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Quantum chemistry with Coulomb Sturmians: Construction and convergence of Coulomb
Sturmian basis sets at the Hartree-Fock level
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A discussion of basis sets consisting of exponentially decaying Coulomb Sturmian functions for modeling
electronic structures is presented. The proposed basis-set construction selects Coulomb Sturmian functions using
separate upper limits to their principal, angular momentum, and magnetic quantum numbers. Their common
Coulomb Sturmian exponent is taken as a fourth parameter. The convergence properties of such basis sets are
investigated taking the second- and third-row atoms at the Hartree-Fock level as examples. Thereby, important
relations between the values of the basis-set parameters and the physical properties of the electronic structure are
recognized. Furthermore, a connection between the optimal, i.e., minimum-energy, Coulomb Sturmian exponent
and the average Slater exponents values obtained by Clementi and Raimondi [J. Chem. Phys. 38, 2686 (1963)] is
made. These features of Coulomb Sturmian basis sets emphasize their ability to correctly reproduce the physical
features of the Hartree-Fock wave functions. As an outlook, the application of Coulomb Sturmian discretizations
for molecular calculations and post-Hartree-Fock methods is briefly discussed.
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I. INTRODUCTION

The standard approach for approximating solutions to the
electronic Schrödinger equation is to employ a limited set of
single-particle basis functions to build a discretization basis.
An early approach pursued by Slater [1] was to employ
exponential-type orbitals (ETO) with a radial part of the form
exp (−ζ r ) times a polynomial. In his construction the expo-
nent ζ was estimated from empirical rules, but later refined
exponents based on Hartree-Fock calculations became avail-
able [2]. Whilst ETO could thus be readily used for modeling
atoms, difficulties related to the evaluation of multicentered
two-electron repulsion integrals (ERI) directed attention to
other types of basis functions for molecular calculations.
An outcome of this development is contracted Gaussian-type
orbitals (cGTO) [3,4], for which the evaluation of ERI is much
simpler due to the Gaussian product theorem. Over the years,
many kinds of cGTO basis sets have been developed [5,6],
such that now most aspects of electronic structure can be
modeled reliably using cGTO functions.

Compared to an ETO basis, a missing aspect of cGTO basis
sets is, however, that these functions are not able to correctly
reproduce the functional form [7,8] of the wave function at
large distances or close to the nucleus. For properties such as
nuclear-magnetic resonance (NMR) shielding tensors [9,10]
or Rydberg-type or autoionizing states [11–14], where either
the nuclear cusp or the asymptotic tail are important [9,10],
ETO basis sets remain attractive. Additionally, the computa-
tional resources available for quantum-chemical calculations
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have changed since the 1970’s, such that it may now be
favorable to invest extra computation per integral in order to
have fewer, more accurate basis functions.

Following the pioneering efforts by Harris, Michels, Stein-
born, Weniger, Weatherford, Jones, and others [15–18], in
making ETOs more efficient, recently Coulomb Sturmians
[19–24] (CS) have emerged as a particularly promising ETO
basis. First, the momentum-space representation of these
functions is equivalent to the hyperspherical harmonics, which
allows multicenter electron repulsion integrals to be treated
rather efficiently [25–28]. This opens the way for treating
molecular problems based on these ETO in the future. Second,
understanding CS basis sets provides a foundation towards
the investigation of other ETO basis function types since
the Coulomb Sturmian construction can be easily generalized
preserving many useful properties of the CS functions [29].
For example, one may build N -particle basis functions that
include geometric properties of the physical system under
consideration at the level of the basis [29–37]. Similarly,
d-dimensional hyperspherical harmonic basis sets can model
collective motions of particles, for example, for treating
strongly interacting few-body systems or reactive scatter-
ing [38–42]. With respect to scattering problems, employing
Coulomb Sturmians and generalized Sturmians has become a
well-established technique [43–48] and construction schemes
for optimal Sturmian bases have been suggested [43].

In a recent publication we presented the MOLSTURM frame-
work [49] in which atomic electronic-structure calculations
based on a Coulomb Sturmian discretization can be performed
both at Hartree-Fock (HF) and post-HF levels. Unlike the
application of Sturmians to scattering and unlike conventional
cGTO discretizations, construction schemes for reliable and
efficient CS basis sets are not yet available to the best of
our knowledge. The aim of this paper is to provide a first
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step towards closing this gap, allowing to readily conduct
CS-based electronic-structure calculations in the future. In
particular, this work is concerned with the construction of
CS basis sets for atomic systems at the Hartree-Fock level,
which represents a first elementary step for the construction of
molecular basis sets. Appropriate modifications for capturing
electronic correlation and to compute excited states will be
briefly hinted at in the outlook. However, more detailed dis-
cussion on this matter is planned for a followup publication.

