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Resonances in nonrelativistic free-free Gaunt factors with screened Coulomb interaction
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The effect of Coulomb interaction screening on nonrelativistic free-free absorption is investigated by
integrating the numerical continuum wave functions. The screened potential is taken to be in Debye-Hückel
(Yukawa) form with a screening length D. It is found that the values of the free-free Gaunt factors for different
Debye screening lengths D for a given initial electron energy εi and absorbing photon energy ω generally lie
between those of the pure Coulomb field and field-free case. However, for initial electron energies below 0.1 Ry
and fixed photon energy, the Gaunt factors show dramatic enhancements (broad and narrow resonances) in the
vicinities of the critical screening lengths, Dnl , at which the energies of nl bound states in the potential merge
into the continuum. These enhancements of the Gaunt factors can be significantly higher than their values in the
unscreened (Coulomb) case over a broad range of εi . The observed broad and narrow resonances in the Gaunt
factors are related to the temporary formation of weakly bound (virtual) and resonant (quasibound) states of the
low-energy initial electron on the Debye-Hückel potential when the screening length is in the vicinity of Dnl .
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I. INTRODUCTION

The continuous photon-emission and -absorption pro-
cesses, resulting from the free-free transitions of an electron
in the field of a positive ion and caused by its acceleration
in the field of the ion (known as bremsstrahlung and inverse
bremsstrahlung), play an important role in a wide range of lab-
oratory and astrophysical plasmas (plasma cooling, opacity,
radiation transfer, etc.) [1,2]. The theoretical studies of these
processes began in the early 1920s with their semiclassical
description by Kramers [3] and Wentzel [4] and were followed
by their full nonrelativistic quantum-mechanical description
by Gaunt [5] at the end of the same decade. Gaunt noticed
that the classical result of Kramers differs from the quantum-
mechanical one only by a factor, which is now known as the
free-free Gaunt factor, gff .

For the case of an electron colliding with an isolated
positive ion, the nonrelativistic continuum wave functions
of the continuum electron before and after collision are the
Coulomb wave functions. With these wave functions, analytic
expressions for the nonrelativistic Gaunt factors have been
derived by Sommerfeld [6], Landau and Lifshitz [7], and
Biedenharn [8], summarized in the acceleration gauge in [9].
Subsequently, numerical calculations of Gaunt factors have
been performed and tabulated in various ranges of initial
electron energy εi and photon energy ω (see, e.g., [10–18]),
including their thermal average. The most extensive gff re-
cent calculations are those in Ref. [11], covering the parameter

*song-bin.zhang@snnu.edu.cn

space with log10[εi (Ry)] = −20 to +10 and log10[ω(Ry)] =
−30 to +25.

However, in many laboratory and astrophysical plasmas,
the many-body correlations of interacting charged particles
introduce a collective screening effect on the Coulomb inter-
action and the motion of a continuum electron in the field of a
positive ion can no longer be described by pure Coulomb wave
functions. In the pairwise approximation of the many-body
correlation function, valid for weakly coupled classical plas-
mas, the screened Coulomb electron-ion interaction reduces
to the Yukawa-type Debye-Hückel potential [19,20],

V (r ) = −Ze2e−r/D/r, (1)

where Z is the ionic charge, D = (kBTe/4πne )1/2 is the
Debye screening length, kB , Te, and ne are the Boltzmann
constant, and plasma electron temperature and density, re-
spectively. Note that the weakly coupled (Debye) plasmas
are defined by the condition � = e/ākBTe � 1, where ā =
(3/4πne )1/3 is the interparticle distance.

Comprehensive investigations of the atomic energy levels,
atomic spectra, photon excitation and ionization, electron
impact excitation and ionization, and charge transfer and
ionization by heavy-particle collisions have been performed
by many research groups in Debye plasmas revealing many
new physics phenomena, as reviewed in [21]. The new physics
in the radiative and collision processes involving the Debye-
Hückel potential stems from its short-range character, lifting
the l degeneracy of Coulomb levels and supporting only a
finite number of bound nl states for any finite value of the
screening length (see, e.g., [7]). The latter property of the
potential implies that with decreasing D, the binding energies
of nl states decrease and, at certain critical values Dnl , they
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successively enter into the continuum. In the small D region
around Dnl , the wave function of the nl state experiences
a dramatic transformation which should be reflected in the
transition probabilities of bound-free, free-bound, and free-
free processes for screening lengths close to Dnl .

