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Hyperfine-induced transitions 1S0-3D1 in Yb
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Parity-violation experiment in Yb is made on the strongly forbidden M1 transition 6s2 1S0 → 5d6s 3D1. The
hyperfine mixing of the 5d6s 3D1 and 5d6s 3D2 levels opens the E2 channel, whose amplitude differs for F
sublevels of the 3D1 level. This effect may be important for the experimental search for the nuclear-spin-
dependent parity-violation effects predominantly caused by the nuclear anapole moment.
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I. INTRODUCTION

Up to now the largest parity-violation (PV) effect in atomic
physics was observed in the transition 6s2 1S0 → 5d6s 3D1 in
ytterbium [1–4]. The accuracy of the latest experiment [4]
has reached 0.5%, which allowed one to detect isotope de-
pendence of the PV amplitude for even isotopes and obtain
the limits on the interactions of additional Z ′ boson with
electrons, protons, and neutrons. At this level of accuracy it
becomes possible to observe a nuclear-spin-dependent (NSD)
PV amplitude, which is roughly two orders of magnitude
smaller than the nuclear-spin-independent (NSI) PV ampli-
tude. For heavy nuclei this amplitude is dominated by the
contribution of the nuclear anapole moment [5–7]. Among
several smaller contributions there is one from the weak
quadrupole moment [8].

The dominant NSI PV amplitude 6s2 1S0 → 5d6s 3D1 was
calculated in Refs. [1,9–11] and the NSD PV amplitude was
calculated in Refs. [11–13]. Experimental detection of the
anapole moment in this transition would require precision
measurements of the PV amplitudes for different hyperfine
components of the 6s2 1S0 → 5d6s 3D1 transition and compar-
ison with the accurate theory.

The largest contribution to the experimentally observed PV
signal comes from the interference term of the PV amplitude
and the Stark-induced amplitude [3]. However, there are other
smaller contributions from the interferences with the forbid-
den M1 transition and the hyperfine-induced E2 transition.
The former one was measured in [14] and was found to be

|〈5d6s 3D1||M1||6s2 1S0〉| = 1.33(21) × 10−4 (μ0), (1)

where μ0 is the Bohr magneton. The latter amplitude is not
known, but it is expected to be not much smaller. Moreover,
it can produce NSD effects by the interference with the main
NSI PV amplitude. Here we present calculations of the domi-
nant contribution to this amplitude from the hyperfine mixing
between states 3D1 and 3D2, which lie only 263 cm−1apart
(see Fig. 1). Of course, the hyperfine interaction can only mix
sublevels with the same total angular momentum F .

The hyperfine structure of the 3D1 and 3D2 levels was
measured by Bowers et al. [15]. For example, for the isotope
171Yb the constant A(3D1) was found to be −2.04 GHz.
The off-diagonal matrix elements of the hyperfine interaction
between the levels of the same multiplet are not suppressed, so
for the isotope 171 we can expect mixing between these levels
on the order of 2 GHz/(c 263 cm−1) ∼ 3 × 10−4, where c
is the speed of light. The quadrupole amplitude 6s2 1S0 →
5d6s 3D2 was measured in Ref. [15]:

|〈5d6s 3D2||E2||6s2 1S0〉| = 1.45(7)
(
ea2

0

)
, (2)

where e is elementary charge and a0 is Bohr radius. The hy-
perfine mixing of the levels 3D1 and 3D2 leads to the hyperfine-
induced (HFI) quadrupole transitions from the ground state to
the state 3D1. Figure 1 shows that for the isotope 171 there
is only one such transition to the sublevel F = 3/2; we can
estimate its amplitude to be ∼4 × 10−4 (ea2

0). According to
this estimate the rate of this HFI transition is about one order
of magnitude smaller than the rate of the M1 transition (1).
For the isotope 173 there are three such HFI transitions. In this
paper we calculate amplitudes of these four HFI transitions.

II. HYPERFINE MIXING

The hyperfine mixing coefficients εI,F from Fig. 1 between
F sublevels of the levels 3D1,2 for the isotope with spin I are
given by the expression

εI,F = 1

−�
〈3D2, I, F |Hhf |3D1, I, F 〉. (3)

In the following discussion we use atomic units h̄ = m =
e = 1, where m is electron mass and e is elementary charge.
In these units � = E3D2

− E3D1
= 0.001198. The hyperfine

interaction includes magnetic dipole and electric quadrupole
parts, which can be written as [18]