A. Coulomb Sturmian basis functions

Coulomb Sturmians are the analytic solutions to the single-
particle equation [29](
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This equation can be considered as a modification of the
hydrogenlike Schrödinger equation, where the Coulomb at-
traction between electron and nucleus is scaled by a factor

βn = kn

Z
. (2)

Separation of (1) into radial and angular variables yields the
Coulomb Sturmian radial equation[
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Rnl (r ) = 0. (3)

Equation (3) defines the CS radial part Rnl , which is identical
to the familiar hydrogenlike orbitals, just with all occurrences
of the factors Z/r replaced by the Coulomb Sturmian expo-
nent k. The full functional form of the CS reads as

ϕnlm(r ) = Rnl (r )Ym
l (r̂ ),

Rnl (r ) = k3/2Nnl (2kr )le−krL2l+1
n−l−1(2kr ),

(4)

where Ym
l is a spherical harmonic, L2l+1

n−l−1 an associated
Laguerre polynomial, and

Nnl = 2

(2l + 1)!

√
(l + n)!

n(n − l − 1)!
(5)

the normalization constant. Next to other prominent atom-
centered basis functions such as Slater-type orbitals (STO) or
Gaussian-type orbitals, these functions share the factorization
into a radial part Rnl and a spherical harmonic Ym

l . In contrast
to STO, however, all CS functions in a CS basis set share
the exponent k, which furthermore is related to the energy
eigenvalue of Eq. (1):

E = −k2

2
. (6)

Similar to the Schrödinger equation for hydrogenlike
atoms, Eq. (1) can only be solved for some quantum number
triples (n, l,m), namely, those from the set

IF ≡ {
(n, l,m) | n, l,m ∈ Z with

n > 0, 0 � l < n, −l � m � l
}
. (7)

Furthermore, one follows the convention to call n, l, and
m the principal, angular momentum, and magnetic quantum
numbers and uses both the spectroscopic terminology 1s, 2s,
2p, . . . as well as the corresponding quantum number triple to
refer to a particular CS function.

The Coulomb Sturmian radial equation (6) is of Sturm-
Liouville form [21,29], equipping CS basis functions with
some noteworthy properties. First, building on the arguments
of Klahn and Bingel [50,51] one can show [52] the countably
infinite set of all Coulomb Sturmians {ϕCS

μ }μ∈IF
to be a

complete basis for the Sobelev space H 1(R3) independent of
the value of the exponent k. This is both the relevant Hilbert
space for solving the one-particle Schrödinger equation [53]
as well as the Hartree-Fock problem for many-body systems.
As a consequence, the numerical challenges associated with
treating high-energy Rydberg-type, dipole-bound, or ionizing
states are most likely less pronounced with a CS-based ap-
proach.

Furthermore, the Sturm-Liouville form of the radial equa-
tion (3) implies that the radial parts Rnl form a complete basis
for each value of l. We will employ this to design CS basis
sets, which subsequently converge the radial part, but do not
tighten the angular discretization beyond an initial level. Such
basis-set progressions can be used to understand the maximal
angular momentum quantum number required in a CS basis
set for describing the wave function at a particular level of
theory.

B. Importance of selecting angular momentum quantum
numbers in quantum-chemical basis sets

Understanding which angular momentum quantum num-
bers are required in a basis is not a question limited to
Coulomb Sturmians. Much rather this aspect is of general con-
cern when constructing atom-centered basis sets for quantum-
chemical modeling. In the familiar context of cGTO basis
functions, for example, all basis sets used for practical cal-
culations include at least polarization functions, i.e., functions
whose angular momentum quantum number exceeds the min-
imal basis-set value. This allows both to capture the density
reorganization going from atoms to molecular structures as
well as the leading-order effects of electronic correlation
[5,54–57]. Similarly, the systematic construction of cGTO
basis sets with steady and reliable convergence behavior is
closely related to selecting the amount of angular momentum
to be included [58,59].

Additionally, investigating the required angular momen-
tum quantum numbers can become a diagnostic tool. An
example is the unphysical breaking of spherical symmetry
in the unrestricted HF (UHF) modeling of atoms. When
considering the results of an UHF calculation of carbon and
fluorine, Cook [60] noticed the s-type and p-type HF orbitals
for both these systems not to be linear combinations of cGTO
basis functions with l = 0 and 1, but to involve functions
with higher angular momentum quantum numbers as well.
This was later found to be a general issue of UHF [61–63].
Reference [61] provides a detailed analysis of the underlying
mechanisms including a discussion of the effect of symmetry
breaking and HF instabilities in UHF and other HF variants.
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Understanding which angular momentum quantum num-
bers a basis set needs to provide is thus of general importance
to treat problems in molecular quantum chemistry and to un-
derstand their properties. With respect to Coulomb Sturmian
discretizations, this work will discuss the root-mean-square
occupied coefficient value per angular momentum (RMSOl)
to demonstrate the capabilities of such discretizations. As will
be discussed, this quantity allows to directly observe the odd-
ities with respect to the UHF-induced breaking of spherical
symmetry. Furthermore, in general the angular momentum
requirements of HF wave functions can be directly probed in
this way. Similar to cGTO discretizations, our obtained results
represent a step towards constructing more general CS basis
sets for correlated methods or molecular calculations.