In the present work, we shall study the free-free absorption
in the field of the Debye-Hückel potential (1) in a broad
range of initial electron and absorption photon energies, εi

and ω. Another quantum-mechanical study (in the length
gauge) for the free-free emission Gaunt factors in a Debye
plasma is that of Lange and Schlüter [2] for the hydrogen ion
(Z = 1) and screening lengths D = 10 a0 and D = 100 a0 in
the parametric range εi = 0.2–4.0 Ry, ω = 0.0–2.0 Ry. For
D = 100 a0, the values in the screened potential are almost
indistinguishable from the Coulomb values, while for D =
10 a0, they differ from the Coulomb values, but show a smooth
monotonic dependence on both εi and ω. In the present
work, we have performed a comprehensive study of free-free
absorption Gaunt factors in the ranges εi = 10−8–102 Ry and
ω = 10−7−105 Ry for different screening lengths. We have
found that for a fixed photon energy ω, the εi dependence
of free-free Gaunt factors can change dramatically when the
screening length D varies in the vicinity of the critical lengths
Dnl at which the bound nl states in the Debye potential enter
into the continuum, exhibiting broad resonances near Dns

and narrow (shape-type) resonances near Dnl (l > 1) critical
lengths. The physical origin of these resonant features will be
discussed in detail in Sec. III. In the next section, we briefly
present the computational methods and in Sec. IV we give our
conclusions. Atomic units (a.u.) will be used in the remaining
part of this article, unless otherwise indicated explicitly.

II. COMPUTATIONAL METHODS

The theory of free-free absorption has been discussed in
detail by Karzas and Latter [9]. With the initial- and final-
state wave functions normalized in the energy space (number
per unit volume per energy interval), the general expression
of the nonrelativistic free-free absorption cross section for an

ion with charge Z in the acceleration gauge is given as [9]
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where ω is the frequency of the absorbing photon, and
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The free-free Gaunt factor gff is defined as the ratio
between the quantal free-free absorption cross section and the
Kramers cross section [1,5],

gff (εi, ω)= σab
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For the pure Coulomb field, the continuum electron wave
functions are the Coulomb wave functions and gff can be
analytically expressed in terms of complete hypergeometric
functions 2F1(a, b, c, z) as [8]
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where ηi = Z/a0ki , ηf = Z/a0kf , and Il (l = 0, 1) are de-
fined as
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We note that the Gaunt factor gff remains finite also in the
case Z = 0 (or the field-free case), providing the limit when
the effective charge of the screened ion tends to zero.

As mentioned earlier, in the Debye-Hückel potential (1),
the continuum wave functions are obviously no longer
Coulomb waves and, since the radial Schrödinger equation
with this potential cannot be solved analytically, the deter-
mination of the continuum wave functions has to be accom-
plished by direct numerical solution of the radial Schrödinger
equation with the potential (1). In the present work, for this
purpose we have employed the program RADIAL [22], which

provides highly accurate numerical wave functions. Gener-
ally, the free-free transition matrix elements are calculated by
partitioning the integration region into inner and asymptotic
regions; the numerical integrations are performed in the inner
region and analytical expressions are used for the asymptotical
region. However, if εf is many orders of magnitude larger
than εi , the number of mesh grids in the inner region for the
final wave function can be many orders larger than that for
the initial wave function. This results in a large inefficiency
of the calculations. For such cases (εf > 102 εi ), the inner
region is partitioned into two subregions, so that the final
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TABLE I. Values of the critical screening lengths, Dnl (a.u.) (Ref. [23]).

�������n

l
0 1 2 3 4 5

1 0.839907
2 3.222559 4.540956
3 7.171737 8.872221 10.947492
4 12.686441 14.730720 17.210209 20.067784
5 19.770154 22.130652 24.984803 28.257063 31.904492
6 28.427266 31.080167 34.285790 37.949735 42.018401 46.458584

wave function has reached into its asymptotic region in the
outer subregion, direct numerical integration is performed in
the inner subregion, while the numerical integration method
for highly oscillating functions is employed in the outer
subregion.

