS to initial-
state correlation by considering the convergence of the TDCS
with respect to the natural orbital expansion. In Sec. VI we
present a similar analysis of H, where we find that, in a system
less correlated near its equilibrium internuclear distance than
H~, there is a dramatically stronger signature of initial-state
correlation in the TDCS. Finally in Sec. VII we make some
concluding remarks about the prospects for experiments on
polyatomic molecules that could probe correlation in the

ground state in a way that in principle tests the most subtle
details of electronic structure.

II. CONNECTION OF INITIAL ELECTRON
CORRELATION TO IONIZATION AMPLITUDES

Independent of the theoretical method employed in the
calculations, it is useful to look at the formal definition of the
TDCS to see why it might be sensitive to initial-state correla-
tion. The TDCS, which depends on the angles of ejection of
the two electrons, €2; and €25, and the energy sharing specified
by the energy of one of the electrons E|, is given by (atomic
units throughout, i = e = ap = 1)

d’c 4r? 2
dEd0da, — we kika| f (ki k2)I7 ey

with the double photoionization amplitude defined by (see
e.g. [22])

Fki ko) = (W) |1 + 12| Do), )

where u; = € -V, is the “velocity form” of the dipole op-
erator for linearly polarized light and € is the polarization
direction of the photon defining the z axis in the labora-
tory frame. The exact initial state ®( and final state \I—'I(Jk)z,
which is a continuum wave function with two electrons ini-
tially in the continuum with incoming wave boundary condi-
tions, must both obviously be represented by correlated wave
functions.

While it may be difficult to see directly from the matrix
element in Eq. (2) how small correlation contributions to |®Dg)
contribute to the amplitude, the equivalent “first-order equa-
tion” from perturbation theory provides a path to rigorously
identifying those contributions. The first-order equation is

(Eo+ o — H)|V)) = u|®o), 3)

where the solution, |W"), satisfies purely outgoing boundary
conditions and E is the energy of the initial state. Considering
a two-electron atom, with electronic coordinates r; and r, and
infinitely heavy nucleus, the asymptotic form of the solution
in the region ¢ where all three particles are well separated
can be written by using the result for the three-body Coulomb
Green’s function in Ref. [72] and is found to be [31,32]
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In Eq. (4) the total energy in terms of the outgoing momenta of
the electrons, k; and ka, is K2/2 = k?/2 + k3 /2; the hyperra-
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dius and hyperangle are p = ,/r? +r2 and o = tan~! ro/r.
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As we will discuss in detail in Sec. IV the exact wave function
can be uniquely decomposed into a sum of determinants, | D),
of natural spin orbitals,

Do) = Y cklDp), (7)
k

the first of which is essentially identical to the Hartree-Fock
wave function. Because of the linearity of Eq. (3), the corre-
sponding |W) is then a sum of functions,

W) =) e W), ®)

k

each separately satisfying that equation with the asymptotic
form in Eq. (4) containing a contribution to the double
photoionization amplitude, f(k;, ky), which is therefore a
sum of contributions due to each of the contributions to | D)
in Eq. (7).

This is the approach we use here, solving Eq. (3) ac-
curately for different numbers of terms in Eq. (7) on the
right-hand side, treating correlation completely on the left-
hand side. Even though the coefficient of the dominant (=
Hartree-Fock) contribution to Eq. (7) is far larger than that
of the correlating terms, we will find that the resulting con-
tribution to the photoionization amplitude can be smaller than
the contributions of correlating terms with much smaller coef-
ficients. The contributions to f(ki, k) can of course interfere
in the coherent sum that produces the TDCS. Although one
might expect that the importance of initial-state correlation in
double photoionization would be larger for more correlated
systems, we will see that this is not necessarily the case.

To address that question we must specify what we mean
by a “more correlated system.” There are at least two com-
monly used measures of the degree of electronic correlation
in a system. In bound-state electronic structure theory, one
standard measure of the degree of correlation is the correlation
energy, defined as the difference between the Hartree-Fock
energy, Eyr, and the exact nonrelativistic energy, Exr [73].
The degree of correlation, Kz, based on energy can then
be expressed as the exact nonrelativistic electronic energy
divided by the Hartree-Fock electronic energy, i.e., Kgp =
Exr/Eyr, and we note that Kg > 1. Alternatively, Grobe
et al. [74] make a strong argument that the amount by which
the trace of the square of the one-electron density matrix is
less than one is a better quantitative measure of correlation
in the wave function. They therefore propose the definition
of the degree of correlation as K = 1/tr(p?), a quantity
also used in discussions of entanglement quantification [66].
That quantity is of course equal to one if there is only one
occupied natural orbital and the wave function is exactly
expressible as one determinant, and is greater than one oth-
erwise. In Secs. V and VI we will explore the sensitivity
of the TDCS to initial-state correlation and see to what
extent that sensitivity is related to traditional measures of the
degree of correlation in the two-electron systems considered
here.

