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R-matrix calculations of electron collisions with a lithium atom at low energies
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R-matrixcalculations of the electron collisions with a lithium atom at energies below the 3s excitation
threshold are presented. The 1Se, 3Se, and 1P o phase shifts calculated in the near-threshold energy range are in
excellent agreement with previous theoretical studies. The threshold behavior of the 3P o phase shift is accurately
analyzed along with the resonance located at the scattering energy ∼60 meV. The phase shifts and cross sections
calculated here show two resonances below the 3s threshold that have not been previously reported.
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I. INTRODUCTION

Ultralong-range Rydberg molecules, for the first time the-
oretically predicted by Greene et al. [1], are very exotic
systems in which one atom in its ground state interacts with
another atom in its highly excited Rydberg state with the
distance of the nuclei varying between 102 and 104 a.u. [1–3].
The existence and character of the electronic bound states of
these molecules are determined by the low-energy interaction
between the Rydberg electron and the neutral atom in the
ground state. Typically, this interaction is approximated by the
s-wave zero-range Fermi pseudopotential [4] and its p-wave
extension [3,5] or by the finite-range model potential [2]. Both
models are constructed using the s-wave and p-wave phase
shifts of the corresponding electron-atom scattering process
at energies below the lowest threshold of the electronic exci-
tation.

So far, the ultracold quantum gases, particularly those
consisting of the heavier alkali metals, have provided the most
suitable environment for the experimental realization and
study of the ultralong-range Rydberg molecules [6–8]. The
design and interpretation of these experiments require accu-
rate theoretical models of the long-range Rydberg molecules
and, therefore, accurate phase shifts of the electron collisions
with the alkali-metal atoms at the low scattering energies [9].
Recently, Schmid et al. [10] proposed an experiment to
study the ion-atom scattering in the ultracold regime based
on the photoionization of the Li-Li ultralong-range Rydberg
molecules. Although the low-energy e−-Li scattering has
been studied both theoretically [11–14] and experimentally
[14–16], the demand for accurate and consistent data by the
experimental research groups dealing with the ultralong-range
Rydberg molecules involving lithium justifies us to revisit
this topic using very accurate contemporary computational
methods.

The ab initio calculations by Norcross [12] provide a very
accurate characterization of the 1Se and 3Se electron collisions
with the lithium atoms at very low scattering energies be-
tween 0.1 and 68 meV. The phase shifts calculated in this
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energy range are fitted to the modified effective range theory
(MERT) [17] and the accurate values of the singlet and triplet
scattering lengths are obtained.

However, Norcross [12] calculated the 1P o and 3P o scatter-
ing phase shifts only for three values of the scattering energies
between 0.13 and 0.4 eV. Although the extrapolation of the
1P o phase shifts towards very low energies using the MERT is
adequate, it is questionable in the 3P o case since the lowest 3P o

resonance is located below the interval where the scattering
calculations were performed.

The low-energy e−-Li scattering was also studied by Burke
and Taylor [11] using the close-coupling (CC) expansion
where the states of the neutral target were approximated by
the Hartree-Fock wave functions. The ranges of the scat-
tering energies at which the phase shifts are calculated in
Refs. [11,12] overlap between 0.1 and 0.9 eV. Although
the 1Se, 1P o, and 3P o phase shifts calculated by Burke and
Taylor [11] are in excellent agreement with those published
by Norcross [12] in this energy interval, their 3Se phase shift
raises more rapidly with decreasing scattering energy than in
Ref. [12]. As a result, each of these two works [11,12] pre-
dicts the Ramsauer-Townsend minimum at different energies.
Moreover, the low-energy 3P o phase shift and cross section
published by Burke and Taylor [11] show a clear resonance
at ∼0.06 eV. However, the character of the cross section
below this resonance suggests that the calculations by Burke
and Taylor [11] yield different threshold behavior than that
predicted by Norcross [12].

The experimental research of the electron-atom scattering
becomes increasingly more challenging with decreasing colli-
sion energies. Jaduszliwer et al. [16] measured the total e−-Li
scattering cross section above the 2p threshold. The excitation
cross sections were measured by Leep and Gallagher [15].
However, to our best knowledge, no experimental results
have been published for the scattering energies below the
lowest excitation threshold. Therefore, in order to compare
the present calculations with the experiment, it was neces-
sary to perform the R-matrix computations for the energies
above the 2p excitation threshold. Another theoretical study
in this energy region was published by Moores [13], who
utilized the CC approach involving the five lowest states of the
target.
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The goal of this paper is to introduce such a model of
the e−-Li collisions that provides accurate results from very
low scattering energies to the 3s threshold of the electronic
excitation. Parametrization of the phase shifts at very low
scattering energies presented in this paper provides the data
necessary for the research of the ultralong-range Rydberg
molecules and other phenomena where the electrons interact
with the neutral lithium atom at low energies. Extension of
the calculations towards the energies above the 2p excitation
threshold uncovers new resonances that were not mentioned in
the previously published papers. The reason why they do not
appear in the previously published studies [13,15] is that the
energy grids at which the cross sections were calculated [13]
and measured [15,16] were not fine enough to resolve the
corresponding narrow structures.

Atomic units are used throughout the paper unless stated
otherwise. Since lithium is a very light element, no spin-orbit
interaction or other relativistic effects are considered in this
work. The rest of this paper is organized as follows: Sec. II
deals with the representation of the Li+ core by a model
potential, and the parameters of the R-matrix calculations are
discussed in Sec. III. The phase shifts and cross sections are
analyzed in Sec. IV.

II. MODEL POTENTIAL OF Li+

In the calculations discussed below, the target atom is
represented by its valence electron in the presence of the
spherically symmetric potential Vl1 (r ) that models the closed-
shell core of Li+. This model potential is constructed individ-
ually for every angular momentum l1 of the valence electron.
It is optimized in such way that the energies of the low-lying
bound states supported by Vl1 (r ) coincide with the energies of
the ground and low excited states of the lithium atom.