Before presenting our computational results, we mention
that the radial Schrödinger equation with the potential (1) is
scalable with respect to Z. Under the transformations ρ = Zr ,
δ = ZD, ε(δ) = ε(Z,D)/Z2, it reduces to the equation for
the ion with Z = 1. For the sake of simplicity, the notations
for the energy and the screening length will be those of the
unscaled case (Z = 1). As mentioned in Sec. I, the most
important changes in the Gaunt factors in the field of screened
potential (1), when the screening length varies, take place in
the vicinity of critical screening lengths Dnl . In Table I, we
display the screening lengths for the nl states with n � 6,
taken from Ref. [23].

III. RESULTS AND DISCUSSION

For the purpose of discussing the general properties of non-
relativistic Gaunt factors, we display in Fig. 1 the Gaunt fac-
tors for the pure Coulomb case (Z = 1) and the field-free case
(Z = 0) in the ranges εi = 10−8–108 Ry, ω = 10−7–107 Ry.

FIG. 1. Nonrelativistic free-free absorption Gaunt factors
gff (εi, ω) for the pure Coulomb potential and field-free cases in the
ranges εi = 10−8–108 Ry and ω = 10−7–107 Ry. (b) The gff (εi, ω)
in the log-log scale.

The figure shows that at high εi and a fixed value of ω, both
Gaunt factors increase with increasing εi and, for sufficiently
large values of εi , the Coulomb Gaunt factors gradually
approach those of the field-free case as the electron energy
becomes much larger than the potential energy of the ion. The
increase of gff with increasing εi is due to the increased num-
ber of l waves contributing to the sum in Eq. (4). For a given
ω, and when εi is very small, the Gaunt factor is completely
dominated by the s-wave contribution. Consequently, in the
Coulomb case, gff is constant, while in the field-free case, it
is proportional to ki = √

2εi , in accordance with the Wigner
threshold law [24]. Figure 1 also shows that for a given εi ,
gff decreases with the increase of ω, resulting from the fact
that for a continuum electron, it is more difficult to absorb
a high-energy photon. This follows also from the classical
Kramers free-free absorption cross section, σK ∝ ω−3 [cf.
Eq. (3)].

Bearing in mind that the field-free and pure Coulomb cases
are the limiting cases of screened potential (1) (D → 0 and
D → ∞, respectively), Fig. 1 indicates the regions in the
(εi, ω) parametric plane in which the Gaunt factors in the
screened case differ from the Coulomb ones. From a physics
point of view, when analyzing the behavior of Gaunt factors
gff for the potential (1), the most interesting are the regions
ω 	 εi and ω ∼ εi , with εi < 1.0 Ry. In the first case, the
wave function of the incident electron is sensitive to the
bound-state structure of the potential (due to the longer time
the electron spends in the field), while after absorbing an
energetic photon, it becomes insensitive to the potential (the
high-energy electron quickly leaves the attractive field). In the
second case, the electron both before and after absorbing a
low-energy photon has wave functions that are sensitive to
the bound-state structure of the potential. In what follows, we
shall analyze both of these physical situations.

In Fig. 2, we show the variation of gff (εi, ω) in the ranges
εi = 10−8–102 Ry and ω = 10−7–105 Ry for the pairs of
screening lengths D = 0.8, 0.9 a.u., D = 3.2, 3.3 a.u., and
D = 4.5, 4.6 a.u. in the vicinities of critical screening lengths
D1s = 0.840 a.u., D2s = 3.223 a.u., and D2p = 4.541 a.u.,
respectively [Figs. 2(a), 2(b), and 2(c), respectively]. We
note that the first value of these D pairs is smaller than the
corresponding critical screening length Dnl (i.e., the nl state
is already in the continuum), while the second value of the
pair is larger than the corresponding Dnl (the nl state is still
bound in the potential). The figure shows that in the regions
around εi ∼ 10−3, ∼ 10−5, ∼ 10−3 Ry in the Figs. 2(a), 2(b),
and 2(c), respectively, the Gaunt factors for both D values
around the critical screening lengths D1s and D2s exhibit
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FIG. 2. Nonrelativistic free-free absorption Gaunt factors gff (εi, ω) for screening lengths in the vicinity of D1s = 0.840 a.u., D2s =
3.223 a.u., and D2p = 4.541 a.u. in the ranges εi = 10−8–102 Ry and ω = 10−7–105 Ry.