III. CALCULATION OF THE TRIPLE DIFFERENTIAL
CROSS SECTION FOR DOUBLE PHOTOIONIZATION
USING EXTERIOR COMPLEX SCALING

A. Double photoionization amplitudes

The method for combining numerical grids with exterior
complex scaling of the electronic coordinates to solve the
double ionization and electron-impact ionization problems
has been described in detail elsewhere [41,52,75], and so here
we give only a summary of the essential ideas. The correct
outgoing boundary conditions for both single and double
ionization are imposed on W] in Eq. (3) by applying the
ECS transformation [75-77] to the radial coordinates of both
electrons, which scales those coordinates by a complex factor
¢'? beyond some radius R,

ifr § Ro,

9
ifr >R(), ( )

r— {r, ‘
Ro + (r — Ro)e’,
and requiring W to vanish for large r| or r, on the complex
contour. The amplitude f(k;, k;) for single-photon double
ionization associated with W} is given, up to an irrelevant
overall phase, by a volume integral over a finite volume
[30,52,75],

f(klv kZ)
= (@ (k;, 1PV (o, 1) |E — T — VW),  (10)

where E = Ey + w is the excess energy above the double
ionization threshold, 7 is the two-electron kinetic-energy
operator, and V in the case of an atom with nuclear charge
Z is the sum of the one-electron potentials,

V=—Z/r1—Z/r2, (11)

while in the molecular case (with nuclei fixed with coordinates
+A) the potential in Eq. (10) is the sum of the nuclear
attraction potential seen by each of the electrons,

v 1 1 1 1 (12)

Iri—Al i +A] r2—-A]  r2+A]

The “testing functions” ®)(k, r) in Eq. (10) for the atomic
case are momentum-normalized Coulomb functions with
charges Z equal to the charge of the nuclear potential in
V [30,41]. With that choice Eq. (10) exactly projects out
the single-ionization contributions from the double-ionization
channels by orthogonality of the Coulomb functions to the
residual bound one-electron atom. Following the same logic,
in the molecular case the testing functions are the H, ™ contin-
uum wave functions [52]. The triple-differential cross section
(TDCS) for double photoionization is directly related to the
amplitude f(k;, ky) by Eq. (1).

B. Representation of the wave function in ECS calculations

We solve the driven equation, Eq. (3), by expanding both
the first-order wave function, \Ilj; , and the initial state, @,
in products of spherical harmonics as was done in previous
calculations on He [32], H™ [41], and H; [52], where a single
center expansion around the middle of the molecule was used,

1 . X
whE=>"%" w7 Vs (1 r2) Vi, ()Y (B2).(13)

I|m1 12m2
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The radial function ¥, 1,m, (71, r2) is described by the com-
bination of a discrete variable representation further expanded
in a product basis of one-dimensional finite-element-method
(FEM) discrete-variable representation (DVR) functions. The
DVR basis functions are the cardinal functions (polynomials)
of a discrete variable representation based on a Gauss-Lobatto
quadrature within each radial finite element:

Vi oms (11, 72) = ) CH" "0 (r)gi(r2), (14)

ij

where ¢;(r) is a DVR basis function and the coefficients
satisfy Cf}.m"lzmz = Cﬁ?imz’l‘m‘.

We include all the terms, labeled by I;,mq, [, m; in
Eq. (13), up to a maximum value, /;,,,x, of [ that produce a scat-
tered wave function with total angular momentum quantum
numbers L =1, M =0, and &y with L =0, M = 0 in the
atomic case. For the molecular case, we include all the terms
that contribute to X, (M = 0) and IT, (M = +1) for ¥} and
E; (M = 0) for ®g. In all the calculations presented here
the value of [, for \P;g was held fixed at the value needed
to converge calculations with a completely correlated initial
state, while the degree of correlation in &y was varied. The
numerical parameters we used are similar to those of previous
calculations [32,41,52], where extensive convergence tests
were performed. For H™ and He we used /,,,x = 7, and for
H, we also used /yn,x = 7 for both £ and I, symmetries.
The values of /,,x are the same for the initial and final states
in all cases.

