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Three-body pseudopotential for atoms confined in one dimension
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Following a strong analogy with two-dimensional physics, the three-body pseudopotential in one dimension
is derived. The Born approximation is then considered in the context of ultracold atoms in a linear harmonic
waveguide. The equivalence between this model and the three-body wave equation obtained directly from the
Schrödinger equation, including the confinement potential of the waveguide, is demonstrated in the vicinity of
the dimer threshold.
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I. INTRODUCTION

At sufficiently low temperature, ultracold atoms in very
elongated harmonic traps can be considered as in a one-
dimensional (1D) geometry. For bosons, the idealization of
the trap in terms a 1D harmonic waveguide permits one to
achieve a mapping with the Lieb-Liniger model [1,2]. In
this context, few-body systems in 1D have attracted recent
interest [3–6]. As a consequence of the Yang-Baxter criterion
[7], the three-body problem occupies also a central place
in studying the breakdown of integrability in these systems
[8–11]. Interestingly, virtual excitations of pairs of atoms in
the transverse modes of the waveguide led to the introduction
of a 1D zero-range three-body potential [8,9]. This potential
has important consequences in the prediction of a 1D dilute
liquid state [12,13]. Moreover, it permits one to predict the
existence of an excited trimer state in the vicinity of the dimer
threshold [14,15]. This prediction coincides exactly with that
derived directly from the dimensional reduction of the three-
dimensional (3D) Schrödinger equation in the presence of a
1D waveguide [16].

In Ref. [15] a renormalization procedure is used to cure
the divergencies coming from the bare zero-range three-body
potential. In Ref. [14] a three-body contact condition is used
instead to implement the zero-range model. These two-last
studies lead to exactly the same reduced equation of the three-
body problem, referred to hereafter as the 1D Skorniakov
Ter-Martirosian (STM) equation. Nevertheless the 1D STM
equation in Ref. [16] differs from the latter, even though the
same prediction for the excited trimer state is obtained near
the dimer threshold.

In this work, using a mapping with two-dimensional (2D)
physics, a three-body zero-range pseudopotential leading to
a mathematically well-behaved problem is derived both in
configuration (Sec. II) and in momentum space (Sec. III).
The pseudopotential has the same form as the two-body �

potential in the 2D space [17]. Then the equivalence between
the zero-range model and the renormalization procedure of
Ref. [15] is obtained in Sec. IV. In Sec. V, the STM equation
for three bosons interacting via the two- and three-body zero-
range potentials is derived. This STM equation is identical
to that obtained in Refs. [14,15]. The � parameter of the

pseudopotential can be any wave number. However using the
pseudopotential at first order of the perturbation theory breaks
this invariance in a change of �. In Sec. VI, it is shown that
a specific value of � permits one to justify the use of the
pseudopotential at the first order of the perturbation and to
recover the renormalized strength of the zero-range potential.
Finally, in Sec. VII, the equivalence between the zero-range
1D model and the dimensional reduction method is obtained
in the vicinity of the dimer threshold where the first-order
perturbation theory is accurate.

II. REGULARIZED ZERO-RANGE
THREE-BODY POTENTIAL

In this section the 1D three-body contact potential is intro-
duced in complete analogy with the 2D two-body problem.
Let us consider three particles of the same mass m labeled
by the index i ∈ (1, 2, 3). The positions of the three particles
are given by the coordinates zi . The center of mass of the
system is C = (z1 + z2 + z3)/3, and the two other Jacobi
coordinates are

zij = zi − zj ; Zij = 2√
3

(
zk − zi + zj

2

)
, (1)

where all the indices i, j, k are distinct and are a cyclic
permutation of the triplet (1, 2, 3). The general form of the
zero-range three-body potential can be written as

V
pp

3 �(z1, z2, z3) = h̄2

m
δ(z12)δ(z23)ψ3(C). (2)

The function 〈C|ψ3〉 is denoted hereafter as the three-body
contact. It will be shown later that it characterizes the singular
behavior of the wave function at the contact of the three
particles. For a given pair (ij ), one introduces the hyper-radius
R =

√
Z2

ij + z2
ij and the hypercoordinates that allow for the

2D mapping,

R = zij êz + Zij êZ, (3)
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where (êz, êZ ) is an orthonormal basis. In this system of
coordinates, the potential in Eq. (2) can be expressed as

