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In previous research, we tested the wave-function format of a linear combination of several antisymmetrized
geminal power states. A numerical problem in the geminal matrices was noted, which made the total energies
of electronic systems with large numbers of electrons unstable. The underlying cause was found to be the large
cancellation term in the geminal power series. We have obtained a format to resolve this problem for the case
of total energies and partly for the first-order derivatives within the antisymmetrized geminal power states. By
using this formalism, we have calculated the ground-state energies for several electronic systems, including the
usage of a larger chemical basis set. The results are, in some cases, very close to the exact result, especially for
one-dimensional Hubbard systems. Our result for a water molecule with the Dunning double zeta basis set is
better than the configuration-interaction singles and doubles energy and approaches the coupled cluster singles
and doubles energy.
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I. INTRODUCTION

There are many fascinating physical phenomena in macro-
scopic compounds of transitional metallic elements like
cuprate superconductors. These physical phenomena are also
chemical and governed partly by quantum chemical mecha-
nisms. To obtain the energy spectra of these chemical sys-
tems, we have used the configuration-interaction method or
the coupled cluster formalisms [1–3]. These methods have
polynomial scaling in computational cost versus system size,
but attempts at obtaining systematically good results increased
the cost index of the scalings.

There are many wave-function theories designed to con-
quer the problems of past decades, including the density
matrices renormalization-group methods (DMRG) [4,5]. The
algorithm of DMRG is one example of matrix product states.
When there are one-dimensional structures inherent to the
electronic system, DMRG provides very good results [6].
When applying the DMRG format to real molecules, we must
sometimes assume a one-dimensional order of the chemical
sites of the systems, which becomes increasingly unnatural
when we increase the system size [7].

For the case of electronic systems, we have successful
results of quantum Monte Carlo algorithms (QMC) [8]. Some
of these algorithms use Slater determinants, and in some cases
are further extended to use the so-called pfaffian or the anti-
symmetrized geminal power states (AGP) with Jastrow factors
(JAGP). The combination of geminal powers and Jastrow
factors has already obtained a variety of results for chemical
systems [9–13]. The formalism of QMC is based on walker
sampling with the usage of probability; thus, in obtaining the
expectation value of the energies, we use the statistical aver-
age [14,15]. QMC algorithms on electronic systems are also
known to suffer from the fermionic negative sign problem [8].

On the other hand, there are theories of the reduced density
matrices of fermionic systems in order to mathematically
clarify the nature of electronic correlations in many-body
systems [16,17]. The energy formula for the density matrices

is very trivial in comparison to DFT formalisms, but there
are known problem such as the N-representability conditions
of the density matrices [18]. There are also algorithms to
consider the necessary conditions of the density matrices in
order to obtain the lowest energy of target systems [19]. In
the context of reduced density matrices, there are suggestions
for the wave-function form of antisymmetrized geminal power
states, which are an extension of Slater determinants and very
close analogs to the well-known BCS states [16,17,20–22].
These AGP states are used to obtain the potential surfaces of
molecules [23,24].

We have previously introduced the wave-function assump-
tion of the linear combination of antisymmetrized geminal
power states to correctly and compactly describe the struc-
tures of many electronic wave functions [25,26]. We hoped
this format would provide an established workplace to de-
scribe larger chemical and physical systems in the future with
a polynomial cost and high precision results. When we use
the linear combination of Slater determinants instead of AGPs
we can, in some cases, obtain results comparable to the exact
value [27]. One AGP state describes larger variational space
than one Slater determinant, so the linear combination of
AGPs is likely to provide better results. There are also recently
reported results for geminal powers, and some provide results
for the geminal product case [28,29], while others provide
results for the restricted Hamiltonian case [30].

