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Control of ultracold atoms with a chiral ferromagnetic film
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We show that the magnetic field produced by a chiral ferromagnetic film can be applied to control ultracold
atoms. The film will act as a magnetic mirror or a reflection grating for ultracold atoms when it is in the helical
phase or the skyrmion crystal phase, respectively. By applying a bias magnetic field and a time-dependent
magnetic field, one-dimensional or two-dimensional magnetic lattices including honeycomb, Kagome, and
triangular types can be created to trap the ultracold atoms. We have also discussed the trapping height, the
potential barrier, the trapping frequency, and the Majorana loss rate for each lattice. Our results suggest that the
chiral ferromagnetic film can be a platform to develop artificial quantum systems with ultracold atoms based on
modern spintronics technologies.
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I. INTRODUCTION

In the past three decades, ultracold atomic physics has
been greatly developed with progressive techniques to cool,
trap, and manipulate neutral atoms with electromagnetic fields
[1,2]. The quantum nature of the ultracold atomic gases
will emerge after suppressing the thermal fluctuations, and
these artificially controllable quantum systems provide the
ideal platforms for realizing Bose-Einstein condensation, sim-
ulating quantum many-body phenomena, performing quan-
tum computation, designing atomic interferometers, etc. Two
typical mechanisms to control the neutral atoms are the
alternating-current Stark energy shift in the high-frequency
optical field and the Zeeman energy shift in the inhomoge-
neous magnetic field. The former has been widely applied
to construct optical lattices for ultracold atoms, which play
a crucial role in the design of various quantum simulators
[3], while the latter lays the foundation to design and develop
atom chips [4]. In fact, the two mechanisms are more often
combined together to achieve the best level of control of the
ultracold atoms.

Several strategies have been developed to produce the
desirable magnetic field to control ultracold atoms. The most
flexible approach is to fabricate current-carrying conductive
microstructures to generate the Oersted field, which has been
applied to guide and trap ultracold atoms in various configu-
rations [5]. This approach however suffers from the Johnson
thermal noise and wire roughness for miniature devices. An-
other alternative way is to utilize the permanent ferromagnetic
film with artifical patterns as the effective “magnetization
current” [6,7], which however is hard to be reconfigured
and switched off. Besides, there also exist other theoretical
proposals to generate magnetic lattice for ultracold atoms,
such as the vortex array in superconducting films [8,9] and
time-periodic magnetic field pulses [10,11].
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In addition to artificial patterns, noncollinear magnetic
textures can also induce inhomogeneous configurations of the
magnetic field near the surface of the ferromagnetic film.
Indeed, West et al. have demonstrated the ability to manipulate
ultracold 87Rb atoms by magnetic domain walls in planar
magnetic nanowires [12]. Recently, chiral ferromagnetic ma-
terials with finite Dzyaloshinskii-Moriya interaction (DMI)
resulting from a lack of spatial inversion symmetry [13,14]
have attracted broad research interests [15,16], mainly due to
the discovery of magnetic skyrmions therein [17–22] and the
promising applications to develop spintronics devices [23,24].
With the formation of magnetic skyrmions, the magnetic field
distribution near the surface of the chiral ferromagnetic film
will also have been modified. For example, the magnetic
field produced by an isolated magnetic skyrmion has been
measured with the nitrogen-vacancy center in diamond [25].
The magnetic field distributions generated by the magnetic
skyrmion crystals (SkXs) with different helicity have also
been investigated theoretically [26]. Therefore, it will be inter-
esting to examine the possibility to control the ultracold atoms
with the magnetic field produced by a chiral ferromagnetic
film.

In this paper, we show that a chiral ferromagnetic film
can be utilized to design magnetic mirrors, reflection grating,
magnetic lattices, etc., which are the elementary devices to
control ultracold atoms. Considering the diversity of chiral
ferromagnetic materials and the rapidly developing spintron-
ics techniques, the approach proposed here could be crucial to
developing ultracold atom physics in the future.