C. Paper outline

The remainder of the paper is structured as follows: Section
II introduces the theoretical background and describes the
computational methodologies. The obtained HF convergence
results are discussed in Sec. III. Section IV provides an out-
look towards post-HF methods and other directions of future
work.

II. THEORY AND METHODOLOGY

A. Parameters for denoting Coulomb Sturmian basis sets

As outlined in Sec. I A, all Coulomb Sturmian functions
share a common exponent k, but differ in the quantum num-
bers n, l, and m, which are taken from the set IF [see Eq. (7)].
A Coulomb Sturmian basis set is therefore uniquely defined
by denoting the selection of triples (n, l,m) ∈ IF employed
as well as the value for the exponent k.

Theoretically, any selection of triples (n, l,m) ∈ IF can
be used to form a CS basis. From the similarity of the CS
functions to the hydrogenlike orbital functions, however, one
can expect Coulomb Sturmians with smaller values of the
principal quantum number n to be most important. Both
chemical intuition as well as the typical construction schemes
employed for cGTO basis sets [5] suggest to additionally limit
the angular momentum quantum number l from above as well.
Guided by these ideas, we focus in our investigation on CS
basis sets of the form

Ibas ≡ {
ϕnlm | (n, l,m) ∈ IF , n � nmax, l � lmax,

− mmax � m � mmax
}
, (8)

i.e., where all three quantum numbers are bound from above.
For ease of notation, we will refer to CS basis sets like Eq. (8)
by the triple (nmax, lmax,mmax). For example, a (3,2,2) CS
basis denotes the set with nmax = 3, lmax = 2, and mmax =
2. Typically, we will not place explicit bounds on all three
quantum numbers. For example, m is usually not restricted
beyond the limit |m| < l intrinsic to the CS equation (1). We
will refer to such a basis as being only restricted by nmax and
lmax. Similarly, a basis only restricted by nmax has no tighter
bound on l apart from the condition l < n already encoded
in IF .

Tuning the maximal quantum numbers nmax, lmax and
mmax naturally influences the subset of radial functions

Rnl and spherical harmonics Ym
l , which is available in the

discretization basis. Since the Coulomb Sturmian radial equa-
tion (3) is of Sturm-Liouville form, the eigenfunctions of
Eq. (3), i.e., the set of all radial functions {Rnl′ }n>0 with
l′ fixed, is a complete basis for a weighted L2 space [52].
This allows to express each function Rnl with arbitrary l as a
linear combination of functions {Rn′,l′ }n′>0 of a different l′. By
considering the polynomial spaces spanned by the CS radial
functions, one can show that for given n and l a set consisting
only of the radial parts with l′ = 0 and n′ � n is sufficient to
form Rnl . As a result,

∀ nmax > 0, 0 � l < nmax : span{Rn′l′ }n′�nmax,l′�l

= span{Rn′,0}n′�nmax . (9)

Convergence in the radial discretisztion in a CS basis can
thus be completely controlled by tuning the bound nmax. Con-
versely, lmax and mmax only effect convergence with respect to
the angular part in agreement with the physical interpretation
given to the quantum numbers l and m. Notice that these
arguments are independent of the value of k, and as such apply
for any value of the CS exponent.

Provided that a value for lmax has been found, which pro-
vides a good enough angular discretization, additional conver-
gence in the radial coordinates can therefore be achieved by
only increasing the bound nmax of the CS basis. The implied
strategy, namely, to restrict both nmax and lmax, possesses the
additional advantage that the scaling of the basis size with
respect to nmax is reduced compared to only restricting nmax.
Explicitly, in the latter case the resulting basis consists of

Nbas(nmax) =
nmax∑
n=1

n−1∑
l=0

l∑
m=−l

1 =
nmax∑
n=1

n−1∑
l=0

2l + 1

=
nmax∑
n=1

n2 = (2nmax + 1)(nmax + 1)nmax

6

∈ O
(
n3

max

)
(10)

functions, i.e., scales cubically with nmax. In comparison, an
additional restriction by lmax leads to

Nbas(nmax) =
nmax∑
n=1

min(lmax,n−1)∑
l=0

2l + 1

=
nmax∑
n=1

(min(lmax + 1, n))2

�
nmax∑
n=1

(lmax + 1)2 = (nmax − 1)(lmax + 1)2

∈ O
(
nmaxl

2
max

)
, (11)

i.e., linear scaling in nmax. Since the prefactor depends on l2
max,

however, a small value for lmax is desirable.