On the practice of the geminal power states with the elec-
tronic systems, we found that a numerical instability arises
due to the matrices power structure of the format. We found
that the cause of the problem is the cancellation of high-power
terms when we obtain the total energy formula. We introduce
how we obtained the solution in the forthcoming section.
Furthermore, we report on recent calculation results with
several antisymmetrized geminal power states. The geminal
matrices technique was used, and we successfully enlarged
the area of the system sizes such that we could calculate with
the geminal power states.
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II. FORMALISM

First, we present the basic expressions in our AGP-based
formalism. Some parts of these expressions have appeared in
Ref. [26]. We give the expression of the wave function as

�(x1 · · · xN ) =
M∑

i1···iN =1

Ai1···iN φi1 (x1) · · · φiN (xN ), (1)

Ai1···iN =
K∑

k=1

ckÂ
(
γ k

i1i2γ
k
i3i4 · · · γ k

iN−1iN

)
. (2)

Here, � is the total wave function of the system, φ is
the one-electron orbital that is set to the Gaussian basis
set or the Hubbard site orbital in our calculations, Â is
the antisymmetrizer, N is the number of the electron, M
is the number of the one-electron orbital or of the basis
function, and K is the number of AGPs which appear in
the wave function. The geminal γ is a skew-symmetric
matrix and there are no other restrictions. The expres-
sion for the total energy with the AGP states of γ x and
γ y is

E =
⎡
⎣ ∑

k1l1k2l2

1

2
pf(1 + Bt ) · Hk1l1k2l2{[γ x(1 + Bt )−1]k2k1 (γ y)l1l2}t +

∑
k1l1k2l2

pf (1 + Bt )Hk1l1k2l2

×
(

−1

2
[B(1 + Bt )−1]l1k2 [B(1 + Bt )−1]l2k1 + 1

2
[B(1 + Bt )−1]l1k1 [B(1 + Bt )−1]l2k2

− 1

2
[B(1 + Bt )−1γ y]l1l2 [γ x(1 + Bt )−1]k2k1

)
· t2

⎤
⎦

∣∣∣∣∣∣
tN/2

, (3)

where H is the Hamiltonian matrix element and the matrix B is defined as

B = −γ yγ x. (4)

These are the basic formalisms of extended symmetric tensor decomposition (ESTD). These expressions for the AGP states
are somewhat similar in their structure to expressions found in nuclear physics, though they do not contain the polynomial
expressions [31–34].

Next, we show how numerical stabilization of the energy is obtained. We diagonalize the matrix B as

B = Qr M Ql . (5)

The matrix B is defined as a product of two skew-symmetric matrices and has a relationship with the so-called skew Hamiltonian
matrices. Therefore, the eigenvalues of B are evenly degenerate. For such matrices, the details of the eigenvalue decompositions
can be found in Refs. [35–37]. When the eigenvalues of B are λ1, λ1, . . . , λM/2, λM/2, we can rewrite the norm as

n = N! pf (1 + Bt )|tN/2 = N! [det(1 + Bt )]1/2|tN/2 = N!
√

(1 + λ1t )2 · · · (1 + λM/2t )2|tN/2 = N! [(1 + λ1t ) · · · (1 + λM/2t )]|tN/2 .

(6)

We also apply the eigendecomposition of matrix B in the energy expression. This idea was obtained from the description in
Ref. [17]:

E =
∑

k1l1k2l2

1

2
Hk1l1k2l2 [(γ xQr q1 Ql )k2k1 (γ y)l1l2 ] +

∑
k1l1k2l2

Hk1l1k2l2

(
−1

2
(QrM × QrM q2 Ql × Ql )l1k2l2k1

+ 1

2
(QrM × QrM q2 Ql × Ql )l1k1l2k2 − 1

2
(QrM × γ xQr q2 Qlγ

y × Ql )l1l2k2k1

)
, (7)

where

q1i1i1 = ∂

∂λi1

pf (1 + Bt )|tN/2−1 , (8)

q2i1i3i1i3 = ∂

∂λi1

∂

∂λi3

pf (1 + Bt )|tN/2−2 . (9)

Or, alternatively, we have

q10i1i1 = (1 + Mt )−1
i1i1

pf (1 + Bt )|tN/2−1 , (10)

q20i1i3i1i3 = (1 + Mt )−1
i1i1

(1 + Mt )−1
i3i3

pf (1 + Bt )|tN/2−2 . (11)

The notations q10 and q20 are the original formalisms of
the energies and q1 and q2 are modified ones which are
used instead of q10 and q20. For the above expressions, the
set of indices i1i1 or i3i3 always appear as diagonal and the
nondiagonal part is set to zero. This modification removes
the inverse matrices even though they are given as matrix
polynomials. The tensor given in (9) can be distributed as
a two-dimensional plane in the four-dimensional space of
indices and has the twofold structure of the usual diagonal
matrices. The definition of the tensor algebra with the cross
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TABLE I. Total energy (in units of hartrees) of H2O with STO-
3G basis set obtained by ESTD. For comparison, the full-CI calcu-
lation with our own code and the CASSCF calculation using the
Gaussian09 package was taken from Ref. [26]. The Hartree-Fock
calculation was done with our own code.