dramatic enhancements, but in the vicinity of D2p, only for
D = 4.5 a.u. is such enhancement observed. It should also be
noted that Gaunt factor enhancements related to the critical
screening length D1s appear at about a factor of ten higher
energies than those related to D2s . This is a consequence of
the stronger screening of the ion for smaller D.

Figure 2 also shows the variation of magnitudes of Gaunt
factors with ω in the considered (εi, ω) domain, including
those of the enhancement peaks. Outside the enhancement
regions �εi , the Gaunt factors decrease with increasing ω,
like in the field-free and Coulomb cases. The Gaunt factor
enhancement peaks for the selected values of ω maximize for
ω = 10 Ry, and then decrease for larger or smaller ω value. It
should be remarked that for ω = 10−5 Ry and ω = 10−7 Ry,
the peaks for the screening length D = 4.5 a.u. are converted
into dips.

The broad Gaunt factor enhancements for the screening
lengths near the critical Dns screening lengths can be under-
stood on the basis of the general theory of low-energy particle
scattering on a short-range potential [25]. The low-energy
electron, when scattering on a short-range potential (1), can
form either near-zero-energy bound (for D slightly above
Dns) or a virtual (for D slightly below Dns , i.e., with positive
energy) s states, the wave functions of which have both
large amplitudes and radial extensions [25]. In the scattering
problem, the formation of such states leads to a large cross-
section enhancement (called, in nuclear physics, zero-energy
or broad resonance [26]). The height and half width of a
broad resonance for a given D depend only on the distance
|Dns − D| and not on the character of the near-zero-energy
state. As Figs. 2(a) and 2(b) show, the peaks of Gaunt factors
for D = 0.8 a.u. and D = 3.2 a.u., which are, respectively,
closer to the screening lengths D1s and D2s , have higher peaks
and larger half widths than their copartners D = 0.9 a.u. and

D = 3.3 a.u.. Their energy positions are also lower than those
for D = 0.9 a.u. and D = 3.3 a.u., respectively.

The narrow resonant features in the Gaunt factors in
Fig. 2(c) for the screening length D = 4.5 a.u., which is
slightly below the critical screening length D2p = 4.541 a.u.,
have obviously a different character than the broad resonances
in Figs. 2(a) and 2(b). The origin of these peak structures is
the temporary capture of the electron’s p wave in the effective
potential (containing an l = 1 centrifugal barrier) when the
electron energy coincides with the energy of a quasibound
state formed when the bound 2p state enters the continuum at
D = D2p (shape resonance). As seen from Fig. 2(c), for the
screening length D = 4.6 a.u., such shape resonance does not
appear in the Gaunt factor as for this value of D, the 2p state
is still bound (although rather weakly). As mentioned earlier
for ω = 10−5 Ry and ω = 10−7 Ry, these resonances manifest
themselves as dips in the Gaunt factors (see, e.g., [25]). Note
that the quasibound states in the Debye-Hückel potential (1)
have been studied in [27] for l up to l = 10, also providing an
estimate of the range of D below Dnl in which quasibound
states can be formed, as well as the values of their half
widths.