II. BASIC PRINCIPLE AND MODEL

The proposed device is schematically shown in Fig. 1(a).
A chiral ferromagnetic film is placed in the x-y plane with
z = 0 nm, which will generate the spatial distributions of
the magnetic field Bc. A uniform magnetic field, B0, is
applied perpendicular to the film to create zero points at
finite heights. Furthermore, a time-dependent magnetic field,
BM = BM (sin ωMt, cos ωMt, 0), parallel to the film will be
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FIG. 1. (a) Schematic diagram for the device. A chiral ferromag-
netic film with prepared magnetization configuration is placed at the
x-y plane with z = 0 nm, which will produce a magnetic field, Bc.
A bias magnetic field, B0, is applied perpendicular to the film, and
a time-dependent magnetic field, BM (t ), is applied parallel to the
film. The trapping potential for the ultracold atoms (blue balls) is
a combination of the three magnetic fields. (b) Phase transition of
the chiral ferromagnetic film defined by Eq. (1). The magnetization
configurations of the helical phase and the skyrmion crystal phase are
obtained at B = 0 T and B = −(0, 0, 0.3) T, respectively. The arrows
denote the magnetization direction at each site, and the amplitude of
mz is shown with different colors.

introduced to generate an effective time-orbiting potential in
order to suppress the Majorana loss [9,27]. Thus, the total
magnetic field profile of such a device will be B = Bc +
B0 + BM .

When an atom with the magnetic dipole moment μ is
moving in the inhomogeneous magnetic field B(r), it will
experience the Stern-Gerlach force given by the potential
energy U (r) = −μ · B(r). If the spatial change of the mag-
netic field felt by the atom is much slower than its Larmor
precession, its magnetic moment will adiabatically follow the
direction of the magnetic field, and the potential energy will
now depend only on the modulus of B(r), which is given
as U (r) = mF gF μBB(r) for the hyperfine state |F,mF 〉 [4].
Here, gF is the Landé factor, μB is the Bohr magneton, F

is the total angular momentum quantum number, and mF is
the magnetic quantum number of the atom. Therefore, the
atom will be in the strong-field seeking state for mF gF < 0
and in the weak-field seeking state for mF gF > 0. Since no
minimum can exist in the potential U (r) for the strong-field

seeking state according to the Earnshaw’s theorem [4], only
the atoms prepared in the weak-field seeking state can be
magnetically trapped. For example, the 87Rb and 7Li atoms
can be magnetically trapped when they stay in the state |F =
2,mF = 2〉 [5,28].

The external magnetic field B should be applied in advance
to tune the magnetization configuration of the chiral ferromag-
netic film, which is described by the energy functional density

E[m] = J

2
(∇m)2 + Dm · (∇ × m) − Km2

z − MsB · m.

(1)

Here, m(r) is the magnetization distribution of the film nor-
malized by the saturation magnetization Ms ; the four terms
in Eq. (1) are the Heisenberg exchange interaction, the DM
interaction, the perpendicular magnetic anisotropy energy, and
the Zeeman energy in the presence of the applied magnetic
field B, respectively. Then the magnetization dynamics are
given by the Landau-Lifshitz-Gilbert(LLG) equation

dm
dt

= −γ m × Heff + αm × dm
dt

. (2)

Here, γ is the gyromagnetic ratio, Heff = − 1
Ms

∇mE[m] is the
effective magnetic field, and α is the Gilbert damping coeffi-
cient. For a given set of parameters, the stable magnetization
configuration of the chiral ferromagnetic film is achieved as
the stationary solution of the LLG equation [26]. As shown in
Fig. 1(b), when the external magnetic field B is perpendicular
to the film and is continuously increased from zero, the ground
state of the chiral ferromagnetic film will evolve from the
helical phase to the skyrmion crystal phase at first and reach
the ferromagnetic phase finally. During the micromagnetic
simulations, the parameters are set as J = 15 pJ/m, D =
3 mJ/m2, K = 0.7 mJ/m3, Ms = 580 kA/m, α = 0.3, and
the thickness of the film is assumed to be 1 nm. The film is
subdivided into cubic grids with the size 1 × 1 × 1 nm3, and
the time step for the simulations is set as 0.01 ps. Besides,
the temperature is linearly decreased from 1000 to 0 K during
100 ns to avoid possible local minima trap.