V
pp

3 �(z1, z2, z3) = 2h̄2

m
√

3
δ2(R)ψ3(C). (4)

Due to its s-wave character, the expression of the zero-range
potential in Eq. (4) does not depend on the choice of a specific
pair of particles in the definition of the hypercoordinate R.
For a bare three-body zero-range potential, the three-body
contact ψ3(C) is just the value of the wave function at the
contact of the three particles. However, similarly to the two-
dimensional Green’s function, for a given value of the three-
body contact, the two-dimensional δ distribution in Eq. (4)
gives rise to a logarithmic singularity of the wave function at
R = 0: �(z1, z2, z3) ∼ ln (R/l)ψ3(C)/(π

√
3) + · · ·, where

the length l is needed for having a dimensionless argument
of the logarithmic function. As the wave function is infinite
at the contact R = 0, the bare zero-range potential thus leads
to a mathematically not-well-behaved model. In practice, the
bare potential can be used at the first order of perturbation,
where the unperturbed wave function is regular at the contact
[13] (see Sec. VI). When the bare potential is used nonper-
turbatively as in Ref. [15], a renormalizing procedure of the
strength is necessary (see Sec. IV).

As a consequence of the 2D mapping in Eq. (3), a mathe-
matically consistent zero-range model of the three-body inter-
action in 1D is given by considering a self-adjoint extension of
the 2D Laplacian �R [18]. In this modeling, the domain of the
Hamiltonian corresponds to wave functions that are defined
everywhere except at the contact R = 0 and which also verify
the contact condition:

�(z1, z2, z3) =
R→0

ψ3(C)

π
√

3
ln

(
R

a3

)
+ · · · . (5)

In Eq. (5), a3 is a fixed length that characterizes the underlying
short-range physics during a three-body collision. It is denoted
hereafter as the 1D three-body scattering length. Equation (5)
shows that the three-body scattering length is analogous to
a disk radius: it fixes the same node at a given hyper-radius
for all the eigenstates of the Hamiltonian. The zero-range
three-body potential is fully defined by the boundary con-
dition in Eq. (5) and has been introduced in Ref. [14]. The
three-body contact ψ3(C) in Eq. (5) depends on the state
considered. For instance, in the free 1D space and in the
absence of two-body potential, a bound state is necessarily
given by the 2D Green’s function at negative energy. Thus
�(R) = NK0(qR) (N is the normalization factor and K0 is
a modified Bessel function of second kind). Considering the
singularity of this state for a vanishing hyper-radius, one finds,
by identification with the contact condition in Eq. (5), that the
contact is ψ3 = −Nπ/

√
3 and the binding wave number is

q = 2e−γ /a3. In this case, there is thus only one bound state
of binding energy E3 = − 4h̄2e−2γ

ma2
3

.
Another equivalent way to implement the zero-range

model of the three-body interaction is to introduce the op-
erator that permits one to calculate the contact ψ3(C) from
the wave function. For this purpose, one can notice again that
Eqs. (4) and (5) are formally equivalent to the definition of a
zero-range potential in the 2D two-body problem [17,19]. It

is then straightforward to use, for the three-body zero-range
potential, the known expression of the 2D � potential:

V
pp

3 �(z1, z2, z3)

= −π
√

3h̄2

m ln (eγ �a3/2)
δ(z12)δ(z13)

× lim
R→0

[
1 − ln

(
eγ �R

2

)
R

∂

∂R

]
�(z1, z2, z3), (6)

where the parameter � is any wave number. From Eq. (6), one
can identify the �-dependent strength in the pseudopotential,

g3(�) = −π
√

3h̄2

m ln (eγ �a3/2)
, (7)

and the regularizing operator,

〈C|R�|�〉 = lim
R→0

[
1 − ln

(
eγ �R

2

)
R

∂

∂R

]
�(z1, z2, z3).

(8)

Using the identity �R ln(R) = 2πδ(R), one can verify that
the δ terms in the Schrödinger equation are eliminated if
and only if the wave function verifies the contact condition
in Eq. (5). Consequently, in the pseudopotential approach,
imposing that the eigenstates are solutions of the Schrödinger
equation for all values of the coordinates, including at the
point of contact R = 0, is a way to select the set of wave func-
tions satisfying the correct contact condition. Using Eq. (5),
one finds g3(�)〈C|R�|�〉 = h̄2

m
ψ3(C) for any value of the

parameter � and thus one recovers Eq. (4) from the �

potential in Eq. (6).