The form of Vl1 (r ) used in this work is

Vl1 (r ) = −1 + 2 exp(−al1r ) + bl1r exp(−cl1r )

r

− αd

2r4
W6(ρl1 , r ), (1)

where al1 , bl1 , cl1 , and ρl1 are the parameters to be optimized,
αd = 0.189 a.u. is the polarizability of the Li+ core [18], and

Wn(rc, r ) = 1 − exp[−(r/rc )n] (2)

is the cutoff function regularizing the potential at the origin.
Equation (1) is a generalization of the potential employed by
Pan et al. [19] that is l1 independent and the polarization part
of the potential vanishes less rapidly with decreasing value
of r than in Vl1 (r ) constructed in this work. A very similar
l1-dependent model potential was developed to represent the
Li+ core by Marinescu et al. [20] in their research of the
dispersion coefficients for the alkali-metal dimers. Generally,
in the research of the interactions between electrons in the
continuum and neutral atoms or positive ions, the cationic
cores have been very successfully modeled by this form of the
potential (see Refs. [19–21] as well as Ref. [22] and references
therein).

The set of parameters al1 , bl1 , cl1 , and ρl1 was optimized
using the nonlinear least-squares method independently for
l1 = 0, 1, 2. The accurate theoretical [23] and experimen-

TABLE I. Distribution of the B-spline basis functions among
the subintervals of the radial box used in the calculations. The top
section shows the radial segments of the box used in the nonlinear
optimization of Vl1 (r ), and the section in the center corresponds to
the subintervals defined in the two-electron R-matrix calculations
in the inner region. The number of B splines used in the R-matrix
propagation in the outer region (that was not further split into
subintervals) is listed in the bottom section. All the corresponding
knot sequences were equidistant and the order of all the B splines
was 6.

Radial Number
subinterval (a.u.) of B splines

Optimization of Vl1 (r ) [0, 1/3] 80
[1/3, 8.5] 820
[8.5, 240] 1100

R matrix (inner region) [0, 1/3] 30
[1/3, 2] 30
[2, 120] 94

R matrix (propagation) [120, 2700] 1200

tal [24] energies of the five lowest states with respect to
the ionization threshold for every l1 = 0, 1, 2 were taken as
the data to be matched by the model. In every iteration, it
was necessary to diagonalize the one-particle Hamiltonian
operator Ĥl1 = K̂ + Vl1 (r ), where K̂ is the operator of the
kinetic energy. The match of the obtained eigenenergies εnl

with the experimental data then determined the adjustments of
Vl1 (r ) in the next iteration. Note that the index n plays a role of
the principal quantum number as known in the atomic physics.
In the calculations presented here, Ĥl1 was represented by the
radial basis set consisting of 2000 B splines [25] of the sixth
order that spanned the sphere with radius 240 a.u. This size
of the sphere was chosen with respect to the fact that the
classical turning point of the highest fitted bound state is at
∼95 a.u. A sufficient radial interval beyond this limit allowed
for the accurate exponential decrease of the wave function and
eliminated the artifacts of the finite box. In order to guarantee
accurate representation of the atomic orbitals by the B-spline
basis set in every iteration of the nonlinear optimization as
well as accurate matrix elements of Vl1 (r ), the radial box was
split into three subintervals with different spatial densities of
the B splines. The splitting points of these subintervals along
with corresponding numbers of B splines in each of them are
listed in the top section of Table I. The knot sequence defined
in every subinterval was equidistant. The size of each segment
and corresponding part of the basis set reflect the different
character of the wave functions near the Coulomb singularity,
in the classically allowed region and beyond the classical
turning point of the highest fitted bound state. Further increase
of the number of the B splines in any of these subintervals
had negligible effect on the quality of the optimized model
potential.

The comparison of the top and middle sections in
Table I shows that the numbers of the basis functions used
in the nonlinear optimization of Vl1 (r ) are significantly larger
than the corresponding numbers of the B splines utilized
in the scattering calculations discussed below. The reason
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TABLE II. Optimized values of the parameters of Vl1 (r ) in
Eq. (1) for Li+.

l1 = 0 l1 = 1 l1 = 2

al1 10.655 2.734 25.915
bl1 3.397 46.621 7.562
cl1 2.821 10.493 18.200
ρl1 0.375 1.294 1.258

is that the nonlinear least-squares method requires a suffi-
ciently flexible basis set to represent the nonphysical wave
functions that appear in the iterations where the convergence
criteria are not met. Those functions can have much more
complicated character than the optimized atomic orbitals
and scattering wave functions represented by the radial ba-
sis in the R-matrix calculations. However, their correspond-
ing (and unrealistic) energies need to be computed reliably.
The values of the parameters optimized to represent Li+

in the R-matrix calculations discussed below are listed in
Table II. The model potential Vl1 (r ) with these parameters
yielded less than 1 meV deviation of the calculated energy
levels from the lowest five experimental values [24] for
every l1 � 2.

The best match between the experimental energies of the s

states and the spectrum of the Ĥ0 was achieved when the low-
est eigenvalue ε10 was omitted from the optimization of Vl1 (r )
and the second eigenenergy ε20 was compared with the ground
state of the lithium atom. This is related to the fact that the 1s

orbital in lithium is doubly occupied by the core electrons and
the lowest s orbital available for the valence electron is n = 2
that possesses one radial node. As a result, Ĥ0 supports one
very deeply bound corelike nonphysical state with the energy
ε10 = −2.0069 a.u. with respect to the ionization threshold.
This orbital is very compact; its classical turning point is
located at ∼0.75 a.u. The eigenenergies εn0 above this state
very accurately correspond to the experimental energy levels
of the lithium atom [24].