The external magnetic field B will be withdrawn once the
desirable magnetization pattern is stably reached. Then the
magnetic field Bc(r) generated by the magnetization config-
uration m(r) of the chiral ferromagnetic film can be directly
calculated as [26]

Bc(r) = μ0

4π

∫
dr′ 3(m(r′) · R̂)R̂ − m(r′)

R3
, (3)

where R = r − r′. Below, we study how to control the ultra-
cold atoms in the weak-field seeking state with the magnetic
field Bc(r) when the chiral ferromagnetic film is prepared in
the helical phase and the skyrmion crystal phase, respectively.

III. HELICAL PHASE

As shown in Fig. 1(b), the helical phase can be achieved as
the ground state of the chiral ferromagnetic film when B = 0,
where the magnetization configuration is periodically modu-
lated in one direction and mimics the structure of a magnetic
mirror for ultracold atoms fabricated from permanent ferro-
magnetic materials [4,29]. Nevertheless, it is advantageous
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FIG. 2. Profiles of the magnetic field amplitude B(r) for a chiral
ferromagnetic film at the helical phase. (a) Magnetic mirror when
B0 = 0 mT and BM = 0 mT. Top panel: Isosurfaces of B(r) with
three values: 8, 16, and 24 mT. Middle and bottom panels: Cross
sections of B(r) when z = 7 nm, x = 21 nm, and y = 42 nm, re-
spectively. (b) One-dimensional magnetic lattice when B0 = 20 mT
and BM = 10 mT. Top panel: Isosurfaces of B(r) with three values:
13.5, 17.0, and 20.5 mT. Middle and bottom panels: Cross sections
of B(r) when z = 8 nm, x = 21 nm, and y = 42 nm, respectively.

to utilize a chiral ferromagnetic film in the helical phase as
a magnetic mirror, since the helical phase is spontaneously
formed as the ground state and can also be easily switched
off by applying an external magnetic field. Here, the complex
fabrication processes are not required in comparison to the
ferromagnetic film with artificial patterns [4,29]. Besides,
the period of the helical phase can be tuned by engineering
the DMI [30,31], which thereby makes it flexible to control
ultracold atoms.

The magnetic field amplitude Bc(r) solely generated by
the chiral ferromagnetic film in the helical phase in Fig. 1(b)
has been numerically calculated based on Eq. (3) and is
demonstrated in Fig. 2(a). Here, the bias magnetic field B0

and the time-dependent field BM have not been switched
on yet. We see that the isosurfaces of Bc(r) will be nearly
parallel to the x-y plane. In fact, a weak periodic modulation
of Bc(r) will happen at fixed height z. For example, Bc(r)
will periodically vary from 21 to 24 mT when z = 7 nm. On
the other hand, Bc(r) will decay from 81 to 2 mT when the
height z increases from 0 to 25 nm. Therefore, the effective
distance for a chiral ferromagnetic film to control the ultracold
atoms will be tens of nanometers with the given simulation
parameters here.

The simulated results in Fig. 2(a) can be further understood
considering that the magnetization configuration of the helical
phase can be approximated as a single-Q state mh(r) =
m0δ(z) + A[êz cos(Q · r) + ê sin(Q · r)]δ(z). Here, êz is the
unit vector normal to the film and Q defines the wave vector
of the helical state; the unit vector ê is determined as ê =
êz × Q̂ for the Bloch-type DMI given in Eq. (1); A gives
the amplitude of the modulated magnetization configuration
of the helical state. The delta function δ(z) here implies that
the thickness of the film is neglected. Then the magnetic field
distribution Bh(r) generated by the single-Q state mh(r) is
analytically obtained as [26]