III. THREE-BODY PSEUDOPOTENTIAL IN THE
MOMENTUM REPRESENTATION

In what follows, the three-body zero-range pseudopotential
is derived in the momentum representation. The momentum of
the particle i is denoted by ki . To avoid any ambiguities with
the equations in configuration space, the bra-ket notation will
be used below. The analogy with the two-body problem in
2D can be pursued, and the derivation follows along the same
lines as in Refs. [20,21]. For this purpose, one defines the
Jacobi coordinates in the momentum space. The momentum
of the center of mass is kC = k1 + k2 + k3. The two other
Jacobi coordinates are defined by

kij = ki − kj

2
; Kij = 2kk − (ki + kj )

3
. (9)

In what follows, the notations k = k12 and K = K12 are used.
Similarly to what has been done in the previous section, one
introduces the hypermomentum

Q = kêz +
√

3

2
K êZ. (10)

The stationary Schrödinger equation at energy E, for a sys-
tem with only one interaction term given by the three-body
potential of Eq. (2), is in the momentum space(

Q2 + k2
C/6 − mE/h̄2

)〈Q, kC|�〉 = −〈kC|ψ3〉. (11)
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Equation (11) gives the high-momentum behavior of the
wave function for all energies and also in the possible
presence of other nonsingular three-body potential. The
three-body contact can be thus defined in the momentum
representation by

〈kC|ψ3〉 = − lim
Q→∞

Q2〈Q, kC|�〉. (12)

Let us consider the Green’s function at the negative energy
−h̄2�2/m in the center-of-mass frame for a vanishing hyper-
radius (R → 0):∫

d2Q

(2π )2

exp (iQ · R)

Q2 + �2
= − 1

2π
ln

(
eγ R�

2

)
+ · · · . (13)

Equation (13) can be used for any positive value of the
parameter � and permits one to express the three-body contact
condition in Eq. (5) as

2√
3

∫
d2Q

(2π )2

[
〈Q, kC|�〉 + 〈kC|ψ3〉

Q2 + �2

]
= h̄2〈kC|ψ3〉

mg3(�)
. (14)

From Eqs. (2) and (14), one can deduce the three-body pseu-
dopotential in the momentum representation,

〈k1, k2, k3|V pp
3 |�〉 = g3(�)〈kC|R�|�〉, (15)

where

〈kC|R�|�〉 = 2√
3

∫
d2Q

(2π )2

[
〈Q, kC|�〉 + 〈kC|ψ3〉

Q2 + �2

]
,

(16)

and 〈kC|ψ3〉 is defined by Eq. (12)

IV. LINK WITH THE RENORMALIZATION OF THE
THREE-BODY POTENTIAL

Using the notation of the present paper, the renormalization
method of the three-body interaction in Ref. [15] can be
introduced by using a separable three-body potential V (Qc)
with a strength g3 that depends on the ultraviolet momentum
cutoff Qc [22]:

〈k1, k2, k3|V (Qc)|k′
1, k

′
2, k

′
3〉

= (2π )δ(kC − k′
C)g3(Qc)θ (Qc − |Q|)θ (Qc − |Q′|),

(17)

where θ is the Heaviside function. Thus, for Q < Qc,

〈Q, kC|V (Qc)|�〉 = 2g3(Qc)√
3

∫
Q<Qc

d2Q′

(2π )2
〈Q′, kC|�〉.