B. Hartree-Fock variants and fractional occupation scheme

All variants of Hartree-Fock (HF) [64–66] can be viewed
as a minimization procedure of an appropriate energy func-
tional with respect to the occupied HF or density functional
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theory (DFT) orbitals [67–69]. Employing a finite-sized basis
set for the discretization and separating the resulting Euler-
Lagrange equations into α and β spin components yields the
following system of coupled nonlinear eigenvalue problems:

Fσ (Dα, Dβ )Cσ = SCσ Eσ ,

Cσ†SCσ = I, (12)

where σ ∈ {α, β} indicates the spin component, Cσ are the
matrices of orbital coefficients, Eσ the diagonal matrices of
orbital energies, S is the overlap matrix, and I the identity
matrix. The nonlinearity of (12) originates from the Fock
matrix since F(Dα, Dβ ) depends on both densities Dσ . These
in turn are related to the coefficients Cσ via

Dσ = Cσ fσ Cσ†, (13)

where fσ is the diagonal matrix of occupation numbers.
Equations (12) may be solved iteratively employing the self-
consistent field procedure (SCF) [64]. For restricted closed-
shell HF (RHF) [64] one takes Fα = Fβ , which implies Dα =
Dβ . Thus, Eq. (12) only needs to be solved for one component,
say for σ = α. For unrestricted HF, on the other hand, this
restriction is not applied [65] and both components may
diverge during an SCF.

The spin component restriction of RHF implies that only
closed-shell atomic systems can be treated. For open-shell
atoms, typically UHF is employed instead. As already dis-
cussed in Sec. I B, an UHF treatment of open-shell atoms,
however, typically suffers from issues related to a breaking
of spherical symmetry.

To illustrate this, consider the carbon atom with its
ninefold-degenerate 3P ground state. Not considering the spin
degeneracy, three energetically equivalent ground-state Slater
determinants exist, which differ only in projected angular
momentum Lz. In a full configuration interaction treatment,
spherical symmetry could therefore be recovered forming the
ground-state wave function from a linear combination of these
determinants. For UHF this is not possible due to the single-
determinant nature of HF. As a result, the UHF density matrix
is symmetry broken and the SCF procedure yields orbitals that
are no longer of pure s, p, d, ... character. Such issues are
naturally not restricted to ground states with a P term, but
will occur similarly for all atoms with a ground state of total
angular momentum L > 1.

An additional approximation to circumvent this behavior
is to employ fractional occupation numbers (FON). This
approach emerged from developments to reproduce the spec-
tra of radical hydrocarbon species [70–74], where the so-
called half-electron method [75] was suggested as a simpler
alternative to the restricted open-shell [76] procedure. In the
context of UHF, the FON approach distributes the valence
electrons evenly over those valence orbitals differing only in
the magnetic quantum number. For the open-shell atoms of the
second and third periods considered in this work, this implies
that an equal electron population in the 2p or 3p orbitals is
achieved by selecting fractional values between 0 and 1 for
those entries of the occupation matrix fσ corresponding to
said orbitals. This effectively allows the UHF procedure to
converge to a determinant, which is an average over those

2L + 1 degenerate determinants one would actually need to
combine in order to recover spherical symmetry.

It should be noted, however, that a fractional occupation
is no longer in accordance with the Aufbau principle, where
the entries of f would be either 1, namely, for all occupied
orbitals, or 0, for all virtual orbitals. This implies (1) that the
resulting HF density matrices are no longer idempotent and
(2) that the obtained solution of Eq. (12) cannot be a stationary
point of the HF minimization problem [77]. In other words,
the FON approach represents an additional approximation on
top of UHF and the obtained energies will be higher compared
to integer occupation. As outlined in Ref. [71] with respect
to the half-electron methods, however, the difference between
the integer and fractional approaches can be expected to be
small, such that for many practical calculations both methods
are typically similarly suitable.

C. Probing the required maximal angular momentum in HF
calculations

Summarizing the discussion in Sec. II A, it is clear that
choosing a suitable, but small value for lmax to reach the
desired level of accuracy is important for CS-based discretiza-
tions, too. Similarly, understanding the angular momentum
quantum numbers required in a discretization basis can help
to understand the properties of quantum-chemical methods.