Bh(r) = AQ

2
e−Q|z|[sgn(z)Q̂ sin(Q · r) + êz cos(Q · r)],

(4)

and its modulus is Bh(r) = AQ

2 e−Q|z|. Therefore, the chiral
ferromagnetic film described by the single-Q state will estab-
lish an exponential repulsive potential to reflect the ultracold
atoms in the weak-field seeking state. The decay length of the
potential is proportional to the period of the helical phase,
which is usually about a few tens of nanometers or even
smaller for typical chiral ferromagnetic materials [23]. Since
the period and the decay length of the artificial microstructures
are usually in the order of magnitude of micrometers [4],
a much harder magnetic mirror for ultracold atoms can be
realized with the chiral ferromagnetic film. Note that Bh(r)
here is constant at the given height z, which is different from
the numerical result in Fig. 2(a). This minor deviation origi-
nates from the magnetic anisotropy energy in Eq. (1), where
the single-Q state becomes an oversimplified and inaccurate
description of the helical phase. It will be important to choose
the materials with smaller magnetic anisotropy to get more
smooth mirrors.

The profile of magnetic field amplitude will be modified
significantly when the bias magnetic field B0 and the time-
dependent magnetic field BM are turned on [4,29]. Figure 2(b)
shows the distribution of total magnetic field amplitude B(r)
for the device when B0 = (0, 0, 20) mT and BM = 10 mT.
As shown in Fig. 2(b), the minima of B(r) in this case will
locate at the parallel lines in the plane z = 8 nm, and the
appearing one-dimensional magnetic lattice is able to trap the
ultracold atoms in the weak-field seeking state. We can define
the “recoil energy” of the lattice as ER = π2h̄2/(2maa

2),
where ma is the atomic mass and a is the lattice constant [9].
For the helical phase with a = 42 nm here, the recoil energy
ER is estimated as 1.3 neV for the 87Rb atom or 16 neV for
the 7Li atom, respectively.

The numerical results in Fig. 2(b) can also be understood
with the help of the single-Q state. Assuming that B0 =
AQ

2 (0, 0, B0) and BM = AQ

2 BM , the modulus of the total
magnetic field B(r) will be

B(r) = AQ

2

√
B2

0 + B2
M + e−2Q|z| + 2B0e−Q|z| cos(Q · r).

(5)

Therefore, such an operation will create a one-dimensional
periodic potential for the ultracold atoms in the plane parallel
to the film. This in fact forms an effective reflection grating
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(a)

(b)

(c)

FIG. 3. Field-dependent parameters of the one-dimensional
magnetic lattice for the 87Rb atom. (a) The trapping height zmin and
the potential barrier Ubarr in the unit of the recoil energy ER . (b) The
trapping frequency ωT /2π . (c) The Majorana loss rate �/2π . Here,
B0 varies from 5 to 40 mT, while BM is fixed as 10 mT.

for the incident atoms [29], which will attain the period in
the range of nanometers and hence greatly extend the border
of current technologies. Furthermore, the modulus B(r) will
achieve its minimal value Bmin = BM along the parallel lines
defined by cos(Q · rmin) = −1 and |zmin| = − 1

Q
ln B0 in the

case of B0 < 1. Thus, the magnetic field around each line
will become a guide to trap the ultracold atoms, where the
trapping height |zmin| depends on the applied magnetic field.
When B0 is continuously increased, the guides will get close
to the film and finally disappear at B0 = 1. This trend has
also been verified in the numerical calculations, as shown in
Fig. 3(a). When the magnetic field B0 varies from 5 to 40 mT,
the trapping height of the one-dimensional magnetic lattice
will decay from about 17 to 3 nm.

In addition to the trapping height, the potential barrier for
the atoms to escape from the minima locations zmin to the
infinitely far region z → ∞ can also be tuned by the magnetic
field B0. The difference between the magnetic field ampli-
tudes B(∞) and B(zmin) will be δB =

√
B2

0 + B2
M − BM , and

the potential barrier will be Ubarr = mF gF μBδB. When BM is
fixed as 10 mT and B0 increases from 5 to 40 mT, the potential
barrier for the 87Rb and 7Li atoms in the |F = 2,mF = 2〉
state will vary from 0.068 to 1.81 μeV, which corresponds
to the temperature range from 0.8 to 21 mK. In Fig. 3(a), the
dependence of Ubarr on B0 is explicitly shown in the unit of
the recoil energy ER for the 87Rb atom.