For l1 > 2, the energies of the lithium bound states are so
close to the corresponding levels of the hydrogen atom that
with very good approximation the Coulomb potential −1/r

can be taken instead of Vl1 (r ).
Although it is not the main objective of this work, it is

interesting to mention that Vl1 (r ) also yields accurate ener-
gies of the excited states higher than those to which Vl1 (r )
was optimized. Figure 1 shows the quantum defects μl1 (ε)
calculated for Vl1 (r ) [26]. Its good correspondence to the
experimental results [27,28] (note the order-of-magnitude de-
crease of μl1 (ε) with increasing value of l1) implies that Vl1 (r )
also correctly models the s, p, and d Rydberg states of the
Li atom.

The aim of the extensive radial basis set utilized in the
optimization discussed above is to eliminate the effects of
the finite basis set as much as possible and to provide the
model potential that is independent of the basis set. Note that
this approach is different from the method frequently used
in quantum chemistry to represent the atomic cores by the
potentials. In such calculations, mainly based on the Gaussian
basis sets, the parameters of the potential are optimized for
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FIG. 1. Quantum defects μl1 (ε) of Li as functions of the negative
energy ε (logarithmic scale) taken with respect to the ionization
threshold. The top, center, and bottom panels show the results
for l1 = 0, 1, 2, respectively. The values obtained using the model
potential Vl1 (r ) in Eq. (1) and parameters from Table II (+) are
compared with the experimental results published by Goy et al. [27]
for l1 = 0, 1 and by Lorenzen and Niemax [28] for l1 = 2 (×).

one specific basis set that becomes part of the model along
with the optimized potential (see Ref. [29] and references
therein).

In the calculations of the electron collisions with lithium
at low energies, Norcross [12] also used a model potential
to represent the Li+ core. The parameters of the scaled
Thomas-Fermi potential [30] with additional polarization
term were optimized to accurately reproduce the energies
of the two lowest eigenstates of the lithium atom. The
Thomas-Fermi potential was also utilized by Moores [13]
to calculate the 1s core wave functions of Li+. The va-
lence orbitals of the neutral lithium were obtained from the
e−-Li+ scattering calculations. On the other hand, Burke
and Taylor [11], in their work, represented the lithium atom
by the Hartree-Fock wave function and constrained the
1s orbital to be doubly occupied in all the terms consid-
ered in the following CC expansion of the scattering wave
function.

In the two-electron calculations, the approximation of the
noble-gas-like core by the model potential Vl1 (r ) can be
corrected by including the dielectronic term introduced by
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Chisholm and Öpik [31] in the two-electron Hamiltonian:

Vdiel(ρc, r1, r2, θ1,2)

= − αd

r2
1 r2

2

[W6(ρc, r1)W6(ρc, r2)]1/2P1(cos θ12)

− αq

r3
1 r3

2

[W10(ρc, r1)W10(ρc, r2)]1/2P2(cos θ12), (3)

where r1 and r2 are the radial coordinates of the first and
second electron, respectively, θ1,2 is the angle between their
position vectors, Pn(x) is the nth Legendre polynomial, ρc is
the cutoff parameter, and αq is the quadrupole polarizability
of the core. This term describes the interaction between the
valence and scattering electrons via the dipole and quadrupole
moments induced on the core. Although this correction be-
comes more important for the heavier alkali metals, it was
included in the R-matrix calculations presented in this work
with αq = 0.037 a.u. [32]. The value of the cutoff parameter
ρc = 4.03 a.u. was chosen in such way that the electron
affinity of Li− obtained by the diagonalization of the two-
electron Hamiltonian discussed in Sec. III including the cor-
rection (3) coincides with the accurate experimental value of
0.617 eV [33]. The electron affinity calculated using the value
of ρc mentioned above is 0.620 eV.

III. R-MATRIX CALCULATIONS

The scattering calculations discussed below were per-
formed using the R-matrix computer program by Tarana and
Čurík [34] originally designed to calculate the electronic
states of the long-rang Rydberg molecules. The notation in-
troduced in Ref. [34] was adopted in this section. The reader
is also referred there for the definitions of the open and closed
one-particle wave functions and two-electron configurations
(see also Ref. [22]). Only the inner-region part of the program
by Tarana and Čurík [34] was used in this work. The outer-
region code was developed independently and it consists of
the propagation of the R matrix in the long-range potentials
of the target [19,35] as well as of the construction of the
K matrix, T matrix, and calculation of the phase shifts and
cross sections [36–38].

The radius of the R-matrix sphere was set to r0 = 120 a.u.
This allows for a smooth transition between the short-range
two-electron and long-range one-electron interactions. The
long-range effects become particularly important at the scat-
tering energies near the 2s threshold. This is the energy range
from which the accurate values of the MERT parameters
can be obtained. Since the full interaction of the electrons
with each other as well as with the Li+ core is considered
in the inner region, the treatment of the long-range effects
inside this relatively large sphere is not restricted only to
the potential due to the static dipole polarizability of the
target. It also includes the effects of the higher multipoles of
the ground and excited states. Similarly large spheres were
used by Pan et al. [19] in their R-matrix calculations of the
photodetachment of Li−.

The set of 154 radial B splines of the sixth order was used
inside the R-matrix sphere to represent the closed and open
single-particle wave functions [34].

The radial dimension of the inner region was split into three
subintervals in similar way as the box used for the nonlinear
optimization of the model potential. The knot sequence de-
fined in each of them was equidistant. The boundaries of each
segment and corresponding numbers of B splines are listed in
the middle section of Table I.

For every one-electron angular momentum l � 7, the 25
lowest closed orbitals were included in the closed part of the
ansatz for the two-electron wave function.

The energies of the highest included closed s orbital and
p orbital were 4.909 and 4.983 eV above the Li ionization
threshold, respectively. With increasing angular momentum,
the energy of the highest included orbital in every l gradually
increased towards 6.793 eV above the ionization threshold for
l = 7.