From an intuitive point of view, one would not expect all
angular momentum to be equally important for the descrip-
tion of the electronic ground state of a particular atom. In
beryllium, for example, only the 1s and 2s atomic orbitals are
occupied, such that only angular momentum l = 0 seems to be
required. Conversely, all CS functions with l > 0 should con-
tribute only very little, if at all. Guided by this hypothesis, the
root-mean-square occupied coefficient per angular momentum
l (RMSOl) is defined as

RMSOl =
√√√√ ∑

(n,l,m)∈Ibas

∑
i

∑
σ∈{α,β}

1

Nσ
elec Nbas,l

(
Cσ

μ,i f
σ
ii

)2
,

(14)

where i runs over all SCF orbitals, Ibas ⊂ IF is the selected
set of index triples μ ≡ (n, l,m) for the CS basis functions,
and Nσ

elec are the number of electrons of spin σ . Furthermore,
Cα

μi , C
β

μi , f α
ii , and f

β

ii are the matrix elements of the orbital
coefficient matrices and occupation matrices introduced in
Sec. II B and

Nbas,l := ∣∣{(n′, l′,m′)
∣∣ (n′, l′,m′) ∈ Ibas and l′ = l

}∣∣ (15)

is the number of basis functions in the CS basis which
have angular momentum quantum number l. By construc-
tion, RMSOl is the root-mean-square (RMS) coefficient for
a particular angular momentum quantum number l in the
occupied SCF orbitals. It therefore provides a measure, which
angular momentum quantum numbers l of the current basis
set are used in a significant amount for describing the HF
wave function, namely, those where RMSOl is above the
convergence threshold of the SCF procedure.

To use this quantity for finding a good value of lmax to
restrict the CS basis first a HF calculation is performed, where
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the employed CS basis set is only restricted by nmax. This
value nmax should be chosen carefully since on the one hand
too large a value leads to rather large basis sets and thus
potentially expensive calculations and on the other hand too
small a value implies that l does not reach large enough values
to observe a visible trend. In this work we used a (6,5,5)
basis set for this step. Afterwards, an RMSOl plot, i.e., plot
RMSOl versus l, is produced and the trends observed. Since
larger l implies more angular nodes thus higher kinetic energy,
larger values of l will become less and less significant, i.e.,
RMSOl will decrease. Inspecting the plot an lmax can then be
chosen such that those angular momentum quantum numbers
larger lmax can be considered insignificant. See Sec. III A for
examples.

In analogy to Eq. (14) we can furthermore compute a
root-mean-square coefficient value per basis function angular
momentum quantum number l for each SCF orbital. This
quantity will be used in Sec. III A to explain the behavior of
RMSOl plots.

D. Computational details and reference values

All HF computations presented in this work were obtained
using the STURMINT [78] Coulomb Sturmian integral library in
combination with the MOLSTURM framework [49] or the SELF-
CONSISTENTFIELD.JL [79] code to drive the SCF computation.
Postprocessing and plotting was done in PYTHON [80] and
JULIA [81] using MOLSTURM, NUMPY [82,83], PANDAS [84],
and MATPLOTLIB [85].

RHF was employed to compute the energies of closed-
shell atoms, whereas UHF was used for open-shell systems.
If not explicitly mentioned otherwise, the UHF results refer
to calculations employing integer occupation numbers. For
carbon and oxygen some UHF calculations with fractional
occupation were underdone as well, where an occupation of
2
3 was used for the 2pα orbitals of carbon and of 1

3 for
the 2pβ orbitals of oxygen. The estimation of errors and
convergence was done by comparing our CS-based HF results
with the reference values of Table I. These include, for RHF
calculations, the numerical RHF energies obtained by Morgon
et al. [87]. For UHF calculations, the complete basis set (CBS)
limit was extrapolated following the approach of Jensen [91]
applied to calculations with the Dunning cc-pVnZ family of
cGTO basis sets [58,86,88–90].

III. RESULTS AND DISCUSSION

This section presents the results of our convergence study
of CS basis sets for discretizing the HF problem, obtained for
the atoms of the second and third periods of the periodic table.
We expect the outlined procedures to be of general character,
however, such that they could be applied to the remainder of
the periodic table as well.

A. Convergence with respect to basis set size and angular
momentum analysis

As described in Sec. II A the construction of Coulomb
Sturmian basis sets consists of the selection of roughly two
types of parameters. First, nmax and lmax, which fix the size

TABLE I. Reference values used for comparison of the CS-
based results and for estimating errors in the CS values. The CBS
extrapolation was done following Jensen [91]. Superscript U denotes
unrestricted HF with integer occupation numbers; superscript F

denotes unrestricted HF with fractional occupation numbers; and
superscript R denotes restricted HF.

System EHF System EHF

Li −7.4327376U,a Na −161.8589459U,a

Be −14.57302317R,b Mg −199.61463642R,b

B −24.5334831U,a Al −241.8808503U,c

C −37.6937751U,c Si −288.8589476U,c

C −37.5313456F,c

N −54.4046409U,c P −340.7192829U,c

O −74.8192096U,c S −397.5133666U,c

O −74.624862F,c

F −99.4166858U,c Cl −459.4899302U,c

Ne −128.54709811R,b Ar −526.8175128R,b

aCBS extrapolation using cc-pVDZ to cc-pV5Z [58,86].
bValues taken from Morgon et al. [87].
cCBS extrapolation using cc-pVTZ to cc-pV6Z [58,86,88–90].

of the basis and second, k, which communally fixes the
exponential falloff of all basis functions.