The radial basis and ECS parameters were also simi-
lar to those of previous studies. For H™ 15th-order Gauss
quadrature was used in 11 finite elements, with ECS scaling
beginning at Ry = 95 bohr and a maximum value of r for
each electron of 130 bohr. For He the radial grid was nine
finite elements with 15th-order quadrature in each, with the
value of Ry = 65 bohr and a maximum value of » of 95
bohr. In the calculations on H, we used a radial basis of
nine finite elements with 15th-order quadrature in each, Ry =
65 bohr, and a maximum value of  of 95 bohr. In all cases the
ECS scaling angle, 6, was 30° and, as expected [78], there was
essentially no variation in the results of grid based calculations
with varying 6.

This representation of the wave functions reduces the solu-
tion of Eq. (3) to the solution of large sets of linear equations,
described in Refs. [41] and [52]. The fully correlated ground-
state wave function (and natural orbitals) are obtained in
our calculations using the finite element method and discrete
variable representation (FEM-DVR) by diagonalizing the full
Hamiltonian of each system using only the real portions of the
radial FEM-DVR grid, truncated at a value of r large enough
to contain the ground state completely. The corresponding
natural orbitals are constructed by applying the algorithm of
Sec. IV once the coefficients Cf}m“lzmz in Eq. (14) have been
calculated.

IV. NATURAL ORBITALS OF TWO-ELECTRON SYSTEMS

The initial states of the systems we treat here, namely non-
degenerate singlet states ('S and 12;), are examples of the
simplest version of the natural orbital expansion of the exact

wave function. In that case, as Lowdin originally showed [63]
the exact wave function can be expanded as a sum of Slater
determinants of only doubly occupied natural orbitals, x(r}),

N
D(x1, %) =Y clxe(re(l) )@, (15)
k

where Xx; denotes spin and space coordinates of electron i and
N is the number of the natural orbitals with nonzero occupa-
tions. The coefficients of the expansion, ¢k, are square roots
of the natural orbital occupations, and thus the natural orbital
expansion in Eq. (15) expresses the exact wave function as
a uniquely defined sum of Slater determinants, which can be
ordered by the magnitudes of their contributions. A natural
orbital expansion of the initial electronic state ordered by
occupation number thus provides a well-defined basis with
which to study the convergence of the TDCS for the double
photoionization process with respect to increasing the initial-
state correlation.

The phases of the coefficients, ¢, in Eq. (15) in general
are not all the same, and so we describe here how they
are calculated as well as the general applicability of the
expansion. “Natural spin orbitals” were introduced by Lowdin
[62,63] as the functions which diagonalize the one-electron
reduced density matrix. The one-electron density matrix for
an N-electron system is defined by the expression familiar in
the electronic structure literature [64],

p(x;x') = /CD(X, X2, . X)) P (X, Xo, ..., Xy)

X dX; ...dXy, (16)

where x; denotes space and spin coordinates, and its eigen-
functions satisfy

/p(X;X/)Xn(X/)dX/ = AnXn(X), a7

where the eigenvalues A, are called the natural orbital oc-
cupations and, with the normalization of ® and Eq. (16)
for p, they satisfy > A, = 1. They are a standard tool of
electronic structure theory, where they reduce the number
of determinants required to represent the wave function to
any particular accuracy when compared to being expressed
in other orbital bases.

Systems with only two electrons are an important special
case in which simplifications appear that do not apply to
many-electron systems. The essential theorem is that for a
two-electron system; the wave function ® is expressible in
the explicitly diagonal form [64,68]

@ = wifix) (%), (18)

where the natural spin orbitals in this expansion are eigen-
functions of the density matrix with the same eigenvalues

f p(x;x) fi(x)dx' = |l fi (x),
(19)
/ p(x; X))t (X)dX' = i [*1:(x).

The diagonal form of Eq. (18) applies to both ground and
excited states [79], and specializes [63,68] to the simpler form
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in Eq. (15) for our cases. It almost always radically reduces
the number of terms in the expansion relative to full CI in the
natural orbital basis.