All possible excitations involving these orbitals were in-
cluded in the construction of the corresponding configuration-
interaction (CI) Hamiltonian matrix H ′. The lowest 6, 6,
5, 3, and 1 closed orbitals among the s, p, d, f , and g

states, respectively, were included in the open part of the two-
electron wave-function ansatz [34] as the scattering channels.
This extensive basis set ensures very accurate treatment of all
the correlation and polarization effects. Our tests showed that
further augmentation of the basis set has negligible impact on
the calculated scattering quantities.

The CI matrix H ′ representing the two-electron Hamilto-
nian in the inner region (including the dielectronic term (3)
and Bloch operator [22,34,36,39]) was diagonalized and using
the eigenvalues (R-matrix poles) Ek , the R matrix was calcu-
lated as

Rj̄j̄ ′ (E) = 1

2

∑
k

wj̄kwj̄ ′k

Ek − E
, (4)

where E is the total energy of the e−-Li system and wj̄k are
the surface amplitudes—projections of the kth eigenstate of
H ′ on the target state n with the angular momentum l1 and
on the partial wave l2 of the scattered electron [22,34,36,39].
The multi-index j̄ = {n, l1, l2} denotes the scattering
channel.

Since the total angular momentum L, total spin S, and total
parity P = (−1)l1+l2 of the e−-Li system are good quantum
numbers, the scattering calculation can be performed inde-
pendently for each LSP symmetry and the cross sections
calculated in this way can be summed to obtain the results
that can be compared with the experiments.

It is worth mentioning at this point that the spectrum of H ′

includes a set of nonphysically low R-matrix poles Ek . This is
an artifact of the very low-lying compact orbital with energy
ε10 discussed in Sec. II. In the eigenstates corresponding
to these low-lying R-matrix poles, the configurations where
the compact 1s-like orbital is singly or doubly occupied
are dominant and not strongly coupled to the configurations
involving the higher valence orbitals. Since, in addition, this
corelike target state was not included in the CC expansion as
the scattering channel, there are no surface amplitudes wj̄k

associated with it. As a result, these nonphysically low-lying
eigenstates of H ′ do not appear in the pole expansion (4) of
the R matrix and they do not affect the results of the scattering
calculations.

012708-4



R-MATRIX CALCULATIONS OF ELECTRON … PHYSICAL REVIEW A 99, 012708 (2019)

This work is dealing with the kinetic energies of the inci-
dent electron ε � 3.3 eV where only the 2s and 2p channels
are open. The 2p channel opens at the energy ε = 1.848 eV
above the 2s threshold and the threshold of the 3s channel is
located at ε = 3.373 eV. Although all the remaining higher
channels included in the scattering calculations are closed,
their presence ensures the accurate treatment of the long-
range e−-Li interaction in the outer region represented by the
transition dipole moments coupling the target states [19,39].
In spite of the large R-matrix box, the propagation of the
R matrix [35] in the long-range tail of the lithium potential
to the distance 2700 a.u. from the center was necessary
to obtain converged phase shifts at energies below 1 meV
suitable for the calculation of the MERT parameters. The
R-matrix propagation [35] was performed using the basis set
consisting of 1200 B splines of the sixth order equidistantly
distributed between the inner-region boundary r0 = 120 a.u.
and the distance 2700 a.u. (see also the bottom section of
Table I) beyond which the interaction between the target and
the projectile was neglected.

One way to assess the representation of the e−-Li in-
teraction by the dipole potentials coupling the target states
outside the R-matrix sphere is to calculate the static dipole
polarizability α20 of the ground state of the target from the
dipole moments used as the open and closed channels in the
present R-matrix propagation [40]:

αnl1 = 2
∑

l′1=l1 ± 1
n′ �=n

| 〈ψn′l′1 |z|ψnl1〉 |2
εn′l′1 − εnl1

, (5)

where |ψn′l′1〉 and |ψnl〉 are the eigenstates of the target and
the matrix element in the numerator of Eq. (5) is the z

component of the corresponding transition dipole moment.
This equation yields polarizability of the lithium atom in the
ground state α20 = 163.7 a.u. that is in excellent agreement
with previously published theoretical and experimental values
varying between 163.74 and 164.19 a.u. (see Ref. [41] and
references therein). The contribution from the 2s → 2p term
to the series (5) represents more than 99% of the calculated
value and all the higher terms are its small corrections.

The R matrix propagated to the distance 2700 a.u. from
the center is used to match the linear combination of the
regular and irregular free-particle solutions of the Schrödinger
equation in the open channels [36]. This yields the K ma-
trix and its subsequent diagonalization provides the scatter-
ing phase shifts. The scattering amplitudes and cross sec-
tions are then calculated using the standard methods of the
multichannel scattering theory [37]. It is not necessary to
consider the closed channels in the matching of the free-
particle solutions and to perform any elimination of the closed
channels [22]. In this case, the energy range around the
threshold where the closed channels influence the results is
negligible.

Our test R-matrix calculations performed for two different
R-matrix spheres with radii r0 = 120 a.u. and r0 = 130 a.u.
showed that when the R-matrix propagation in the outer region
was performed to the distance 2700 a.u., the dependence of the
phase shifts and cross sections on r0 was negligible.
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FIG. 2. 1Se phase shift as a function of the kinetic energy of the
scattered electron. The results calculated in this work (solid black
line) are compared with previously published data by Norcross [12]
(+) and Burke and Taylor [11] (blue dashed line). The inset shows
the detail of the phase shifts as a function of the momentum of the
incident electron k in the range 0–0.06 a.u. (corresponding to the
interval of the kinetic energies 0–57 meV). The red dash-dotted line
is the MERT [17] fit of the current results (A1 = 2.81).