A further insight in the physics of free-free absorption
in a Debye plasma can be gained from Fig. 3, where the
contributions of s and p partial waves to the Gaunt factors
for values of D in the vicinity of D2s and D2p are shown for
the typical ω = 10 Ry [Figs. 3(b) and 3(d)], together with the
phase shifts of s and p partial waves [Figs. 3(a) and 3(c)].
In Figs. 3(b) and 3(d), we also show the contribution to the
Gaunt factors from all l > 1 partial waves. The dominance of
the s-wave contribution to the Gaunt factors for D = 3.2 a.u.

and D = 3.3 a.u. in Fig. 3(b) in the energy region below
10 Ry is evident. The Gaunt factor involving the virtual s

state formed for D = 3.2 a.u. is larger than the one involving
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FIG. 3. (a) s and (c) p partial wave phase shifts of the initial
electron and the contributions to the Gaunt factors of the (b) l = 0, 1
and (d) l > 1 waves for screening lengths near the critical screening
length (a), (b) D2s = 3.223 a.u. and (c), (d) D2p = 4.541 a.u.

the near-zero-energy bound s state formed for D = 3.3 a.u.

From Figs. 3(a)–3(d), we see that both phase shifts and Gaunt
factors of p partial waves are insensitive to the variation of D

in the vicinity of Dns critical screening lengths.
In Figs. 3(c) and 3(d), the phase shifts and Gaunt factors

for the s and p partial waves are shown, respectively, for
D = 4.5 a.u. and D = 4.6 a.u. Remarkable features in these
panels are the jump of the p-wave phase shift by π radians at
εi ∼ 10−3 Ry and the related resonance at the same energy in
the p-wave contribution to the Gaunt factor for D = 4.5 a.u.

For D = 4.6 a.u., which is larger than D2p = 4.451 a.u., both
the p-wave phase shift and Gaunt factor show a smooth
variation in the entire energy range. It should be remarked that
the s-wave Gaunt factors for D = 4.5 a.u. and D = 4.6 a.u.

are indistinguishable in the considered energy range and, in
the region below ∼80 Ry, they are larger than the correspond-
ing ones for the p wave, except for the shape resonance
for D = 4.5 a.u. in the relatively narrow region around εi ∼
10−3 Ry. It is also worthwhile to note that all l-wave Gaunt
factors shown in the panels of Fig. 3 obey the Wigner εi

l+1/2

threshold law.
A more complete picture of the energy behavior of Gaunt

factors in the energy range εi = 10−8–102 Ry for the typ-
ical ω = 10 Ry for screening lengths in the ranges D =
6.0–7.5 a.u., D = 8.0–8.8 a.u., D = 10.0–11.0 a.u. around
the critical screening lengths D3s = 7.172 a.u., D3p =
8.872 a.u., and D3d = 10.947 a.u. in Figs. 4(a), 4(b), and 4(c),
respectively. Also shown are the Gaunt factors in the pure
Coulomb field and field-free cases. The figure illustrates the
energy ranges within which, due to the resonance enhance-
ments, the Gaunt factors in the screened potential (1) can
become significantly larger than in the pure Coulomb case.

The broad s resonances in Fig. 4(a) appear in the region
below ∼0.1 Ry. The magnitude of the s resonance is larger,
the closer its screening length is to D3s . This rule is also valid
for the shape resonances. For D = 6 a.u., the potential cannot
support a virtual s state and a broad resonance cannot be
formed. The shape resonances for D around D3p are located
in the energy range 5 × 10−5 − 5 × 10−3 Ry [cf. Fig. 4(b)].

FIG. 4. Energy dependence of Gaunt factors for ω = 10 Ry and
screening lengths near the critical screening lengths (a) D3s =
7.172 a.u., (b) D3p = 8.872 a.u., and (c) D3d = 10.947 a.u.

Resonances are formed only for D = 8.8, 8.7, and 8.5 a.u.
with peak values decreasing with increasing the difference
D3p − D. For D = 8.9 a.u. and for D = 8.0 a.u., shape res-
onances do not appear in the Gaunt factor energy dependence
since for D = 8.9 a.u. the 2p state is still bound and for D =
8.0 a.u. the electron energy is above the top of centrifugal
barrier of the effective potential. The shape resonances for
D = 10.9, 10.8, and 10.6 a.u., associated with the crossover
of 3d state into the continuum, are located in the energy range
5 × 10−4 − 5 × 10−2 Ry [cf. Fig. 4(c)] but only the resonance
for D = 10.9 a.u. in a small energy range has values above
those in the Coulomb case. The half widths of d-wave shape
resonances are significantly smaller than those for the p-wave
shape resonances in Fig. 4(b).