Hhf = HA + HB ≡ gIV · I + QI T
(2) · R(2), (4)

where gI and QI are g factor and quadrupole moment of the
nucleus (see Table I); V and T (2) are irreducible electronic
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FIG. 1. Hyperfine mixings εI,F of the 5d6s 3D1 and 5d6s 3D2

levels in odd isotopes 171Yb (I = 1/2) and 173Yb (I = 5/2).

tensors of rank 1 and 2, respectively, and R(2) is the second
rank nuclear tensor:

R(2)
i,k = 3IiIk + 3IkIi − 2I (2I + 1)δi,k

2
√

6I (2I − 1)
. (5)

In the following we need the reduced matrix element of this
operator:

〈I||R(2)||I〉 =
√

(I + 1)(2I + 1)(2I + 3)

4I (2I − 1)
. (6)

Using angular momentum theory [19,20] we can write
matrix elements of the operators HA and HB as

〈J, I, F |HA|J ′, I, F 〉 = (−1)I+F+J ′
{

F I J
1 J ′ I

}
×

√
I (I + 1)(2I + 1)gI〈J||V ||J ′〉, (7)

〈J, I, F |HB|J ′, I, F 〉

= (−1)I+F+J ′
{

F I J
2 J ′ I

}

×
√

(I + 1)(2I + 1)(2I + 3)

4I (2I − 1)
QI〈J||T (2)||J ′〉. (8)

In the diagonal case J = J ′ these expressions have the form

〈J, I, F |HA|J, I, F 〉 = 1

2
X

gI〈J||V ||J〉√
J (J + 1)(2J + 1)

,

X = F (F + 1) − J (J + 1) − I (I + 1), (9)

TABLE I. Nuclear moments of isotopes 171Yb and 173Yb.

171Yb 173Yb Ref.

Spin 1/2 5/2
gI 0.9838 0.2710 [16]
QI (barn) 2.80(4) [17]

TABLE II. Relation between hyperfine mixing coefficients εA
I,F

and εB
I,F and electronic reduced matrix elements.

I, F 1/2, 3/2 5/2, 3/2 5/2, 5/2 5/2, 7/2

εA
I,F

〈3D2 ||V ||3D1〉 +290.3 − 164.0 − 233.7 − 240.0

εB
I,F

〈3D2 ||T (2)||3D1〉 − 667.6 − 362.2 +496.0

〈J, I, F |HB|J, I, F 〉 = 3X (X + 1) − 4I (I + 1)J (J + 1)

8I (2I − 1)J (2J − 1)

× 2QI
√

J (2J − 1)〈J||T (2)||J〉√
(J + 1)(2J + 1)(2J + 3)

. (10)

Comparing Eqs. (9) and (10) with standard definitions of
the hyperfine parameters A and B [21], we find

A = gI〈J||V ||J〉√
J (J + 1)(2J + 1)

, (11)

B = 2QI
√

J (2J − 1)〈J||T (2)||J〉√
(J + 1)(2J + 1)(2J + 3)

. (12)

Experimental and theoretical values of these constants are
discussed in Sec. V.

According to Eq. (4) the mixing coefficients εI,F (3) can be
separated in two parts:

εI,F = εA
I,F + εB

I,F . (13)

We can now express coefficients εA
I,F and εB

I,F in terms of the
off-diagonal electronic reduced matrix elements, similar to
Eqs. (11) and (12), where hyperfine constants are expressed in
terms of the diagonal reduced matrix elements. To this end we
substitute Eqs. (7) and (8) in (3) and take into account (13).
Respective results are summarized in Table II. Note that the
mixings εA

I,F for both isotopes are comparable, because they
are proportional to the nuclear magnetic moment μnuc = gI I ,
rather than gI .

III. HFI TRANSITION AMPLITUDE 6s2 1S0 → 5d6s 3D1

The amplitude of the HFI quadrupole transition 6s2 1S0 →
5d6s 3D1 between hyperfine sublevels is given by

〈3̃D1, I, F, M|E2q|1S0, I, F ′ = I, M ′〉 = (−1)F−M

×
(

F 1 I
−M q M ′

)
〈3̃D1, I, F ||E2||1S0, I, I〉, (14)

where tilde marks a mixed level. The reduced matrix element
is nonzero only because of this mixing with the level 3D2:

〈3̃D1, I, F ||E2||1S0, I, I〉 = εI,F 〈3D2, I, F ||E2||1S0, I, I〉.
(15)

The remaining reduced matrix element can be expressed
in terms of the respective reduced matrix element for even
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isotopes (2):

〈3D2, I, F ||E2||1S0, I, I〉

= (−1)2I
√

(2I + 1)(2F + 1)

{
0 I I
F 2 2

}
〈3D2||E2||1S0〉

= (−1)F−I
√

(2F + 1)/5 〈3D2||E2||1S0〉. (16)

Combining Eqs. (15) and (16) we get the final expression for
the HFI amplitude:

〈3̃D1, I, F ||E2||1S0, I, I〉
= (−1)F−IεI,F

√
(2F + 1)/5 〈3D2||E2||1S0〉. (17)

Using the experimental result (2) and the values from Table II
one can express all HFI amplitudes in terms of the two
electronic matrix elements 〈3D2||V ||3D1〉 and 〈3D2||T (2)||3D1〉
[see Eq. (4)], which have to be calculated numerically.