IV. RESULTS

A. Phase shifts

In this section, the dependence of the phase shifts δ2S+1
l2

(ε)
on the kinetic energy of the incident electron ε = k2/2 is
presented as follows: Below the 2p threshold, δ2S+1

l2
(ε) is a

single phase shift corresponding to the partial wave l2 of the
scattered electron according to the total LSP symmetry of
the e−-Li system. Above the 2p threshold, δ2S+1

l2
(ε) is the

sum of all the eigenphases obtained by the diagonalization of
the multichannel K matrix. The superscript 2S + 1 denotes
the multiplicity of the e−-Li system. Since the parity P =
(−1)l1+l2 and since the electron collisions with lithium in its
excited states are not a subject of this work, it is sufficient to
deal only with those LSP symmetries where P = (−1)L as
only in these the colliding electron is coupled with the ground
state of the target. Therefore, it is not necessary to use parity
index to denote the phase shifts in different LSP symmetries.

The 1Se phase shift calculated using the R-matrix method
is plotted in Fig. 2. Its comparison with the results calculated
by Norcross [12] shows an excellent agreement for the energy
range between 0.1 meV and 0.8 eV.

The rapid decrease at very low scattering energies is the
consequence of the 1Se bound state of Li−. The low-energy s-
wave phase shifts calculated in this work can be parametrized
by the MERT [17]:

tan δ2S+1
0 (k)

k
=−A2S+1 − πβ2k

3

−4

3
A2S+1β

2k2 ln (1.23βk) − 1

2
r ′

0,2S+1A
2
2S+1k

2

+1

3
πβ2k3

[
A2

2S+1 + 7β2

117

]
, (6a)
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TABLE III. Summary of the scattering lengths A and parameters B in Eq. (9) calculated for different LSP symmetries and their comparison
with values previously published by Norcross [12]. Parameters of the resonances Er and � were obtained by fitting the calculated phase shifts
to Eq. (7b). The configuration with the dominant contribution to the resonance is listed in the last column.

LSP MERT Resonances

symmetry R-matrix Norcross [12] Er (eV) � (meV) P0 P1 P2 Configuration

1Se A1 = 2.81, r01 = 129.1 A1 = 3.04 3.117 11 1.932 −7.946 3s2

3Se A3 = −7.45, r03 = 0.40 A3 = −7.12
1P o B1 = −1.85 B1 = −1.69
3P o B3 = 0.236 B3 = 1.992 0.062 68 0.504 −69.888 340.589 2s2p

3.285 45 0.107 2.367 3s3p

where

1

2
r ′

0,2S+1 = 1

2
r0,2S+1 + πβ

3
− πβ3

3A2
2S+1

, (6b)

the parameter A2S+1 is the scattering length, r0,2S+1

denotes the effective range, and β2 = α20.
This fit yields the scattering length A1 = 2.81 and corre-

sponding effective range r01 = 129.1. While the optimized
value of r01 is sensitive to the energy interval taken for the
nonlinear fit, the scattering length A1 does not considerably
change. Moreover, if the ground-state polarizability α20 is
treated as a fitting parameter, its value from the inner-region
calculations (5) is reconstructed and the scattering length A1

remains unchanged.
The 1Se scattering length obtained from the R-matrix cal-

culations discussed here is slightly lower than the value 3.04
reported by Norcross [12]. A possible reason for this subtle
difference may lie in the fact that the R-matrix propagation
utilized in this work allows for stable evaluation of δ1

0 (ε)
at lower energies than those considered by Norcross [12].
As a result, the MERT parametrization performed at lower
collision energies can also yield a slightly different value
of A1. As can be seen in the inset of Fig. 2, the MERT
parametrization [17] of the 1Se phase shift considerably de-
viates from the R-matrix results at scattering energies above
17 meV.

Below the 2p excitation threshold, the R-matrix calcu-
lations also show an agreement with the results obtained
by Burke and Taylor [11]. The discrepancy increases at the
scattering energies above the 2p threshold due to the terms in
the CC expansion involving the target orbitals with higher en-
ergies and angular momenta that are not included in Ref. [11].
However, they are necessary for accurate representation of the
interaction between the incident electron and the valence elec-
tron of the target. This issue of the truncated CC expansion in
Ref. [11] is not specific only for the 1Se scattering but it is
common for all the LSP symmetries.

Another structure in the calculated 1Se phase shifts that
can be seen in Fig. 2 around 3.1 eV is the narrow Feshbach
resonance below the 3s threshold with the dominant configu-
ration 3s2. It can be very accurately fitted to the Breit-Wigner
formula [42]

δ(ε) = δbg(ε) + δres(ε), (7a)

where δbg(ε) is the background phase shift slowly varying
with the energy,

δres(ε) = arctan

[
− �/2

ε − Er

]
, (7b)

where energy Er is the position of the resonance and � is
its width. Since Eqs. (7) can be applied to the resonances
in any LSP symmetry, the indices l and 2S + 1 are omitted
from the notation of the resonant and background phase shifts.
When δbg(ε) is assumed to be a slowly varying function of the
energy,

δbg(ε) = P0 + P1ε, (8)

the fit yields Er = 3.117 eV and � = 11 meV. The optimized
values of P0 and P1 are listed in Table III. The analysis of the
CI configurations contributing to the resonant wave function
revealed that this resonance has Feshbach character with
the dominant configuration 3s2. To our best knowledge, this
resonance has not been reported in any previously published
papers dealing with the e−-Li collisions. Due to its symmetry,
this resonance is expected to appear in the two-photon de-
tachment spectrum of Li− at the photon energy ∼0.072 a.u.
A similar spectrum was calculated by Glass et al. [43].
However, the highest photon energy considered in that work
was 0.05 a.u.