The trapping frequency ωT of the atoms near the minima
of the one-dimensional magnetic lattice can be calculated
as ωT = √

mF gF μBB′′
min/ma , where B′′

min is the magnetic
field curvature at the minima. Figure 3(b) shows the trap-
ping frequencies along the x and z directions for the 87Rb
atom in |F = 2,mF = 2〉 state when BM = 10 mT and B0 ∈
[5, 40] mT, where ωT,x/2π ∈ [9.5, 61.3] MHz and ωT,z/2π ∈
[9.7, 60.9] MHz, respectively. Then the energy of the 87Rb
atom will be in the range [0.04, 0.25] μeV, which corresponds
to the temperature range [0.46,2.9] mT. Since the mass of the
7Li atom is about one-twelfth of the 87Rb atom’s mass, its
trapping frequency will be about 3.5 times of the estimated
value above.

The Majorana loss rate near the minima of the lattice
potential can be estimated as �/2π = ωT exp(−4ωL/ωT )
[9,32], where ωL = mF gF μBBM/h̄ is the Larmor precession
frequency at the minima. As shown in Fig. 3(c), �/2π for
the 87Rb atom will increase from 10−18 to 104 Hz when the
magnetic field B0 varies from 5 to 40 mT. Therefore, for a
given BM , the magnetic field B0 will give a higher potential
barrier Ubarr and a larger Majorana loss rate �/2π simulta-
neously, which should be optimally chosen during practical
applications. Besides, the Majorana loss rate for the 7Li atom
will be larger because of its higher trapping frequency in the
lattice.

More complex potential profiles for ultracold atoms can
be constructed based on the helical phase in the chiral fer-
romagnetic film. For example, if the applied magnetic field is
along the magnetic stripes of the helical phase, the reflection
plane of the magnetic mirror will be shifted toward the film
[29]. Then a vibrating magnetic mirror for the ultracold atoms
can be realized if the applied field is harmonically oscillated
[29]. Furthermore, a “moving grating” or “conveyor belt”
[29] can be obtained if a magnetic field is rotating in the
plane perpendicular to the magnetic stripes. Therefore, we
expect that the helical phase in a chiral ferromagnetic film can
have widespread applications to develop and design various
elementary devices for atom optics and atom chips.

IV. SKYRMION CRYSTAL PHASE

The chiral ferromagnetic film can be driven into the SkX
phase by a strong magnetic field B, as shown in Fig. 1(b). Due
to its topologically protected nature, the SkX phase will exist
as a metastable state after withdrawing the applied magnetic
field [33]. The lifetime of the metastable SkX phase there can
be as long as 104 s at 23 K [33], which is long enough to ma-
nipulate the ultracold atoms. The magnetic field distributions
generated by Bloch-type and Néel-type SkXs have both been
investigated thoroughly [26], which can be used to construct
two-dimensional magnetic lattices for ultracold atoms. Here,
we focus on the Bloch-type SkXs given by Eq. (1), and the
Néel-type SkXs can be treated in the same way.

The magnetic field amplitude Bc(r) generated by the SkX
phase in Fig. 1(b) without the external magnetic field B is
shown in Fig. 4(a). Here, Bc(r) decreases from 105 to 1 mT
when the height z increases from 0 to 25 nm; while in the
plane at height z = 5 nm, Bc(r) periodically varies from 18 to
40 mT. Specially, the minima of Bc(r) at a fixed height form
a Kagome lattice, while its maxima at the same height form a
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FIG. 4. Profiles of the magnetic field amplitude B(r) for the chiral ferromagnetic film in the SkX phase. (a) Two-dimensional reflection
gating when B0 = 0 mT and BM = 0 mT. Top panel: Isosurfaces of B(r) with three values: 3, 6, and 9 mT. Middle and bottom panels:
Cross sections of B(r) when z = 5 nm, x = 31 nm, and y = 35 nm, respectively. (b) Honeycomb magnetic lattice when B0 = 10 mT and
BM = 10 mT. Top panel: Isosurfaces of B(r) with three values: 10.2, 10.4, and 10.6 mT. Middle and bottom panels: Cross sections of B(r)
when z = 9 nm, x = 21 nm, and y = 35 nm, respectively. (c) Kagome magnetic lattice when B0 = 10 mT and BM = 10 mT. Top panel:
Isosurfaces of B(r) with three values: 10.2, 10.4, and 10.6 mT. Middle and bottom panels: Cross sections of B(r) when z = 8 nm, x = 31 nm,
and y = 35 nm, respectively. (d) Triangular magnetic lattice when B0 = −10 mT and BM = 10 mT. Top panel: Isosurfaces of B(r) with three
values: 11, 12, and 13 mT. Middle and bottom panels: Cross sections of B(r) when z = 12 nm, x = 31 nm, and y = 17 nm, respectively.