The centrality of the natural orbital expansion of the wave
function in the understanding of correlation derives from
the fact that Eqs. (18) and (19) are an example of the
Schmidt decomposition of a many-particle wave function in
terms of the eigenfunctions of the reduced density matrices
corresponding to dividing the particles into two groups. The
idea of the Schmidt decomposition [80] also appears exten-
sively in recent treatments of quantum entanglement [66—71].
Although Eq. (18) does not explicitly display permutational
symmetry or the property of being a spin eigenfunction, there
are general discussions in the literature of how to construct
versions that do so for both fermionic and bosonic systems
[68]. The natural orbital expansion has also been used to
provide a quantitative measure of correlation in two-electron
systems [74,81].

Our construction of the two-electron wave function in
Eq. (13) for singlet states is an expansion in terms of basis
functions

a(HB2)—p)a(2)
V2

D(x1, %) =Y _Cij Yi (1) (r2)

iJj

. (20)

with
V() = @)Y, m; (F) 21

being the products of FEM DVR radial functions and spheri-
cal harmonics. The density matrix is defined in terms of this
basis as

p(xX) = (@d +BB)Y i@ pe,  (22)
kl

where

pri =Y CwCi,, p=CC. (23)

m

Because the spin eigenfunction for a singlet state is anti-
symmetric, the matrix C must be symmetric. For the 'S and
'E; states we consider here, where the sum of the quantum
numbers in the spherical harmonics of the product basis must
sum to zero, m; + m, = 0, the matrix C is also real (as is the
two-electron ground wave function), and that fact simplifies
the algebra of constructing the natural orbital coefficients [82].

In this case the real-valued orthogonal matrix U that diag-
onalizes C also diagonalizes the density matrix:

CU="Uc, pU=Uc*=Uxr (24)
The natural orbitals are then defined by the matrix relation
x=U'y (25)

and the eigenvalues of C satisfy ¢ = A, and are thus the
square roots of the occupation numbers of the natural orbitals
Xk, but with well-defined phases. Substituting Eq. (25) into the
wave function in Eq. (20) leads to the natural orbital expansion

_aMB2)—p1)a2)
V2

M
D(x1, %) > erxe(r)xi(r),  (26)
k

where M is the number of the natural orbitals with nonzero
occupations and thus to Eq. (15).

V. EFFECTS OF INITIAL-STATE CORRELATION IN He
AND H™

To systematically analyze the effects of initial-state corre-
lation we first solve Eq. (3) for W using only the first term
in the natural orbital expansion of &, that was calculated
with the value of /,,,x necessary to converge the completely
correlated calculation, and then add the remaining terms in
order of increasing natural orbital occupation. In every such
calculation we use the same value of [, and the other
numerical parameters to represent both sides of the equation.
While optical selection rules dictate that each term in the
natural orbital expansion of the initial state is only connected
by the dipole operator to a subset of all angular momentum
contributions to \Ilst , the electron repulsion potential, 1/r}2,
can of course connect all such contributions of the [ym, l,m,
contributions in Eq. (13). Thus in these calculations we are
varying the amount of initial-state correlation, adding terms
in the order of their contribution to ®( while always allowing
the final doubly ionized state to be fully correlated.

In Table I we compare the natural orbital coefficients
for the two electron atoms He and H™. In both cases the
first natural orbital is graphically indistinguishable from the
Hartree-Fock 1s orbital. The Hartree-Fock energy of H™ is
above that of the hydrogen atom, as given in Table II, and
so it is physically bound only because of correlation energy.
The absolute correlation energy of H™ is less than that of
He although much larger relative to its total energy. Thus the
value of K is larger for H™ than it is for He. This same trend
is seen in the values of K obtained from the density matrix
verifying that H™ is the more correlated of the two atoms.

The convergence of the TDCS calculated in the velocity
gauge for He at a photon energy of /iw =99 eV with in-
creasing number of terms in the natural orbital expansion is
shown in Fig. 1. The convergence is so rapid that adding
only the natural orbital term with the next largest coefficient
(25 in Table I) produces essentially the converged result. The
convergence of the TDCS for H™ for a photon energy of
hiw = 18 eV, chosen to produce two electrons whose shared
energy is the same fraction of the double ionization potential,
is shown in Fig. 2. In this case adding the second term in the
natural orbital expansion (2s) is insufficient to produce a result
indistinguishable from the exact TDCS, but adding one more
orbital shell (2p) converges the TDCS.