Figure 3 shows the comparison of the 3Se phase shifts cal-
culated using the R-matrix method with previously published
results. Like in the case of the singlet discussed above, the data
obtained in this work are in very good agreement with those
calculated by Norcross [12]. As a result, the energy at which
δ3

0 (ε) changes from positive to negative (that corresponds
to the Ramsauer-Townsend minimum in the cross section)
calculated in this work also matches very well with the value
obtained by Norcross [12]. Fitting of the calculated phase
shifts to MERT [17] yields the scattering length A3 = −7.45
and the effective range r03 = 0.40 that is consistent with the
previously published value A3 = −7.12 [12]. As can be seen
in the inset of Fig. 3, the MERT parametrization of δ3

0 (ε)
is valid at energies below 5 meV. The steep increase of the
s-wave phase shift at very low energies followed by the rapid
drop is characteristic for the scattering systems that possess
the virtual state [37] (represented by a pole of the S matrix on
the negative imaginary axis in the complex momentum plane)
with sufficiently small energy.

The reason behind the deviation of the 3Se phase shifts
calculated by Burke and Taylor [11] from the results presented
in this work and those obtained by Norcross [12] is that

012708-6



R-MATRIX CALCULATIONS OF ELECTRON … PHYSICAL REVIEW A 99, 012708 (2019)

-2.5

-2

-1.5

-1

-0.5

 0

 0  0.5  1  1.5  2  2.5  3

2p

δ 03  (
ra

d)

k2/2 (eV)

This work
Norcross

Burke
BTR

-0.03

 0

 0.03

 0.06

 0.09

 0  1  2  3  4  5  6
δ 03  (

ra
d)

k (10-2 a.u.)

MERT

FIG. 3. 3Se phase shift as a function of the kinetic energy of
the scattered electron. The meaning of the plotted lines and points
is identical to Fig. 2. The circles (◦) represent the results of Nor-
cross [12] obtained after the orthogonality correction to Burke’s
procedure. The red dash-dotted line is the MERT fit of the current
results (A3 = −7.45).

the CC method, as formulated by Burke and Taylor [11],
does not guarantee that the continuum wave functions of the
colliding electron are orthogonal to the Hartree-Fock orbitals
of the target [44]. When Norcross [12,44] introduced this
orthogonality into the CC equations formulated by Burke
and Taylor [11] as the additional constraint (circles denoted
as BTR in Fig. 3), the phase shifts calculated in this way
became consistent with those obtained using other approaches
discussed in this work. This orthogonality issue is common
to all the LSP symmetries discussed here, except for the 1Se

scattering [44]. It is another limitation of the computational
method used in Ref. [11] in addition to the truncation of the
CC expansion mentioned above.

The 1P o phase shifts calculated using the R-matrix method
are in excellent agreement with the results of Norcross [12]
at all three energy points where the latter are provided (see
Fig. 4). In Ref. [12], these were extrapolated towards the low
energies near the threshold using the p-wave MERT [45] as

δ2S+1
1 (k) = πβ2k2

15
+ β3k3

9B2S+1
, (9)

with the value of the fitting parameter B1 = −1.69. The
parametrization of our R-matrix results at the scattering en-
ergies below 10 meV using Eq. (9) yields a similar value,
B1 = −1.85. As can be seen in the inset of Fig. 4, this
parametrization fits the ab initio results for energies below 50
meV. In spite of the issue with the orthogonality of the con-
tinuum wave functions and target orbitals discussed above, at
energies below the 2p threshold, the phase shifts obtained by
Burke and Taylor [11] are in encouraging agreement with our
R-matrix calculations and the orthogonality correction [12]
does not considerably change the results. Rigorously, Eq. (9)
above should contain an additional term ∼k3 not involving
β [45]. Its presence is dictated by the Wigner threshold law for
the short-range interactions. Since only the whole coefficients
in front of k3 can be fitted and since β is constant, we used
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FIG. 4. 1P o phase shift as a function of the kinetic energy of the
colliding electron. The data are displayed with the same symbols as
in Fig. 3. The inset shows the detail of the phase shifts in the range
below 120 meV. The red dash-dotted line corresponds to the MERT
fit of the current results (B1 = −1.85), and the violet dash-dot-dotted
line is the MERT with B1 = −1.69 taken from Ref. [12].

the form (9) in order to have like-to-like comparison with the
MERT fit by Norcross [12].

Norcross [12] also performed the low-energy p-wave
MERT extrapolation of the 3P o phase shift calculated at the
same three energy points between 0.2 and 0.8 eV as in the
1P o symmetry and obtained the value of the fitting parameter
B3 = 1.992. However, the adequacy of this extrapolation can
be called into question as there is a 3P o resonance below
100 meV that changes the threshold behavior of the phase
shift and the MERT expansion may not be valid above this
energy (see Fig. 5). The value optimized by fitting our R-
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FIG. 5. 3P o phase shift as a function of the kinetic energy of the
scattered electron. The data are displayed with the same symbols and
lines as in Fig. 3. The inset shows the detail of the phase shifts in
the range below 5 meV. The red dash-dotted line corresponds to the
MERT fit of the current results (B3 = 0.236), and the violet dash-
dot-dotted line represents the MERT with B3 = 1.992 taken from
Ref. [12].
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matrix results to Eq. (9) at energies sufficiently below this
resonance is considerably smaller: B3 = 0.236. As can be
seen in the inset of Fig. 5, this parametrization is more
consistent with the ab initio results than the parametrization in
Ref. [12].

The lowest 3P o resonance is associated with the rapid
increase of the phase shift below 0.3 eV in Fig. 5. It is a shape
resonance with the dominant configuration 2s2p. In general,
the modification of the resonant character of the phase shift
by the threshold law at low energies is determined by two
factors: the analytical behavior of the scattering wave function
near the origin and the asymptotic behavior of the scattering
wave function at low energies. The energy ranges, where
these factors play a role, can be different. The consequence
of the first factor is that the resonances at sufficiently low
energies cannot be parametrized by Eq. (7b). Instead, the gen-
eralization taking into account the energy dependence of the
resonance width (�(ε) = �0ε

3/2) and level shift is necessary
(see the review [46] and references therein). The asymptotic
character of the scattering wave function related to the long-
range interaction implies that the low-energy phase shifts
satisfy Eqs. (6) and (9) for l2 = 0 and l2 > 0, respectively,
even when a resonance appears within the range of energies
where the MERT is valid.