In this section we will primarily discuss convergence with
respect to the first aspect, i.e., the CS basis-set size. As
outlined in the previous sections, both the completeness of
the CS radial part Rnl as well as the CS functions ϕnlm

is independent of the exponent k. The general convergence
trend with respect to increasing basis-set size can thus be
expected to be independent of the value of k as well. There
is, however, a notable effect on the convergence rate with
increasing basis size. This is demonstrated in Fig. 1, which
shows the convergence of the HF energies of beryllium and
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Be, k = 1.5
Be, k = 2.0
Be, k = 2.5

O, k = 3.1
O, k = 3.6
O, k = 4.1
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Maximal principal quantum number nmax

FIG. 1. Absolute error in the HF energy versus number of basis
functions in a CS basis set only restricted by the maximal principal
quantum number nmax (top axis). The blue curves are RHF calcu-
lations of beryllium, the orange curves UHF calculations of oxygen,
each with different CS exponents k. The reference values for the error
computation were taken from Table I.
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FIG. 2. Plot of the absolute error in the HF energy versus the
number of basis functions in a CS basis restricted by nmax. For the
closed-shell atoms Be and Ne, the restricted HF procedure was used,
whereas for the other systems UHF with integer occupation was
employed. For each calculation of a particular atom the same value
of k was used, which was taken within 0.01 to the optimal exponent
of this atom at (6,5,5) level. The errors were computed against the
reference values from Table I.

oxygen, respectively. In both cases, the absolute error versus
the reference values (see Table I) is plotted against the size
of the employed CS basis sets, which are only restricted by
the indicated maximal principal quantum number nmax. As
expected by the Courant-Fischer variational theorem [92], a
decrease in error can be observed for larger basis sets, i.e.,
larger values for nmax. For all curves the convergence appears
to be sublinear with the best rate of convergence achieved for
k = 2.0 for beryllium and k = 3.6 for oxygen. Larger as well
as smaller exponents worsen the convergence rate, which will
be discussed in more detail in Sec. III B. For the discussion
in this section it is sufficient to note that convergence is
achieved regardless of the value of k, but some optimal, atom-
dependent value exists for each CS basis set, where the HF
energy is lowest.

Such observations are in agreement with previous results
obtained by Avery and Avery [28], where they approximated
Slater-type orbitals (STO) in a basis of Coulomb Sturmians.
In their treatment they also found that convergence is faster
the closer the CS exponent of the basis to the STO exponent
of the function to be approximated, but convergence occurred
in either case. For understanding the convergence behavior
with respect to increasing the basis-set size, the dependency
on k can thus be largely ignored, provided that for each atom
a reasonable value for k is chosen.

The convergence trend observed in Fig. 1 for beryllium
and oxygen appears to be more general. Our investigations
show that it can at least be replicated in a similar fashion for
the other atoms of the second period (see Fig. 2) as well as
the third period. In all these calculations, the convergence is
noticeably sublinear and overall comparatively slow. Already
for the second half of the second period reaching below abso-
lute errors of 0.1 hartree requires beyond 80 basis functions,

FIG. 3. Plot RMSOl vs l for the UHF ground state of the atoms
of the second period if a (6,5,5) CS basis is employed. In each case,
k was taken within 0.01 to the optimal exponent. For oxygen, both a
case with integer and a case with fractional occupation numbers are
depicted.

making calculations with Coulomb Sturmian basis sets only
restricted by nmax rather impractical.

In Sec. II A we deduced that the basis size scaling with
respect to nmax can be reduced from cubic to linear if the
basis can be restricted by lmax as well, which evidently has an
impact on the convergence speed. In order to find bounds for
lmax, the RMSOl measure introduced in Sec. II C is applied
to the SCF coefficients obtained in a (6,5,5) CS basis. For
the UHF calculations of lithium, carbon, and oxygen, plots
of RMSOl vs l are shown in Fig. 3. Corresponding plots for
the other atoms of the second and third periods can be found
in Figs. 4 and 5.