Method Total energy

Hartree-Fock −74.962940033

ESTD, K = 1 −74.987449763
ESTD, K = 4 −75.011647636
ESTD, K = 8 −75.012339655
ESTD, K = 16 −75.012415900

Exact (ours) −75.012425818
Exact (Gaussian) −75.012425839

term is such that

(A × B q C × D)i1 j1i2 j2 ≡
∑

k1l1k2k2

Ai1k1 Bi2l1 qk1l1k2l2Ck2 j1 Dl2 j2 .

(12)

Equations (8) and (10) give the same value. However, Eqs. (9)
and (11) are different in the sense that in (9), the i1 = i3 term
is neglected. We numerically found that we could obtain the
same value for the total energy with this modification in the
energy expression. With this modification, we successfully
reproduced the total energy of STO-3G water converged case.
In this case, the energy was obtained with quadruple precision
arrays in previous research [26], but we were able to reproduce
almost the same energy with the same input geminal matrices
using double precision arrays. From this we have concluded
that the stabilization of the total energy with double precision
variables is achieved by use of this eigenvalue technique.
We can further obtain the algorithm to partially stabilize the
first-order derivative of the energy with respect to geminals in
a similar manner.

TABLE II. Total energy (in units of hartrees) of H2O with DZ
basis set obtained by ESTD. For comparison, the full-CI calculation
was taken from Ref. [2]. The Hartree-Fock calculation was done
with our own code and agrees with the value in Ref. [2]. The CISD
calculation in Ref. [2] and the CCSD calculation in Ref. [3] are also
shown.

Method Total energy

Hartree-Fock −76.00983760

ESTD, K = 1 −76.03854235
ESTD, K = 4 −76.13814833
ESTD, K = 8 −76.14419119
ESTD, K = 16 −76.14774318
ESTD, K = 40 −76.14971592
ESTD, K = 60 −76.15509884

CISD (Ref. [2]) −76.150015
CCSD (Ref. [3]) −76.156078
Exact (Ref. [2]) −76.157866

TABLE III. Total energy of six-site Hubbard model with U/t =
1.0 obtained by ESTD. For comparison, the full-CI calculation with
our own code and the result of Ref. [19] is shown. The Hartree-Fock
calculation was done with our own code.

Method Total energy

Hartree-Fock −6.50000000

ESTD, K = 1 −6.53462699
ESTD, K = 4 −6.59785021
ESTD, K = 8 −6.60101260
ESTD, K = 16 −6.60115439

Exact (ours) −6.60115829
Exact (Ref. [19]) −6.60115829

III. RESULTS

We have applied the ESTD formalism on a water molecule
and the Hubbard model using the stabilized form of ESTD
described above. We have done the variational process with
the quasi–Newton Broyden-Fletcher-Goldfarb-Shanno algo-
rithm (BFGS) method. For the water molecule, we have
tested the STO-3G basis set and the double zeta (DZ)
basis set. The geometry is set to O : (0.0, 0.0, 0.0), H :
(−1.809, 0.0, 0.0), H : (0.453549, 1.75221, 0.0) for STO-3G
and O : (0.0, 0.0,−0.009), H : (1.515263, 0.0,−1.058898),
H : (−1.515263, 0.0,−1.058898) for DZ. For the STO-3G
case, we have used the same system as that of Ref. [26]. For
the DZ basis case, we have used the system in Ref. [2]. For the
Hubbard model, we have used the one-dimensional Hubbard
model with six sites. The parameter U/t is set to 1.0 and 10.0.