IV. NSD PV AMPLITUDE 6s2 1S0 → 5d6s 3D1

Nuclear-spin-dependent PV interaction has the same tensor
structure, as the magnetic dipole hyperfine interaction [22,23]:

HP = GF κ√
2I

V P · I, (18)

where GF is Fermi constant and V P is electronic vector
operator. The dimensionless constant κ is of the order of
unity. It includes several contributions; the largest is from the
nuclear anapole moment [6,7]. There are several definitions of
this constant in the literature; here we follow Refs. [11,13].

Interaction (18) mixes levels of opposite parity. As a result,
the E1 transitions may be observed between the levels of
the same nominal parity. In particular, the levels 6s2 1S0 and
5d6s 3D1 are mixed with odd-parity levels with J = 1, which
we designate as n1o. The two main contributions come from
the levels 6s6p 1,3P1 [13]. The resultant NSD PV E1 amplitude
6s2 1S0 → 5d6s 3D1 can be written as

E1NSD
PV ≡ 〈3̃D1, I, F ||E1||1̃S0, I, I〉 = (−1)2F

×
√

(I + 1)(2I + 1)(2F + 1)

3I

{
F I 1
1 1 I

}
AP, (19)

AP = GF κ√
2

∑
n

[ 〈3D1||VP||n1o〉〈n1o||E1||1S0〉
E3D1

− En1o

− 〈3D1||E1||n1o〉〈n1o||VP||1S0〉
E1S0

− En1o

]
. (20)

In Eq. (19) we again mark mixed states with tilde, but this
time the mixing is caused by the PV interaction (18).

Expressions (19) and (20) agree with Eq. (8) from Ref. [11]
and differ by an overall sign from Ref. [13]. The difference in
sign can be caused by another phase convention, for example,
by another order of adding angular momenta [19,20], or by
an error. The dependence of the amplitude E1NSD

PV on the
quantum number F is given by Eq. (19), while the amplitude
AP has to be calculated numerically. This was already done in
Refs. [11–13].

V. NUMERICAL RESULTS AND DISCUSSION

Ground-state configuration of Yb is [Xe]4 f 146s2. Most
of the low excited states correspond to the excitation of the
6s electron. However, there are also states with excitations
from the 4 f subshell. It is important to check whether these
states can be neglected in the configuration mixing, reducing
the problem to the one with two electrons above closed
shells. It was demonstrated in earlier calculations [24–26] that
such mixing is strong for some low-lying odd-parity states.
In particular, the 4 f 135d5/26s2 (7/2, 5/2)o

1 state is strongly
mixed with the 4 f 146s6p 1Po

1 state due to small energy interval
between them, δE = 3789 cm−1. Reliable calculations for
such states require treating the Yb atom as a 16-electron
system. This can be done with the CIPT method developed
in Refs. [25,26]. On the other hand, the mixing of the former
state with the 4 f 146s6p 3Po

1 state is small and can be neglected.
The energy interval in this case is 10865 cm−1.

In the present work we are interested in the even-parity
states 3D1 and 3D2 of the 4 f 146s5d configuration. The lowest
state of the same parity and total angular momenta J = 1
or J = 2 containing excitation from the 4 f subshell is the
4 f 135d6s6p (7/2, 3/2)2 state at E = 39880 cm−1. Corre-
sponding energy interval is large, �E = 15129 cm−1, and the
mixing in this case can be safely neglected. Therefore, for the
purposes of the present work we can treat Yb atom as a system
with two valence electrons above closed shells and apply
the standard CI+MBPT method (configuration interaction +
many-body perturbation theory) [24,27].