triangular lattice. Therefore, the chiral ferromagnet film in the
SkX phase can be viewed as a two-dimensional “reflection
grating” for the ultracold atoms.

When the bias magnetic field B0 and the time-dependent
magnetic field BM are switched on, the minima of the total
magnetic field amplitude B(r) will appear at finite heights
and will form two-dimensional magnetic lattices to trap the
ultracold atoms. For example, the distribution of B(r) when
B0 = BM = 10 mT is shown in Figs. 4(b) and 4(c). Here, one
group of minimal points appears at the height zmin = 9 nm
and is located at the centers of the triangles determined by
any three nearest skyrmions, and thus form a honeycomb
magnetic lattice. Another group of minimal points is located
at the middle points between any two nearest skyrmions at the
height zmin = 8 nm, and thus form a Kagome magnetic lattice.
When the direction of the bias magnetic field is reversed with
B0 = −10 mT, a triangular magnetic lattice will be formed at
the height zmin = 12 nm, and the minimal points of B(r) will
locate at the center of the skyrmions, as shown in Fig. 4(d).
The recoil energy ER now is 1.9 neV for the 87Rb atom and
24 neV for the 7Li atom, where the lattice constant for the SkX
phase is about 35 nm.

The magnetization configuration of the Bloch-type SkX is
approximately described by a triple-Q state [23,26]: mskx(r)=
m0(r)δ(z) + A

∑3
i=1[êz cos(Qi · r) + êi sin(Qi · r)]δ(z).

Without loss of generality, the wave vectors Qi = QQ̂i

here are set as Q̂1 = (1, 0, 0), Q̂2 = (− 1
2 ,

√
3

2 , 0), and Q̂3 =
(− 1

2 ,−
√

3
2 , 0), which then give the set of unit vectors êi =

êz × Q̂i . The spatial distribution of the magnetic field gener-
ated by Bloch-type SkXs is explicitly expressed as [26]

Bskx(r) = AQ

2
e−Q|z|

×

⎛
⎜⎜⎝

sgn(z)
[

sin(Qx) + sin
(

1
2Qx

)
cos

(√
3

2 Qy
)]

sgn(z)
√

3 cos
(

1
2Qx

)
sin

(√
3

2 Qy
)

cos(Qx) + 2 cos
(

1
2Qx

)
cos

(√
3

2 Qy
)

⎞
⎟⎟⎠.

(6)

Its modulus is Bskx(r) = AQ

2 e−Q|z|√F (x, y), where

F (x, y) = 1 + 3 cos2( 1
2Qx) + cos2(

√
3

2 Qy) + 4 cos3( 1
2Qx)

cos(
√

3
2 Qy). We see that Bskx(r) will decay exponentially

along with the height |z|. Besides, F (x, y) will reach it
minimal value 1 on a Kagome lattice and reach its maximal
value 9 on a triangular lattice. Therefore, the analytical results
based on the triple-Q state here coincide with the features
revealed numerically in Fig. 4(a).