In Fig. 1 we also show results in the length gauge. In all
cases the cross sections calculated in the length gauge con-
verge somewhat more slowly. For example, in Fig. 1 the con-
tributions of three natural orbitals are necessary in the length
gauge to recover a result close to that obtained with only the
Hartree-Fock initial state in the velocity gauge. However, all
the trends we observe here in the velocity gauge (for the atoms
as well as for H,) are reproduced in the length gauge, with
more terms always being required in the length gauge. For that
reason, and simplicity of presentation, we restrict the results
we present in the other figures to the more rapidly convergent
velocity gauge. Of course, length and velocity gauges give
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TABLE I. Coefficients of the natural expansion of the He and H™ ground states, with comparison to earlier calculations employing analytic
basis sets and the present calculations in the case of He. Reference [64] comments on the signs. Note that the 3p, 4p, 3d, and 4d orbitals with

the other possible values of m have coefficients with the same magnitude, but with sometimes different signs.

Present
He

Present
H-

Ref. [83] Ref. [84]

NO (m) He He

1s (0) +0.99599 +0.99598
2s (0) —0.06148 —0.06163
35 (0) —0.00786 —0.00790
4s (0) —0.00197 —0.00192
2p (0) —0.03563 —0.03574
2p (+1)

2p (—1)

3p (0) —0.00638 —0.00643
4p (0) —0.00180 —0.00189
3d (0) —0.00566 —0.00566
4d (0) —0.00178 —0.00174

+9.95973 x 107!
—6.15655 x1072
—7.89868 x1073
—1.99462 x1073
—3.57540 x 1072
+3.57540 x 1072
+3.57540 x 1072
—6.41313 x1073
—1.82277 x1073
—5.72895 x1073
—1.80151 x1073

+9.71958 x 107!
—2.05838 x 107!
—1.44055 x1072
—2.92130 x1073
—6.33681 x1072
+6.33681x 1072
+6.33681 x1072
—8.96297 x1073
—2.23093 x1073
—7.98852 x1073
—2.34227 x1073

precisely the same results when enough terms for convergence
are included in the natural orbital expansion of the initial state.

In Fig. 2 we see that the TDCS converges slightly more
slowly for H™, as one would expect by any measure of the
degree of correlation in the initial state. Nonetheless, in both
cases the Hartree-Fock initial state is sufficient to produce
the general shape and the rough magnitude (within a factor
of three in the case of H™) of the cross section. It has been
argued previously [41] that extreme unequal energy sharing
minimizes correlation in the final state. While that is certainly
true at very high photon energies, we find that for equal energy
sharing at these energies (not shown) the conclusions about
the convergence of the TDCS with the inclusion of initial-state
correlation are the same. For the atomic cases, in general the
Hartree-Fock wave function is nearly adequate. The molecular
case is very different.

VI. EFFECTS OF INITIAL-STATE CORRELATION IN H,

To understand the more dramatic effects of correlation on
one-photon double ionization of Hy, it is useful first to analyze
the convegence of the natural orbital expansion itself. The
natural orbital coefficients calculated with the procedure in

TABLE II. Energies and degree of correlation for He, H™, and
H, at several internuclear distances. Hartree-Fock energies, Eyr, are
from Ref. [85] for He, Ref. [86] for H™, and computed using an aug-
cc-pVOZ basis set [87] for H,. Exact nonrelativistic energies, Exg,
are from Ref. [88] for He and H™ and from Ref. [89] for H,.

System Eur Engr Kg K
He —2.86168 —2.90372 1.01469 1.01625
H™ —0.48793  —0.52775 1.08161 1.11819

H,(R =1.0bohr) —1.08513 —1.12454 1.03631 1.02614
H,(R =1.2bohr) —1.12502 —1.16494 1.03548 1.03057
Hy(R =1.4bohr) —1.13363 —1.17448 1.03603 1.03653
H,(R =1.6bohr) —1.12635 —1.16858 1.03750 1.04450
H,(R =1.8bohr) —1.11096 —1.15507 1.03971 1.05475
Hy(R =2.0bohr) —1.09162 —1.13813 1.04261 1.06786
H,(R = o0) —0.71580  —1.00000 1.39704  2.00000

Sec. IV are listed at the H; equilibrium internuclear distance
in Table III. The table is organized in terms of n, which is
the effective principal quantum number for each orbital in
the united atom limit. More specifically, the value of n for
the orbital with the highest occupation in a given symmetry
is the principal quantum number for the lowest atomic state
in the united atom limit. For example, the most important
o, orbital is assigned n = 1, corresponding to the 1s atomic
orbital. Then the lowest o, and m, orbitals are given by n = 2

90

FIG. 1. TDCS at /iw =99 eV for double ionization of He for
in-plane geometries with unequal energy sharing. Fixed electron
(single ended red arrows) with 90% of the available energy and
various directions with respect to the polarization (double ended blue
arrow). Solid dark-cyan line (velocity gauge): including only the first
term (1s?) in the natural orbital expansion of the initial-state wave
function. Dashed blue line (length gauge): including three terms
(1s? 4 252 4 2 p?). Black points: including all the natural orbitals in
the expansion (converged wave function). Units are barn/eV /sr?.