(18)

Let us show in what follows that in the limit of an infinite
cutoff, this potential leads to the contact condition associated
with the pseudopotential. For that purpose, one introduces the
reference state |��〉 such that

h̄2

m
(Q2 + �2)〈Q, kC|��〉 = −〈Q, kC|V (Qc)|�〉. (19)

From this last definition, the action of the cutoff-dependent
potential on the difference between the wave function and the

reference state can be written as

〈Q, kC|V (Qc)|� − ��〉

= 〈Q, kC|V (Qc)|�〉
[

1 + 2mg3(Qc)

h̄2
√

3

×
∫

Q′<Qc

d2Q′

(2π )2

1

Q′ 2 + �2

]
. (20)

In the limit where the cutoff Qc goes to infinity, one can
identify from Eq. (11) the three-body contact as

〈Q, kC|V (Qc)|�〉 =
Qc→∞

h̄2

m
〈kC|ψ3〉. (21)

In the limit of an arbitrarily large cutoff, one then finds, from
Eq. (20),

〈Q, kC|V (Qc)|� − ��〉 = h̄2g3(Qc)

mg3(�)
〈kC|ψ3〉. (22)

Now, the left-hand-side of Eq. (20) can be also directly
expressed for Q < Qc as

〈Q, kC|V (Qc)|� − ��〉

= 2g3(Qc)√
3

∫
Q′<Qc

d2Q′

(2π )2

[
〈Q′, kC|�〉 + 〈kC|ψ3〉

Q′ 2 + �2

]
.

(23)

By equalizing the right-hand side of Eqs. (22) and (23), one
then finds the contact condition in Eq. (14).

V. STM EQUATION

In this section the bound states made of three identical
bosons are considered. The three particles interact via the
three-body pseudopotential of Eq. (15). Moreover, each pair
of particles (ij ) interacts via the zero-range potential of the
Lieb-Liniger model,

V (zij ) = − 2h̄2

ma2
δ(zij ), (24)

where a2 is the 1D two-body scattering length. One introduces
the two-body contact, which corresponds to the value of the
wave function at the contact of two particles considered.
For the contact of the pair (12), one has in the momentum
representation,

〈K, kC|ψ2〉 =
∫

dk

2π
〈k,K, kC|�〉. (25)

In the center-of-mass frame the wave function can
be factorized as 〈k,K, kC|�〉 = (2π )δ(kC)〈k,K|φ〉. The
two- and three-body contacts are also factorized as
〈K, kC|ψ2〉 = (2π )δ(kC)〈K|S2〉 and 〈kC|ψ3〉 = (2π )δ(kC)S3.
The three-body Schrödinger equation for a bound state of
energy E = − h̄2q2

m
is thus(

k2 + 3

4
K2 + q2

)
〈k,K|φ〉

= −S3 + 2

a2
(〈K|S2〉 + 〈−k − K/2|S2〉 + 〈k − K/2|S2〉).

(26)
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The STM equation follows from Eq. (26) after integration
over the relative momentum k:⎛

⎝a2 − 1√
q2 + 3K2

4

⎞
⎠〈K|S2〉 + a2S3√

4q2 + 3K2

= 4
∫

dK ′

2π

〈K ′|S2〉
K2 + K ′ 2 + KK ′ + q2

. (27)

Injection of Eq. (26) in the contact condition (14) gives

3

a2

∫
dK

2π

〈K|S2〉√
3
4K2 + q2

= −S3 ln(qa3e
γ /2)

π
√

3
. (28)

This last relation permits one to close Eq. (27) and to recover
the set of equations for the two-body contact obtained in
Refs. [14,15]. Remarkably, an exact implicit equation on the
binding wave number q has been derived from Eqs. (27) and
(28) in Ref. [13].

VI. �-DEPENDENT AND RENORMALIZED STRENGTHS

In the derivation of the trimer spectrum E = −h̄2q2/m

from Eqs. (27) and (28), the renormalized strength g3(q )
was used in Ref. [15] associated with a zero-range potential
without the regularizing operator

V ren
3 = g3(q )δ(z12)δ(z23). (29)

This choice of the momentum scale in the interaction strength
is associated with the reference state for the wave number
� = q in Eq. (19) and thus

〈Q, kC|��=q〉 = −(2π )δ(kC)
S3

Q2 + q2
. (30)

Indeed, for this value of the parameter �, one can decompose
the three-body state as

|�〉 = |��=q〉 + |�reg〉, (31)

where for an infinite momentum cutoff Qc, 〈C, R|�reg〉 is, by
construction, a regular wave function when the hyper-radius
R tends to zero. Using again Eqs. (21), (22), and (23), one
finds for this choice of reference state

〈Q, kC|V (Qc)|�〉 =
Qc→∞

2g3(q )√
3

∫
d2Q′

(2π )2
〈Q′, kC|�reg〉,

(32)

so that one can write

V (Qc)|�〉 =
Qc→∞

V ren
3 |�reg〉, (33)

an identity which provides the way to use the renormalized
potential in Eq. (29).