After turning on the magnetic fields B0 = AQ

2 B0 and BM =
AQ

2 BM , which are weak enough that the SkX phase is not
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destroyed, the modulus of the total magnetic field
will be B(r) = AQ

2

√
G(r), where G(r) = B2

0 +
B2

M + 2B0e
−Q|z|[cos(Qx) + 2 cos( 1

2Qx) cos(
√

3
2 Qy)] +

e−2Q|z|F (x, y). Hence, B(r) will be finite and homogeneously
distributed as |z| → ∞, while the minimal value
Bmin = 10 mT of B(r) can be achieved at periodic arrays of
points at the finite height zmin. The minimal points of B(r)
will be determined by

sin

(
1

2
Qx

)[
2 cos

(
1

2
Qx

)
+ cos

(√
3

2
Qy

)]
= 0,

cos

(
1

2
Qx

)
sin

(√
3

2
Qy

)
= 0,

e−Q|z|
[

cos2

(
1

2
Qx

)
− sin2

(
1

2
Qx

)

+ 2 cos

(
1

2
Qx

)
cos

(√
3

2
Qy

)]
+ B0 = 0. (7)

Three sets of solutions are found for Eq. (7), which then
define the following three types of two-dimensional magnetic
lattices for the ultracold atoms.

(a) Honeycomb lattice if 0 < B0 < 3/2. The lat-
tice sites are defined by sin( 1

2Qx) = ±
√

3
2 , cos( 1

2Qx) =
− 1

2 , sin(
√

3
2 Qy) = 0, cos(

√
3

2 Qy) = 1, and e−Q|z| = 2
3B0

or by sin( 1
2Qx) = ±

√
3

2 , cos( 1
2Qx) = 1

2 , sin(
√

3
2 Qy) = 0,

cos(
√

3
2 Qy) = −1, and e−Q|z| = 2

3B0, as shown in Fig. 5(a).
The height of these points is |zmin| = − 1

Q
ln( 2

3B0), which will
decrease with increased B0 and vanish at B0 = 3/2. The hon-
eycomb optical lattices have been proposed [34] and shown
to trap the ultracold atoms, which then are able to simulate
exotic phenomena including the superfluid-to-Mott-insulator
transition [35], Dirac points [36], the quantum anomalous Hall
effect [37], etc. Therefore, similar physical phenomena of the
ultracold atoms are expected when they are trapped by the
honeycomb magnetic lattice here.

(b) Kagome lattice if 0 < B0 < 1. The lattice sites are
defined by sin( 1

2Qx) = ±1, cos( 1
2Qx) = 0, sin(

√
3

2 Qy) =
±1, cos(

√
3

2 Qy) = 0, and e−Q|z| = B0; by sin( 1
2Qx) = 0,

cos( 1
2Qx) = 1, sin(

√
3

2 Qy) = 0, cos(
√

3
2 Qy) = −1, and

e−Q|z| = B0; or by sin( 1
2Qx) = 0, cos( 1

2Qx) = −1,

sin(
√

3
2 Qy) = 0, cos(

√
3

2 Qy) = 1, and e−Q|z| = B0, as shown
in Fig. 5(b). The height of these points is |zmin| = − 1

Q
ln B0,

which will also decrease with increased B0 and vanish at
B0 = 1. Therefore, the Kagome lattice is more close to the
film surface than the honeycomb lattice when the two coexist,
which is also revealed in Figs. 4(b) and 4(c). The Kagome
lattice has the intriguing ability to host flat band states of
ultracold atoms, which is an ideal platform to study quantum
many-body physics. Hence, the chiral ferromagnetic film
provides a platform to realize the Kagome lattice for ultracold
atoms in addition to the optical method [38,39].

(c) Triangular lattice if −3 < B0 < 0. The lattice sites
are defined by sin( 1

2Qx) = 0, cos( 1
2Qx) = 1, sin(

√
3

2 Qy) =

FIG. 5. The sites of three types of two-dimensional magnetic
lattices, which are determined by the three sets of solutions of Eq. (7).
(a) honeycomb lattice, (b) Kagome lattice, and (c) triangular lattice.

0, cos(
√

3
2 Qy) = 1, and e−Q|z| = − 1

3B0 or by sin( 1
2Qx) =

0, cos( 1
2Qx) = −1, sin(

√
3

2 Qy) = 0, cos(
√

3
2 Qy) = −1, and

e−Q|z| = − 1
3B0, as shown in Fig. 5(c). The height of these

points is |zmin| = − 1
Q

ln(− 1
3Bz), which will decrease with

increased B0 and vanish at B0 = −3. Similar to the case of
the optical lattice, the triangular magnetic lattice here can also
be useful to simulate geometrically frustrated magnetism with
ultracold atoms [40].