013403-6



ROLE OF INITIAL-STATE ELECTRON CORRELATION IN ...

PHYSICAL REVIEW A 99, 013403 (2019)

TABLE III. Coefficients in the natural expansion of H, ground state at R = 1.4 bohr. Coefficients for the configurations corresponding to
orbitals with +m are the same. n is the effective principal quantum number as defined in the text.

n o, oy T, T, 3, Su

1 +9.91039 x 107!

2 —5.47711 x 1072 —9.95069 x 1072 +4.62621 x 1072

3 —9.97783 x 1073 —9.68934 x 1073 +6.57201 x 1073 +8.48462 x 1073 —6.66464 x 1073

4 —6.56733 x 1073 —2.77750 x 1073 +2.59382 x 1073 +2.28040 x 1073 —1.83612 x 1073 —2.28496 x 1073
5 —2.69258 x 1073 —2.25059 x 1073 +1.68292 x 1073 +1.04529 x 1073 —9.69261 x 10~ —8.49212 x 10~*

corresponding to the 2p orbital in the united atom limit. The
natural orbitals of that symmetry are then numbered in order
of their importance starting at that number. This arrangement
of the orbitals reflects the fact that for H,, as shown in
Table III, the configurations constructed from orbitals with the
same n have expansion coefficients of very similar magnitude.
The same relationship is also present in the atomic systems
presented in Table 1.

The rate of convergence with respect to n of the occupation
for the orbitals in each symmetry is presented in Fig. 3.
We also present in Fig. 3 a comparison of the convergence
natural orbital occupations with respect to n for both H, at
R = 1.4 bohr with those of He and H™. We can see that, in
agreement with the relative values of K and Kz shown in
Table II, the convergence of correlation of the H, system is
intermediate between He and H™. We note, however, at higher

FIG. 2. TDCS for double ionization of H™ at iw = 18 eV for

in-plane geometries with unequal energy sharing. Fixed electron
(single ended red arrows) with 90% of the available energy and
various directions with respect to the polarization (double ended blue
arrow). Solid dark-cyan line: including the first term in the natural
orbital expansion of the initial-state wave function. Dashed magenta
line: including two terms (152 + 2s2). Black points: including all the
natural orbitals in the expansion (converged wave function). Units
are kbarn/eV /sr2.

values of n the molecular system converges somewhat more
slowly. It is interesting to consider how the correlation of H,
varies a function of R. Of course, in the united atom limit,
the electronic state of H, just becomes the ground state of
He. In contrast, in the separated atom limit, H, becomes two
isolated H atoms. In that limit, the restricted Hartree-Fock
wave function contains both covalent and ionic terms leading
to rather a large correlation energy and as shown in Table II
and the value of K = 1/tr(p?) rigorously limits to 2.

The convergence of the TDCS with respect to the addition
of terms in the natural orbital expansion of the wave function
is, however, radically different from that for either atom.
In the comparisons in this section we focus on the case
of strongly unequal energy sharing that was investigated by
experiment and theory in an earlier study [53] that explored
the changes with varying internuclear distance in the TDCS.
The photon energy here is /iw = 75 €V, as in that study, and
the internuclear distances for which we report results here
are the ones for nuclear kinetic-energy release of 0.55 and
0.7 hartrees that appear there together with comparison of
the converged TDCS with experiment. The results for equal
energy sharing at this photon energy are similar to what we
find below.

In Fig. 4 we plot the TDCS for unequal energy sharing
with the polarization vector along the axis of the molecule.
With just the first term (again nearly indistinguishable from
the Hartree-Fock wave function) the cross section not only
has a completely incorrect angular dependence, but is more

Total Occupation

Occupation x Degeneracy

—_
o,
)

FIG. 3. Convergence of the natural expansions for the two-
electron systems considered here. Left panel: convergence of the
contributions from the orbitals of different symmetry in H, at
R = 1.4 bohr as a function of n. Right panel: comparison of the
convergence of the H, natural orbital expansion, summed over all
symmetries for each n, and the convergence of the corresponding
natural orbital expansions in He and H™. In all cases, the contribu-
tions from degenerate orbitals have been summed.
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240 300
270