Our tests of multiple models that treat the interaction of
the resonance with the threshold show that the phase shift
δ3

1 (ε) in the corresponding energy interval can be accurately
fitted to Eqs. (7) assuming the near-threshold behavior of the
background phase shift consistent with Eq. (9),

δbg(ε) = P0 + P1ε + P2ε
3/2, (10)

where the value of P0 = −δres(0) is chosen so that
limε→0 δ(ε) = 0, and P1 and P2 are the fitting variables.
This optimization yields Er = 62 meV and � = 68 meV. The
optimized values of P0, P1, and P2 are listed in Table III. This
parametrization provides a numerically accurate model of the
low-energy behavior of the 3P o phase shift suitable for the
construction of related zero-range potentials [3,5].

Another 3P o resonance appears just below the 3s excitation
threshold (see Fig. 5) and, assuming that δbg(ε) is linear
[Eq. (8)], it can be parametrized using the Breit-Wigner
formula (7) where Er = 3.285 eV and � = 45 meV. This is
a core-excited (Feshbach) resonance with dominant configu-
ration 3s3p.

The 1De and 3De phase shifts calculated in this study are
plotted in Fig. 6 along with the results obtained by Burke
and Taylor [11]. While the triplet phase shifts agree very
well below the 2p threshold, the singlet results of Burke
and Taylor [11] are, for energies above 1.2 eV, lower than
those obtained from the R-matrix calculations presented here.
The phase shift steeply raises above this energy, reaching the
highest value above the 2p threshold. Like the low-energy
3P o resonance discussed in the text above, the fit of this
resonance by the Breit-Wigner formula (7) is complicated
by its interaction with the threshold. In this case, however,
the resonant structure in the phase shifts reaches the energy
regions both below and above the 2p threshold. Therefore,
δbg(ε) has a different energy dependence below and above
the 2p threshold. Since this resonance is relatively broad
compared to the other resonances discussed above, the steep
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FIG. 6. 1De and 3De phase shifts calculated using the R-matrix
method as functions of the kinetic energy of the colliding elec-
tron (solid black line and long-dashed green line, respectively)
are compared with the 1De and 3De results calculated by Burke
and Taylor [11] (short-dashed blue line and dot-dashed red line,
respectively).

increase of the phase shift cannot be attributed only to δres(ε).
This makes the values of Er and � very sensitive to the form
of δbg(ε) and to the energy range taken for the fit. Note that
this resonance also appears in the two-photon detachment
spectrum of Li− calculated by Glass et al. [43].

In addition to the LSP symmetries discussed above, the
R-matrix calculations were also performed for the higher
total angular momenta of the e−-Li system up to L = 5
in both singlet and triplet. Corresponding phase shifts (not
shown in this paper) are generally smaller than those for
L < 3 presented above and there are no resonances in the
energy interval below the 3s threshold. However, their inclu-
sion in the calculation of the cross sections is necessary to
achieve the convergence and agreement with the experimental
results.

B. Cross sections

All the scattering cross sections presented in this section
are averaged over the initial spin states and summed over the
final spin states [38]. The integral cross sections for the elastic
scattering calculated using the R-matrix method are plotted in
Fig. 7. The dominant structure in the cross sections is the nar-
row peak located at 75 meV that corresponds to the low-lying
3P o resonance discussed above (see Fig. 5 and Table III). The
change of the 3Se phase shift from positive to negative values
shown in the inset of Fig. 3 is reflected in the elastic cross
section as the Ramsauer-Townsend minimum located around
7 meV. As can be seen in Fig. 7, the resonance peak calculated
in this work is in good agreement with that published by Burke
and Taylor [11]. However, their calculation yields one more
peak at lower energy. It is most likely an artifact caused by
the nonorthogonality of the continuum wave functions on the
target orbitals [44] that is particularly problematic in the 3Se

scattering.
Another sharp peak in the elastic cross section occurs at

the energy 1.84 eV where the 2p channel opens. It is a

012708-8



R-MATRIX CALCULATIONS OF ELECTRON … PHYSICAL REVIEW A 99, 012708 (2019)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0.01  0.1
k2/2 (eV)

σ 
(1

0-1
6  c

m
2 )

 80

 120

 160

 200

0.65  1  1.5  2  2.5  3  3.5
k2/2 (eV)

σ 
(1

0-1
6  c

m
2 )

2p

3s

R-matrix
Burke

Moores

FIG. 7. Cross section of the elastic electron collisions with
lithium calculated using the R-matrix method as a function of the
kinetic energy of the colliding electron (solid black line) and its
comparison with the results of the CC calculations [11] (blue dashed
line) as well as with the theoretical results published by Moores [13]
(×). The low-energy range is presented using the logarithmic energy
scale.

consequence of the 1De resonance (see the corresponding
phase shifts in Fig. 6) and very pronounced threshold behavior
in the 1P o and 3P o symmetries (Wigner cusp). In order to
obtain converged cross sections in this energy region, it is
necessary to include all the total angular momenta of the e−-Li
system up to L = 4 for both singlet and triplet configurations.
The difference of the cross sections obtained from the R-
matrix calculations discussed in this work and those reported
by Burke and Taylor [11] corresponds to the discrepancy
of the phase shifts discussed above. Figure 7 also shows
the comparison with the elastic cross section calculated by
Moores [13] who utilized the CC approach involving the
five lowest states of the target. These results are in slightly
better agreement with the R-matrix cross sections than those
by Burke and Taylor [11] obtained using more limited CC
expansion, although the elastic cross section calculated by
Moores [13] decreases with the energy more slowly than our
results presented here.