The properties of the two-dimensional magnetic lattices
are further investigated for the chiral ferromagnetic film de-
scribed by Eq. (1). As shown in Fig. 6, the trapping height of
each lattice will decrease when the bias magnetic field B0 is
continuously increased with fixed BM = 10 mT, which agrees
with the analytical results above. Meanwhile, the potential
barrier Ubarr for the same type of atom will be the same as the
one-dimensional magnetic lattice discussed in Sec. III, since
δB only depends on B0 and BM . The trapping height and the
potential barrier will be the same for the 7Li atom in the state
|F = 2,mF = 2〉.

The ultracold atoms will be confined in three directions
by the two-dimensional magnetic lattices, and the trapping
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FIG. 6. The dependence of the trapping height zmin, the potential barrier Ubarr, the trapping frequency ωT /2π , and the Majorana loss rate
�/2π for the 87Rb atom on the bias magnetic field. Here, ER is the recoil energy of the 87Rb atom, B0 varies from 2.5 to 20 mT, and BM is
fixed as 10 mT. (a) Honeycomb lattice, (b) Kagome lattice, and (c) triangular lattice.

frequencies ωT for 87Rb atoms are given in Fig. 6 when
BM = 10 mT and |B0| varies from 2.5 to 20 mT. Similar to
the one-dimensional magnetic lattice, a stronger bias magnetic
field will induce higher trapping frequency here. Besides,
the inequivalence of trapping frequencies along different di-
rections suggests the anisotropy of the trapping potential
near the minima of the two-dimensional magnetic lattices.
The Majorana loss rates �/2π for 87Rb atoms in the two-
dimensional magnetic lattices are also presented in Fig. 6.
As expected, �/2π will be enhanced with increasing the bias
magnetic field B0 and has the same anisotropic feature as
the trapping frequency ωT . Similar to the one-dimensional
magnetic lattice, a 7Li atom in the state |F = 2,mF = 2〉 will
attain higher trapping frequency and larger Majorana loss rate
due to its smaller mass.

V. DISCUSSIONS AND CONCLUSION

Although the chiral ferromagnetic film has shown attrac-
tive features to control the ultracold atoms, there are still
several issues to be addressed for practical performances.
First of all, one needs to transfer the ultracold atoms to the
magnetic lattices near the film surface for further operations.
This might be accomplished by loading the atoms from an
external dimple trap [41] by adiabatically tuning the trapping
height with the bias field B0, which in fact has been proposed
for the magnetic lattice created by a superconducting film
[9]. Second, imperfections will always be introduced to the
magnetic field by the unavoidable defects in the chiral ferro-
magnetic film, such as the bent helical stripes, the irregular
array of skyrmions, or even their mixtures [23]. In order to get

ideal magnetic lattices, it will be critical to improve the quality
of the chiral ferromagnetic film and get perfect magnetic
patterns. Finally, the trapping height of the ultracold atoms
will be tens of nanometers, which is so close that the Casimir-
Polder force between the atoms and the film surface will be
significantly enhanced [4]. Therefore, the dynamic behavior
of ultracold atoms interacting with the chiral ferromagnetic
film should be very different from the case of the optical
lattice, which needs to be explored further.

In conclusion, we have investigated the possibility to con-
trol ultracold atoms with the magnetic field produced by the
chiral ferromagnetic film. We demonstrate how to realize
the magnetic mirror, reflection grating, and one-dimensional
and two-dimensional magnetic lattices in the proposed de-
vice. Compared with current top-down techniques to produce
magnetic fields for ultracold atoms, the strategies based on
the chiral ferromagnetic film here belong to the bottom-up
category and will be more flexible and controllable. With the
benefit of the continuous advances of the spintronics technol-
ogy and material science, the interactive ultracold atoms and
the chiral ferromagnetic film can be a promising platform to
demonstrate exotic physics phenomena and develop quantum
techniques.
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