FIG. 4. TDCS for double ionization of H, at 75 eV for in-plane
geometry at R = 1.43 bohr and 6,,, = 0° for which only the !=+
continuum final-state symmetry contributes. Fixed electron (single
ended red arrows) with 90% of the available energy and perpendic-
ular to the polarization (double ended blue arrow at the center of
the figure). Light dotted curve (cyan points): increasing amounts of
correlation in the initial state as contributions to the natural orbital
expansion of its wave function are added. A: 1o, B: A + lo, + 17,
C: B + 20, (all coefficients greater than 10~2), and D: including all
natural orbital configurations with coefficients greater than 5 x 1073,
The darker curve (black points) gives the same data in all panels (note
the changing radial scales) and includes all the natural orbitals in the
expansion (converged wave function). Units are barn/eV /sr?.

than a factor of 10 larger than the converged result. Adding the
first two natural orbital configurations of o, and 7, symmetry,
which are the first two terms describing angular correlation,
also produces the wrong order of magnitude and incorrect
shape. Only after adding the 203 with a smaller occupation
than either the o,, and 7, configurations does the cross section
have the correct order of magnitude but still not the right
shape. Even adding all the terms with coefficients greater than
5 x 1073, a total of 10 more configurations (with degenerate
pairs) that can be identified in Table III, does not produce a
completely converged TDCS. This result from the systematic
addition of initial-state correlation supports the assertion [53]
that one-photon double photoionization “is exquisitely sensi-
tive to electron correlation in both the initial and final state,”
at least for the case of molecules.

It has been pointed out that in one-photon double ionization
of H, [57] and in photoionization of H, ™ [90] the ionization
dynamics in the final state for polarization perpendicular to
the axis, which has I, symmetry, is dominated by p waves
at all internuclear distances, whereas that is not true of the
X.F component that contributes solely in Fig. 4 and for which
the p-wave component is near a minimum at the equilibrium
internuclear distance. Following that logic, one would expect

24 :
0 270 300

FIG. 5. Same as Fig. 4 but for molecular orientation 6,, = 90°
for which only the 'TI,, continuum final-state symmetry contributes.

the cross sections for perpendicular polarization in Fig. 5,
which shows the calculations analogous to those in Fig. 4, to
show a more “atomic” behavior, and that is in fact the case.
The convergence with respect to the inclusion of correlating
terms in the natural orbital expansion is similar to that shown
in Fig. 2 for H™.

The comparison between Figs. 4 and 5 is evidence that the
sensitivity to initial-state correlation is a molecular effect. For

240 300

270 270

FIG. 6. Same as Fig. 4 but for molecular orientation 6, = 20°
and internuclear distance R = 1.43 bohr corresponding to kinetic-
energy release of 0.7 hartrees.
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TABLE IV. Occupation numbers c,% for the natural orbitals of the H, ground state for different internuclear distances (in bohr). These are
the dominant contributions to the natural orbital expansion over this range of R. The contribution from the 1, orbital includes both of the

degenerate orbitals.

NO R=10 R=12 R=14 R=16 R=18 R=20

lo, 9.8716 x 10~ 9.8502 x 10™" 9.8216 x 10” 9.7836 x 10~ 9.7351 x 10”" 9.6737 x 10”
lo, 5.0910 x 1073 7.0773 x 1073 9.9016 x 1073 1.3783 x 1072 1.8775 x 1072 2.5088 x 1072
17, 3.9014 x 1073 4.1284 x 107 4.2804 x 1073 4.3328 x 1073 4.3260 x 1073 4.2830 x 1073
20, 3.2629 x 1072 3.1500 x 1073 2.9999 x 1073 2.8371 x 1073 2.6894 x 1073 2.5467 x 1073

polarization parallel to the molecular axis, the electromagnetic
field drives the electrons parallel to the bond and thus across
the nuclei. The terms in Table III that contribute to left-
right correlation, namely the o configurations, are connected
directly by the dipole operator to the correlated ' X double
continuum to which this motion causes the transition. The
ng configurations are dipole connected to the same configu-
rations in the double continuum, and the coefficients of the
o, and o] configurations decay most slowly in Table III. So
the sensitivity of the TDCS to initial-state correlation in the
molecule is a result of the fact that left-right correlation is the
most important correlating contribution in both the initial and
(in this orientation) final states.