Table I shows our results for the water molecule with STO-
3G basis set. The ESTD energy starts between the Hartree-
Fock (HF) and full-CI values. Then, the ESTD result rapidly
approaches the exact value. In this system, M = 14, N = 10,
and the total dimension of the Hilbert space is set to 1001.
The residual energy is 1.0 × 10−5 hartree when K = 16. In
Table II, we have shown the results for the water molecule
with the DZ basis set. In this system, M = 28, N = 10,
and the total dimension of the Hilbert space is 13123110.
When the spin and space adaptations were done correctly,
the dimension became 256473 [2]. If this was done with the
ESTD algorithm, the numerical difficulty of searching for
the correct ground state in the total Hilbert space would be

TABLE IV. Total energy of six-site Hubbard model with U/t =
10.0 obtained by ESTD. For comparison, the full-CI calculation with
our own code and the result of Ref. [19] is shown. The Hartree-Fock
calculation was done with our own code.

Method Total energy

Hartree-Fock −1.18824301

ESTD, K = 1 −1.26387314
ESTD, K = 4 −1.51073560
ESTD, K = 8 −1.65861524
ESTD, K = 16 −1.66435948

Exact (ours) −1.66436273
Exact (Ref. [19]) −1.66436273
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FIG. 1. Relative energy and the energy gradient on the variation
of the water molecule with STO-3G basis set. The number of AGPs
(K) is set to 16.

dramatically reduced. In this system, the variation reaches
the area beyond 95% of the total correlation energy. The
ESTD energy of K = 1 is slightly below the Hartree-Fock
energy, which could be an important sign that the variational
space for one AGP state is larger than one Slater determinant.
The configuration-interaction singles and doubles (CISD) and
coupled cluster Slater determinant (CCSD) values are also
shown from the references. Our result of ESTD, K = 60,
is better than the CISD energy. The result describes more
than 98% of the correlation energy and closely approaches
the CCSD energy. In this system, the residual energy is
2.8 × 10−3 hartree when K = 60. The calculation of
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FIG. 2. Relative energy and the energy gradient on the variation
of the water molecule with DZ basis set. The number of AGPs (K) is
set to 60.
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FIG. 3. Relative energy and the energy gradient on the variation
of the one-dimensional six-site Hubbard model with U/t = 1.0. The
number of AGPs (K) is set to 16.

K = 60 is done under the condition that each AGP state
that appears in Eq. (2) has the same weight. In Tables III
and IV, we have shown the results for the one-dimensional
six-site Hubbard model with U/t = 1.0 and U/t = 10.0. For
both systems, M = 12, N = 6, and the total dimension of the
Hilbert space is set to 924. In both cases, the ESTD energy
is well converging to the exact value. For the system with
U = 1.0, the residual energy is 3.9 × 10−6 when K = 16. For
the system with U = 10.0, the residual energy is 3.3 × 10−6

when K = 16.
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FIG. 4. Relative energy and the energy gradient on the variation
of the one-dimensional six-site Hubbard model with U/t = 10.0.
The number of AGPs (K) is set to 16.
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In Figs. 1–4, we have plotted the behavior of relative en-
ergy with respect to exact value and the energy gradient with
respect to the geminal variables. We have used the root mean
square for the value of the geminal gradient. In each case,
the value of the gradient is also decreasing as the variation
progresses. These first-order derivatives are combined with
the BFGS Hessian matrices and determine the direction of the
variational search of the geminals.

IV. CONCLUSION

We have observed that by the application of the eigenvalue
technique with AGPs, the instability of the energy and some of
the variational process is removed. We were therefore able to
perform the ESTD calculations with double precision arrays
and general skew-symmetric matrices without the usage of
quadruple or higher arithmetic. As a result, the ESTD cal-
culation of general matrices became dramatically faster than
before. The energy error for the DZ basis case is around three
millihartree in this case, which is comparable to the error in
the Hilbert space JAGP case [12]. This energy error is likely to

be further decreased when we increase the number of AGPs.
For the case of the Hubbard models, the behavior of residual
energies shows that the exponential convergence toward the
exact solution is likely against the number of terms in ESTD.
We have not optimized our formalism for spin adaptations, but
if that is done correctly, we expect overall improvement of the
variation. Also, we could calculate the excited states within
the ESTD formalism by using the orthogonality conditions of
the quantum states. All calculations apart from the K = 1 case
have been done with the parallelization for the K2 part of the
ESTD algorithm.
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