Equation (33) can be also used for a perturbative treatment
of the three-body potential. For this purpose, let us consider
the regime where the three-body potential gives a small contri-
bution with respect to the two-body interactions. One can then
approximate, at the leading order, the regular state |�reg〉 by an
eigenstate of the three-body problem without the three-body
potential, denoted by |φ(0)〉 in the center-of-mass frame:

〈Q, kC|�reg〉 = (2π )δ(kC)〈Q|φ(0)〉. (34)

The singular behavior at the contact of the three parti-
cles is solely included in the perturbation 〈Q|δφ〉, which is
much smaller than 〈Q|φ(0)〉, except in the high-momentum
limit where (2π )δ(kC)〈Q|δφ〉 ∼ 〈Q, kC|��=q〉. Considering
the renormalized potential in Eq. (29) as a perturbation,
one then obtains, at first order, the correction in the energy
δE = 〈φ(0)|V ren

3 |φ(0)〉. This method was used in Ref. [15] to
derive the binding energies of the trimers in the perturbative
regime of the three-body potential.

From the point of view of the pseudopotential, one finds
that for � = q, the explicit dependence on the three-body
contact 〈kC |ψ3〉 in Eq. (16) is exactly canceled:

〈kC|R�=q |�〉 = 2√
3

∫
d2Q

(2π )2
〈Q, kC|�reg〉. (35)

Similarly to the renormalization method, this gives us the op-
portunity to use the zero-range pseudopotential perturbatively.
Again, one uses Eq. (34) and finds

R�=q |φ〉 ∼ 2√
3

∫
d2Q

(2π )2
〈Q|φ(0)〉 = φ(0)(R = 0). (36)

Thus at the first order of the perturbation, where 1/| ln(qa3)|
is the small parameter, using the � potential for the specific
case � = q is equivalent to using the renormalized zero-range
potential in Eq. (29) with the energy correction

δE = g3(q )〈φ(0)|R�=q |φ(0)〉. (37)

VII. THREE-BODY PROBLEM NEAR THE
DIMER THRESHOLD IN A 1D WAVEGUIDE

In the case of a 1D harmonic atomic waveguide, the effect
of virtual excitations of pairs of particles in the direction
transverse to the free motion breaks the integrability in the
many-body quasi-1D problem. For taking this effect into
account, it is necessary to introduce a perturbation to the
Lieb-Liniger model. It has been shown that this perturbation
can be modeled at the first order of the Born approximation
by a zero-range bare three-body potential with strength [8]

gBorn
3 = −6h̄2a2

⊥
ma2

2

ln

(
4

3

)
, (38)

where a⊥ = √
2h̄/(mω) is the characteristic length of the

waveguide.
When the two-body scattering length a2 is large and posi-

tive, i.e., at the threshold of the dimer of binding wave number
1/a2, the Lieb-Liniger model predicts a shallow trimer (the
McGuire trimer) in the 1D waveguide. Virtual excitations
of pairs of particles induce a perturbation of this trimer of
binding wave number q = 2/a2 [23]. From the discussion
in Sec. VI, this last wave number gives the value of the
parameter � when the pseudopotential is used at the first
order of the perturbation theory [see Eq. (37)]. One can then
identify the bare strength in Eq. (38) with g3(2/a2). One

finds ln(a3/a2) ∼ πa2
2

2
√

3 ln(4/3)a2
⊥

for a2 → ∞. This last equation

remains valid in the regime of large two-body scattering
lengths when one considers any three-body process with an
energy of the order of h̄2/ma2

2 in the center-of-mass frame.
In this regime, in the presence of the three-body potential,
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in addition to the perturbed McGuire state, another trimer
is found near the atom-dimer continuum. Importantly, the
asymptotic law near the threshold for the two trimers coin-
cides exactly with those found from the dimensional reduction
of the 3D Schrödinger equation in the presence of a harmonic
waveguide [14–16,24]:

q0 ∼ 2

a2
+ 4a2

⊥
a3

2

ln

(
4

3

)
; q1 ∼ 1

a2
+ 2a4

⊥
3a5

2

ln2

(
4

3

)
, (39)

where q0 and q1 are the binding wave numbers.
In the dimensional reduction method of Ref. [16], there is

no three-body potential in the Hamiltonian and the quasi-1D
character of the system is revealed by a summation over the
transverse modes in the STM equation:⎛

⎝ 1√
3
4K2 + q2

− a2

⎞
⎠〈K|S2〉

= −2
∫

dK ′

π

∞∑
n=0

1

4n

〈K ′|S2〉
4n

a2
⊥

+ q2 + K2 + K ′ 2 + KK ′ .