The sensitivity of the TDCS in H, to varying internuclear
distance has been studied previously [53,57]. It is directly ob-
servable from the variation in the angular distributions of the
two electrons with kinetic-energy release of the nuclei, which
via the Coulomb explosion of the molecule following double
ionization maps directly onto the internuclear distance. This
effect is revealed most strongly in the TDCS for molecular
orientations that are neither parallel nor perpendicular to the
polarization vector, for which the 12; and 'TI, continuum
contributions are mixed coherently. In Fig. 6 we show the

330 210

270

FIG. 7. Same as Fig. 6 but for R = 1.82 bohr corresponding to
kinetic-energy release of 0.55 hartrees.

slow convergence with respect to the natural orbital expansion
of a case shown in Ref. [53] for kinetic-energy release of
0.70 hartrees corresponding to 1.43 bohr, near the equilibrium
internuclear distance.

It has been known since the early history of molecular
physics and the Heitler-London [91] model for bonding in H;
that the correlation contributions, in particular the contribution
of the first o> configuration, vary rapidly with increasing
internuclear distance in H, as the wave function converts
into that of two separated atoms, and this behavior can be
seen in Table IV. For that reason it was expected [53,57]
that variations in the TDCS with kinetic-energy release might
contain a signature of changes in initial-state correlation
combined with changes in the correlation of the final double
continuum. In Fig. 7 we show the convergence of the TDCS
for a kinetic-energy release that was studied previously of
0.55 hartrees corresponding to an internuclear distance of
1.82 bohr. With only a few natural orbital configurations, the
calculated TDCS is only slightly further from convergence
than at 1.43 bohr, even though the coefficient of the first
correlating configuration, 1072, is nearly twice as large.

One of the most dramatic variations with kinetic-energy
release was seen in the experimental results for an “out of

FIG. 8. TDCS for double ionization of H, for out-of-plane ge-
ometries with equal energy sharing at R = 1.43 bohr and 6,,,; = 55°.
Fixed electron (single ended red arrows) is perpendicular to the plane
formed by the polarization (vertical double arrow) and the molecule.
Panels showing increasing amounts of correlation in the initial state
A: lo,, B: A+ 10y, C: B+ 1m,, and D: converged result. TDCSs
have been multiplied by factors of A: 1, B: 1.42, C: 3.79, and D: 2.59
to appear on the same scale.
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plane” geometry with the fast electron emerging perpendicu-
lar to the plane of molecule and polarization vector. The entire
angular distribution twists relative to the molecular axis as the
internuclear distance varies, as shown in the comparison of
theory and experiment in the second figure in Ref. [53]. In
Fig. 8 we show that, in addition to large changes in magnitude,
the convergence of the TDCS there involves a similar twisting
of the angular distribution that would have obscured the
comparison of experiment with theory in the absence of a fully
correlated initial-state wave function.

VII. CONCLUSION

While it has long been understood that initial-state cor-
relation must play a role in one-photon double ionization,
the extent of its effect and the difference between atomic
and molecular cases have not been widely understood and
quantified. The natural orbital analysis of nearly exact initial-
state wave functions has provided a systematic way to do
so, and shown that in molecular systems the role of initial-
state correlation can be strikingly greater than in similarly
correlated atomic systems.

In molecular targets, the sensitivity to electron correlation
in double photoionization is by far best revealed by measure-
ments in the molecular frame [11-18], and for that reason we
have limited ourselves here to the exploration of this question
to oriented molecules. While those measurements thus far
have been almost exclusively limited to the cases of the H, and
D, molecules, this study suggests that double photoionization
experiments on other oriented molecules will contain strong
signatures of initial-state correlation in molecular bonds of
more complicated systems. Such measurements in H,O have

been explored already [92,93], where the dissociation of some
states of the dication into two protons and a neutral oxygen
atom creates the opportunity for body frame coincidence
measurements.

For future theoretical treatments of molecular double pho-
toionization, however, these results may suggest the problem
is more difficult than for many-electron atoms. For atomic
cases, there is a large number of studies of double ionization in
the “two-active-electron” model [35,36,38,40,42-45], which
involves freezing all but two electrons in orbitals from which
they are not excited, thereby ignoring their correlation with
the active electrons. If initial-state correlation in polyatomic
molecules is indeed generally much more important in deter-
mining the angular correlation of the ejected electrons than
in atoms, that approximation may be much less successful
in the molecular case, and one-photon double ionization may
be expected to be particularly sensitive to electron correlation
associated with bonds.
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