In all aforementioned plots, roughly two trends can be
identified. The first is a very pronounced drop in RMSOl ,
which occurs once a particular angular momentum value l

FIG. 4. Plot RMSOl vs l for the HF ground state of the atoms of
the second period if a (6,5,5) CS basis is employed. In each case, k

was taken within 0.01 to the optimal exponent. For Be and Ne, a RHF
procedure was used, for the other cases UHF with integer occupation
numbers. The graphs for Li and Be as well as N and Ne with their
respective sharp drop features are almost superimposed.
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FIG. 5. Plot RMSOl vs l for the HF ground state of the atoms of
the third period if a (6,5,5) CS basis is employed. In each case, k was
taken close to the optimal value. For Mg and Ar, a RHF procedure
was used, for the other cases UHF with integer occupation numbers.
The graphs for Na, Mg, P, and Ar are almost superimposed.

has been reached. For example, in Fig. 3 this is observed
for lithium (between l = 0 and 1) and oxygen with fractional
occupation numbers (between l = 1 and 2). The second is
a decreasing staircase pattern, where the RMSOl value de-
creases only very moderately over the range of considered
angular momentum quantum numbers. In Fig. 3, for example,
this is observed for oxygen with integer occupation numbers
as well as for carbon. Considering the atoms of the second and
the third periods altogether, the rapid-drop-type RMSOl plots
are obtained for those atoms with an S ground-state term. That
is, those which are either closed shell like Be, Ne, Mg, or Ar
or which have a half-filled s or p shell like Li, N, Na, or P. In
these cases, the drop occurs exactly where one would expect
by looking at the largest angular momentum of the occupied
atomic orbitals, i.e., between l = 0 and 1 for Li and Be, and
between l = 1 and 2 for the other mentioned cases. In contrast
to this, the atoms with a P ground-state term, namely, B, C,
O, F, Al, Si, S, and Cl, follow the decreasing staircase pattern,
but only if fractional occupation numbers are not used.

A hint to explain the second type of behavior is obtained
by looking at the RMS coefficient values per basis function
angular momentum quantum number l for each orbital (for
details see Sec. II C). A plot of these values against l is shown
in Fig. 6 for oxygen. Surprisingly, the 2s UHF orbital not
only consists of basis functions with l = 0, but furthermore
of functions with l = 2 and 4 in the employed (6,5,5) CS
basis. Similar observations can be made for the 2p and 3d

functions, which are not angular momentum pure any longer,
but consist of angular momentum in steps of 2 apart. This
behavior explains why RMSOl plots for oxygen do not show
the expected drop from l = 1 to 2 since the higher angular
momenta play a role for the occupied s-type and p-type
SCF orbitals as well. This observed behavior is in perfect
agreement with the breaking of spherical symmetry previ-
ously observed in UHF calculations [60–63]. As described
in Ref. [63] the UHF wave function in such cases is not
spherically, but axially symmetric. On the level of the SCF
orbitals themselves, this is realized by mixing with higher

FIG. 6. Root-mean-square coefficient value per basis function
angular momentum quantum number l for selected orbitals of oxy-
gen. The atom is modeled in a (6,5,5) CS basis using UHF.

angular momentum basis functions. For illustration, consider
amending a spherically symmetric s orbital with a fraction
of a dz2 basis function dz2 . This causes a stretching of the
orbital along the z axis, which makes it axially symmetric.
Similarly, the px , py , and pz orbitals may be amended with
fxz2 , fyz2 , and fz3 to elongate them in the z direction. Since
parity may not be violated, an orbital may only consist of basis
functions with either even or with odd angular momentum,
explaining the pattern of Fig. 6, where either the even or the
odd values are missing. For other calculations, which show the
decreasing staircase RMSOl pattern, similar plots to Fig. 6
with smeared-out angular momentum are obtained. See, for
example, carbon in Fig. 7. Conversely, if the SCF orbitals
are pure in angular momentum, a clear drop in the RMSOl

plots is observed. One example is nitrogen (Fig. 8 ) or oxygen
at UHF level with fractional occupations. This confirms our
discussion in Sec. II B indicating that an S ground-state term
or an UHF treatment with fractional occupation numbers
prevents a breaking of spherical symmetry.

FIG. 7. Root-mean-square coefficient value per basis function
angular momentum quantum number l for selected orbitals of car-
bon. The atom is modeled in a (6,5,5) CS basis using UHF.
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FIG. 8. Root-mean-square coefficient value per basis function
angular momentum quantum number l for selected orbitals of nitro-
gen. The atom is modeled in a (6,5,5) CS basis using UHF.