(40)

The momentum 1/a⊥ plays the role of a cutoff in the integral
term of Eq. (40). In the limit where the momentums K, K ′,
and q are much smaller that 1/a⊥, one has

∞∑
n=1

1

4n

1
4n

a2
⊥

+ q2 + K2 + K ′ 2 + KK ′ ∼ ln

(
4

3

)
a2

⊥
4

. (41)

The approximation in Eq. (41) was the one used in Ref. [16]
for the derivation of the asymptotic law for the two trimers in
Eq. (39).

In what follows it is shown that this approximation is
equivalent to the Born approximation of Eq. (38), performed
with the zero-range pseudopotential. For that purpose, one
considers formally the effective three-body potential V3,
which gives Eq. (40). The Hamiltonian is

H = − h̄2

2m

3∑
i=1

∂2

∂z2
i

− 2h̄2

ma2

∑
i<j�3

δ(zij ) + V3. (42)

The absence of singular behavior of the eigenstates of Eq. (40)
shows that necessarily the potential V3 is nonlocal in the
configuration space. One can remark that the regime where
the two-body contact 〈K|S2〉 is negligible for a momentum
K of the order of 1/a⊥ corresponds to the regime where the
zero-range three-body potential can be treated in the Born
approximation. Then, using the approximation Eq. (41), one

finds an energy-dependent potential valid in the Born approx-
imation or, equivalently, at the first order of the perturbation
theory. For a hypermomentum Q � 1/a⊥, one can write, in
the center-of-mass frame,

〈k,K|V3|φ〉 = − h̄2

m
π ln(4/3)

(
k2 + 3

4
K2 + q2

)
a3

⊥
a2

×
∫

<

dk′dK ′

(2π )2
〈k′,K ′|φ〉, (43)

and 〈k,K|V3|φ〉 ∼ 0 for Q � 1/a⊥. In Eq. (43),
∫
<

means
an integration in the domain where the hypermomen-

tum Q′ =
√

k′ 2 + 3
4K ′ 2 is smaller than 1/a⊥. Multiplying

Eq. (43) by 〈φ|k,K〉 and assuming that V3 is a small pertur-
bation, one can use the relation

〈φ|H0 − E|k,K〉

∼ 2h̄2

ma2
(〈S2|K〉 + 〈S2| − k − K/2〉 + 〈S2|k − K/2〉),

(44)

where H0 is the kinetic operator. The integration of the
resulting equation on the hypermomentum in the domain
Q < 1/a⊥ gives the expectation value of the effective three-
body potential in the center-of-mass frame:

〈φ|V3|φ〉 ∼ −6h̄2a2
⊥

ma2
2

ln

(
4

3

)
|φ(R = 0)|2. (45)

One thus recovers the same strength of the three-body poten-
tial as that of the zero-range model in the Born approximation
in Eq. (38).

VIII. CONCLUSION

The three-body � potential introduced in this paper leads
to a mathematically well-behaved Schrödinger equation, thus
avoiding a renormalization procedure of a bare zero-range
potential. This pseudopotential is used in the context of
atoms in a 1D waveguide where the virtual excitations in the
transverse modes give rise to an effective zero-range three-
body potential, in addition to the usual two-body potential of
the Lieb-Liniger model. For the three-body problem, in the
limiting case of a large two-body scattering length, a three-
body potential is obtained from the STM equation derived
directly from the 3D Schrödinger equation in the presence of
a 1D waveguide. This potential, used at the first order of the
perturbation theory, explains the equivalence found near the
dimer threshold between the zero-range potential approach of
Refs. [14,15] and the direct method of Ref. [16].
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