We use the V N−2 approximation [28] and perform initial
Hartree-Fock (HF) calculations for the Yb III ion with two
6s electrons removed. The single-electron basis states are
calculated in the field of the frozen core using the B-spline
technique [29,30]. The effective CI Hamiltonian for two ex-
ternal electrons has a form

ĤCI = ĥ1(r1) + ĥ1(r2) + ĥ2(r1, r2), (21)

where ĥ1(ri ) is a single-electron operator and ĥ2(r1, r2) is a
two-electron operator:

ĥ1(r) = cαp + (β − 1)mc2 + V N−2(r) + �̂1(r), (22)

ĥ2(r1, r2) = e2

|r1 − r2| + �̂2(r1, r2). (23)

Here α and β are Dirac matrices, p is electron momentum,
V N−2 is the potential of the Yb III ion including nuclear
contribution, and �̂1 and �̂2 are correlation operators which
include core-valence correlations by means of the MBPT (see
Refs. [24,27] for details).

To calculate transition amplitudes we use the random-
phase approximation (RPA). The same V N−2 potential as in
the HF calculations needs to be used in the RPA calculations.
The RPA equations for the Yb III ion can be written as

(ĤHF − εc)δψc = −( f̂ + δV N−2)ψc. (24)

Here ĤHF is the relativistic HF Hamiltonian [similar to the ĥ1

operator in (22), but without �̂1], index c numerates states in
the core, f̂ is the operator of the external field (in our case
it is either the nuclear magnetic dipole field or the nuclear
electric quadrupole field), δψc is the correction to the core
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TABLE III. Hyperfine constants of isotopes 171Yb and 173Yb in
MHz. Theoretical values are calculated for the nuclear moments from
Table I.

171Yb 173Yb Ref.

A(3D1) Expt. −2040(2) 562.8(5) [15]
Theory −2349 648 This work

596 [31]
B(3D1) Expt. 337(2) [15]

Theory 249 This work
290 [31]

A(3D2) Expt. 1315(4) −363.4(10) [15]
Theory 1354 −373 This work

−351 [31]
B(3D2) Expt. 487(5) [15]

Theory 384 This work
440 [31]

single-electron wave function ψc induced by external field,
and δV N−2 is the correction to the self-consistent HF potential
due to field-induced corrections to all core wave functions.

The RPA equations are solved self-consistently for all
states in atomic core. As a result, the correction to the core
potential, δV N−2, is found. It is then used as a correction to
the operator of the external field and the transition amplitudes
T are calculated as

Tab = 〈a|
∑

v

( f̂ + δV N−2)v|b〉, (25)

where the sum runs over two valence electrons. The states
|a〉 and |b〉 are two-electron states found by solving the
CI+MBPT equations

(ĤCI − Ea)|a〉 = 0, (26)

with the CI Hamiltonian given by (21), (22), and (23).
To check the accuracy of this approach we calculate

magnetic dipole (A) and electric quadrupole (B) hyperfine
constants for the 3D1 and 3D2 states of the isotopes 171Yb and
173Yb and compare them with the experiment (see Table III).
One can see that the agreement with the experiment for the
constants A is better than for the constants B. For the former
the difference between theory and experiment is 3% and
15%, respectively, while for the latter it is about 30% for
both states. These differences are most likely due to such
factors as neglecting higher-order core-valence correlations,
incompleteness of the basis, and neglecting hyperfine cor-
rections to the �̂ operators [32]. The latter corrections were
included in calculation [31], where the hyperfine constants
(but not the off-diagonal amplitudes) were calculated within
the same CI+MBPT method using V N approximation. As
we will see below, the dominant mixing is caused by the
magnetic hyperfine interaction, where theoretical errors are
15% or less. We conclude that the accuracy of our calculations
is satisfactory for the purposes of the present work.

Numerical values of the off-diagonal hyperfine matrix ele-
ments are

〈3D2||V ||3D1〉 = −1.71(26) × 10−6 a.u., (27)

〈3D2||T (2)||3D1〉 = −4.4(13) × 10−8 a.u. (28)

TABLE IV. Reduced matrix elements of the transitions
6s2 1S0, I, F ′ = I → 5d6s 3D1, I, F for the isotopes 171Yb (I = 1/2)
and 173Yb (I = 5/2). The HFI quadrupole transition amplitudes (17)
are in ea2

0. Subscripts A, B, and tot correspond to the contributions
from the magnetic dipole and electric quadrupole mixings and the
sum of the two. Equation (19) defines the PV E1 transitions in terms
of the amplitude AP, which was calculated in Refs. [11–13].