The Gaunt factors exhibit the same or similar patterns for
the screening lengths D around critical Dns and Dnl (l > 1)
critical screening lengths at least with n up to 6. In Fig. 5,
we show the Gaunt factors for pairs of selected screening
lengths around the critical screening lengths D6s = 28.427,
D6p = 31.080, D6d = 34.286, D6f = 37.950, D6g = 42.018,
and D6h = 46.459 a.u. [Figs. 5(a) to 5(f), respectively] to
cover a broad range of D. The values of D pairs around
each critical screening length Dnl are chosen such that one
of them is smaller and the other is larger than Dnl . The Gaunt
factors for the D pair near D6s both exhibit broad resonances
[Fig. 5(a)] since for D = 28.4 a.u. and D = 28.5 a.u., the
potential supports a virtual and a weakly bound state, respec-
tively. For all other D pairs, only the Gaunt factor for the
smaller D value exhibits a shape resonance, as for the other
D value, the nl state in the potential is bound. The two broad
resonances in Fig. 5(d) appear due to the fact that the critical
screening length for the 7s bound state in the potential has the
value D7s = 38.64 a.u. [28] (close to D6f = 37.950 a.u.) and,
for the screening lengths D = 37.9 a.u. and D = 38.0 a.u.,
the potential supports virtual states. Thus, the Gaunt factor
for D = 37.9 a.u. in Fig. 5(d) shows two overlapping (broad
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FIG. 5. Same as in Fig. 4, but for D in the vicinity of critical lengths (a) D6s = 28.427 a.u., (b) D6p = 31.080 a.u., (c) D6d = 34.286 a.u.,
(d) D6f = 37.950 a.u., (e) D6g = 42.018 a.u., and (f) D6h = 46.459 a.u.

and shape) resonances, while the broad resonance for D =
38.0 a.u. is due to the s-wave virtual state. Due to the large
half width of the s-wave (broad) resonances, their overlap
with the shape (l > 0) resonances should not be so rare of
an event in the region of large D. Whenever a pair of Dns and
Dn’l’(l’ > 0) are close enough to each other and D is close
to both of them (but on the left side of Dn’l’), an overlap of
the s and l’ resonances can appear. From Table I, we can see
that the pairs D5s − D4d and D6s−D5f provide conditions for
such resonance overlapping. Due to their small widths, the
overlap of two shape resonances should be considered as a
very rare event.

In closing this section, we note that similar resonant struc-
tures with the same physics origin have been observed in
the cross sections for photoionization of hydrogenlike ions
[23,29] and negative hydrogen ion [30], low-energy electron
impact excitation of hydrogen atom near the n = 2 and n =
3 thresholds [31–33] and fast-electron impact ionization of
hydrogenlike ions [34,35] processes in Debye plasmas.

IV. CONCLUSIONS

In the present work, we have investigated the properties of
nonrelativistic free-free absorption Gaunt factors gff (εi, ω) in
the field of the screened Yukawa (Debye-Hückel) potential in
wide ranges of incident electron energy εi , absorbed photon
energy ω, and the screening length D of the potential. We
have revealed that the energy dependence of Gaunt factors

for a given photon-absorption energy ω is not a smooth
increasing function like in the pure Coulomb interaction case,
but exhibits resonant structures for screening lengths in the
vicinity of critical screening lengths Dnl at which the bound
nl states in the screened potential merge into the continuum.
For screening lengths D in the vicinity of Dns , these struc-
tures are broad resonances related to the near-zero-energy
virtual (for D < Dns) and bound (D > Dns ) states. For D

in the left vicinity of Dnl (l > 0), the enhancement structures
have shape-type resonance character, related to the temporary
capture of the incident low-energy electron in the effective
potential (screened Coulomb and centrifugal potentials) for
l > 0 states. When D approaches to Dnl , the maxima of both
broad and shape resonances within a given nl series increase
and their energy positions shift towards lower energies. The
half widths of broad resonances increase when D moves
towards Dnl , while those of shape resonances decrease. The
dependence of gff (εi, ω) on ω outside the resonant energy
regions is the same as in the Coulomb case, within the
resonant region it changes.
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