Although the 1Se and 3P o resonances located close to the
3s threshold are narrow (see Table III), our results plotted in
Fig. 7 show that they do not dramatically change the magni-
tude of the cross sections. Due to a sparse energy grid at which
Moores [13] evaluated the cross sections, these resonances do
not appear in that theoretical study.

As can be seen in Fig. 8, our R-matrix calculations in-
cluding the higher angular momenta and target orbitals with
higher energies yield lower cross sections for the electronic
excitation to the 2p state than the CC expansion of Burke
and Taylor [11]. The excellent agreement with the results
of Moores [13] and with the experimental data of Leep and
Gallagher [15] shows that the five-state CC expansion [13]
provides converged and quantitatively accurate results of the
electronic excitation in the energy range between the 2p

and 3s threshold. The difference between the R-matrix cross
sections presented here, those calculated by Moores [13], and
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(	) are plotted for comparison.

the measurements by Leep and Gallagher [15] is within very
small uncertainties estimated by the authors of the experimen-
tal work [15].

The sum of the elastic and 2s → 2p excitation cross sec-
tion between the 2p and 3s thresholds is plotted in Fig. 9.
The present results are lower than the total cross section
reported by Burke and Taylor [11] and slightly lower than
that published by Moores [13]. Out of all three theoretical
results, the present R-matrix cross sections are closest to the
experimental data observed by Jaduszliwer et al. [16] in the
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FIG. 9. Total cross section for the e−-Li collisions above the
2p threshold as a sum of the elastic and 2s → 2p excitation cross
sections plotted in Figs. 7 and 8, respectively. The solid black line
represents the results of the R-matrix calculations, and the blue
dashed line is the cross section calculated by Burke and Taylor [11].
The results by Moores [13] are represented by the red crosses (×)
and the green diamonds (	) are the experimental values measured by
Jaduszliwer et al. [16].
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energy region below the 3s threshold. Figure 9 shows that the
experimental value at energy of 3 eV is in excellent agreement
with the R-matrix calculations presented here, although the
nearest value calculated by Moores [13] is also within the
uncertainty interval estimated in Ref. [16]. It is not straightfor-
ward to address the difference that can be seen at the energy
of 2 eV. It is well known that the crossed-beam scattering
experiments become more challenging at lower collision en-
ergies. The energy profile of the incident electron beam be-
comes broader and it is more difficult to form a well-focused
beam.

V. CONCLUSIONS

The aim of the present study is to provide accurate ab initio
data for the e−-Li scattering that can be used for modeling
ultralong-range Rydberg molecules containing the Li atom.
In the first step, the atomic core of Li+ is replaced by a model
potential whose parameters are fitted to accurately reproduce
the atomic excitation energies. By the very extensive size
of the one-electron basis set we attempted to eliminate any
impact of this basis on the model potential; i.e., the functional
form of the potential should be considered independent of the
basis set.

The optimized model potential is then used in the following
two-electron R-matrix method developed by the authors [34]
to compute the phase shifts for the total angular momentum
up to L = 5 and for the collision energies up to the 3s

excitation threshold. The phase shifts up to L = 2, in both
singlet and triplet channels, are discussed in detail, while the
higher L values are only used to obtain converged integral
cross sections presented in this work.

Phase shifts for L = 0 (1Se and 3Se symmetries) agree
well with previous calculations of Norcross [12] and Burke
and Taylor [11] up to the first excitation threshold. The low-
energy tail of the latter data required a correction to properly
incorporate orthogonality of the continuum states for the
3Se symmetry and it was carried out by Norcross [12]. The
obtained low-energy MERT parameters can be considered as
refinements of those published by Norcross [12]. For higher
collision energies, our results deviate from those of Burke
and Taylor [11]. Moreover, we report a narrow 3s2 Feshbach
resonance at 3.117 eV located in 1Se symmetry.

Phase shifts for L = 1 are dominated by the 1P o resonance
that was very well represented in calculations of Burke and
Taylor [11] and omitted by Norcross [12]. The narrow charac-
ter of the resonance allowed us to fit the phase shift as a sum
of the threshold-law phase and the Breit-Wigner formula. The
resulting MERT parameter B3 disagrees with the one provided
by Norcross [12] as the latter was determined from higher
collision energies for which the 1P o resonance at 62 meV does
not exist.

The resonance that can be seen in 1De phase shifts is
wider when compared to those in lower total angular momenta
L. A strong background together with the presence of the
2p excitation threshold provides a very difficult situation for
determination of the resonance parameters. Therefore, they
are not given in the present study. Moreover, our results start to
deviate from the calculations of Burke and Taylor [11] already
well below the 2p excitation threshold.

The elastic as well as 2s → 2p inelastic integral cross
sections were calculated for the energies below the 3s ex-
citation threshold. At very low energies, our results show
the Ramsauer-Townsend minimum at 7 meV whereas in
the calculations of Burke and Taylor [11], this minimum is
disturbed by the presence of an additional low-energy peak.
Above the 2p excitation threshold, the total cross section of
Burke and Taylor [11] becomes gradually higher than in the
present calculations, mainly due to higher 2s → 2p electronic
excitation cross sections. Our results in this case agree well
with those by Moores [13]. Furthermore, out of all three
calculations, the present data exhibit the best agreement with
the experimental total cross sections [16].

The lack of any experimental data on the e−-Li scattering
for collision energies under 2 eV strongly underlines the
necessity for accurate theoretical results that could be uti-
lized in the design of ultracold molecular experiments [10].
Moreover, we believe that the techniques reported here for the
construction of the model potential replacing the atomic core
can be also used for the heavier alkali-metal atoms.
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