I, F 1/2, 1/2 1/2, 3/2 5/2, 3/2 5/2, 5/2 5/2, 7/2

E2A × 103 0.0 +0.643 − 0.363 +0.634 − 0.752
E2B × 103 0.0 0.0 − 0.039 +0.021 +0.028
E2tot × 103 0.0 +0.64(10) − 0.40(6) +0.66(10) − 0.72(12)
E1NSD

PV /AP +0.667 +0.471 − 0.660 +0.231 +0.667

Here we assign 15% error bar to the magnetic dipole term
and 30% error bar to the quadrupole term. Comparing these
values with the data from Table II we see that the magnetic
term dominates over the electric quadrupole term by roughly
an order of magnitude. Using experimental value (2) we get
the final values for the HFI amplitudes, which are listed in
Table IV. Note that the signs of the amplitudes depend on
the phase conventions and we assume positive sign of the
amplitude (2).

The final errors in Table IV include experimental error for
the amplitude (1) and theoretical errors for amplitudes (27)
and (28). Note that the dominant part of these errors is
common for all hyperfine transitions and the ratios of the
amplitudes are accurate to 3%–4%. These ratios are partic-
ularly important for the interpretation of the PV experiment.
Numerical results in Table IV are in a good agreement with
the estimate made above, which was based on the values of
the hyperfine constants of the levels 3D1 and 3D2.

Table IV also lists angular factors for the NSD PV am-
plitude E1NSD

PV from Eq. (19), which agree with the factors
presented in Ref. [11].1 It is clear that NSD PV amplitude
has very different dependence on the quantum numbers I and
F than the HFI amplitude (17). This difference is mainly
explained by the difference in the respective 6 j coefficients
in Eqs. (7) and (19). The hyperfine interaction mixes level
J = 1 with the level J = 2, while the PV interaction mixes
level J = 1 with the odd-parity levels J = 1.

VI. TRANSITION RATES

Transition 6s2 1S0,I,I → 5d6s 3D1,I,F may go as M1, or as
E2HFI. The PV interaction opens two additional channels,
E1NSI

PV and E1NSD
PV . These four transitions have different multi-

polarity and, therefore, different dependence on the transition
frequency and different angular dependence [33]. Because
of that we cannot directly compare respective amplitudes.
Instead we can compare the square roots of the respective
transition rates.

The rates for the NSI PV amplitude and M1 amplitude
do not depend of the quantum numbers I and F and are

1Note that the units in Table II in Ref. [11] should be 10−10(iea0),
not 10−9(iea0 ).
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determined by the expression

W (A1) = 2
9 (αω)3|A1|2, (29)

where A1 is the respective reduced amplitude. For M1 tran-
sition this amplitude is given by (1). The NSI-PV amplitude
was calculated in [11] to be∣∣E1NSI

PV

∣∣ = 1.85 × 10−9. (30)

This value agrees with earlier calculations [1,9,10]. The rates
of the NSD PV and the HFI quadrupole transitions depend on
the quantum numbers I and F (see Table IV). The amplitude
E1NSD

PV is roughly two orders of magnitude smaller than (30).
The rate of the quadrupole HFI transitions is

W (E2I,F ) = (αω)5

25(2F + 1)
|E2I,F |2, (31)

where E2I,F is given in Table IV. Putting numbers in Eqs. (29)
and (31) we get the following ratios for the square roots of the
rates:

(W (M1))1/2 : (W (E21/2,3/2))1/2

:
(
W

(
E1NSI

PV

))1/2 = 263 : 78 : 1 . (32)

We see that though the M1 transition is the largest, the
quadrupole HFI transition is not very much weaker. The parity
nonconservation rate [22] P ≡ 2|E1NSI

PV /M1| ≈ 7 × 10−3.

VII. CONCLUSIONS

We calculated hyperfine mixing of the F sublevels of the
levels 3D1 and 3D2. We found that for both odd isotopes of
ytterbium this mixing is dominated by the magnetic dipole
term. The transition amplitude 6s2 1S0 → 5d6s 3D2 was mea-
sured in Ref. [15]. We use this experimental value to find
the amplitudes for the hyperfine-induced E2 transition ampli-
tudes 6s2 1S0,I,I → 5d6s 3D1,I,F . These amplitudes appear to
be only one order of magnitude weaker than the respective M1
amplitude (1). Their knowledge is important for the analysis
of the ongoing measurement of the parity nonconservation
in this transition [4]. These amplitudes can interfere with
the Stark amplitude and mimic PV interaction in the pres-
ence of imperfections. In particular, they must be taken into
account to separate nuclear-spin-dependent parity-violating
amplitude and to measure anapole moments of the isotopes
171Yb and 173Yb. This will not only give us information about
new PV nuclear vector moments in addition to the standard
magnetic moments, but will also shed light on the PV nuclear
forces [6,7,34–36].
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