With this in mind, a bound for lmax is easy to choose for
those RMSOl plots with a clearly observable drop, namely,
exactly the value for the angular momentum quantum number
l before the drop is encountered. For the cases with a decreas-
ing staircase pattern, the selection is not so straightforward
since lmax both influences the prefactor in the scaling of
basis size versus nmax [see Eq. (11)] as well as the angular
discretization a basis provides. To observe the influence of
different choices for nmax and lmax, Fig. 9 shows RHF or UHF
results obtained using progressions of CS basis sets, where
lmax is limited to either 0, 1, or 2, but nmax is ranged between 4
and 12. In each case, the relative error of the HF energy with
respect to the reference values in Table I is plotted against
the size of the CS basis. Those error values corresponding

FIG. 9. Relative error in EHF versus the number of basis func-
tions for selected CS basis sets of the form (nmax, lmax, lmax). The
connected points show basis-set progressions in which the maximum
principal quantum number nmax is increased in steps, while lmax is
kept fixed. The first and last values for nmax are denoted as small
numbers next to appropriate data points. The same line type is used
for all progressions of the same lmax and the same color and marker
for all progressions of the same atom. For Be and Ne, RHF was used
and for N, C, and O UHF.

FIG. 10. Relative error in EHF versus the number of basis func-
tions for selected basis-set progressions. Shown are UHF calcula-
tions of oxygen using either integer or fractional occupation numbers
(FON). The same display conventions as Fig. 9 are used.

to the same atom and the same lmax, but different nmax, are
connected by lines. In the following, we will refer to such a
sequence of calculations, in which only nmax differs by the
term progression. In all calculations, for a particular atom the
CS exponent k has been kept constant.

In agreement with the conclusions from the RMSOl plots,
a very good convergence with respect to increasing nmax is
observed for beryllium, nitrogen, and neon even if the angular
momentum is restricted by lmax = 0 or lmax = 1. A further
increase of lmax does not improve the obtained error regardless
of the value of nmax. Since the basis now grows faster as
nmax increases, the convergence rate is slower in such cases,
however. This is in contrast to oxygen and carbon. As the
RMSOl plots in Fig. 3 suggest, the angular momentum values
l > 2 are required for a proper description of the symmetry-
broken UHF ground state. It is therefore no surprise that
the convergence of the HF energy begins to stagnate for the
nmax progressions with lmax = 1 as well as lmax = 2. In these
cases, a relevant part of the ground-state wave function cannot
be represented in the available angular discretization and at
some point the resulting error in the angular discretization
dominates. Improving the radial discretization by increasing
nmax thus cannot decrease the net error any further. The
obtained limiting relative error depends on lmax, with larger
values of lmax allowing a basis progression to yield a lower
error limit. The obtained limits are further system dependent
and their trends with lmax can be understood looking at the
decreasing staircase patterns. For example, the limiting error
in the lmax = 1 and 2 progressions for oxygen is almost
unchanged, whereas it is significantly smaller for carbon. At
the same time, considering the RMSOl plots in Fig. 3, the
decrease in the RMSOl value from l = 1 to 2 is small for
O, but a good order of magnitude for the C atom. Going to
larger angular momentum, the RMSOl plot for oxygen with
integer occupation undergoes a significant decrease between
l = 2 and 3, however. In agreement the limiting error of a
oxygen lmax = 3 progression decreases as well (see Fig. 10),
which shows the lmax = 1, 2, and 3 progressions for oxygen
with both integer and fractional occupations. As discussed in
Sec. II B, fractional occupation numbers prevent symmetry
breaking, such that pure angular momentum SCF orbitals are
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FIG. 11. Relative error in EHF versus the number of basis func-
tions for selected basis-set progressions. Shown are UHF calcula-
tions of carbon using either integer or fractional occupation numbers
(FON). The same display conventions as Fig. 9 are used.

obtained. As a consequence, only pure s and p functions are
occupied and no improvement in UHF energies is obtained for
the progressions with lmax > 1. For comparison, an equivalent
plot to Fig. 10 for carbon is shown in Fig. 11.

An interesting aspect to note in all plots of relative error
versus basis-set size is the initial convergence, which seems to
follow a linear behavior in all depicted cases. Furthermore, the
initial rate appears to depend only on lmax, but notably not on
the system under investigation. As the progression continues,
most curves bent off to become sublinear. A closer inspection,
however, reveals two kinds of trends, which are best visible for
the lmax = 1 progressions in Fig. 10 as well as Fig. 11. For the
integer occupation numbers, the previously discussed stagna-
tion of convergence is observed, which we could explain with
reference to the decreasing staircase pattern in the RMSOl

plots and too small a value for lmax. For the fractional occu-
pation numbers, the curves do not not completely stagnate,
but merely slow down. This is also observed for some other
cases, e.g., N in Fig. 9, where the RMSOl plot allows to point
out a particular value lmax, where all angular discretization
of the HF wave function should be obtained. Such sublinear
convergence behavior is not an unusual result in electronic
structure theory. See, for example, Ref. [91] for a discussion
of CBS extrapolations using cGTO basis sets or Ref. [93] for
error estimates for even-tempered Gaussian-type basis sets. In
combination with the apparently system-independent initial
convergence, this indicates that rigorous CBS extrapolation
techniques are within reach for CS basis sets as well.

B. Convergence with respect to the Coulomb Sturmian
exponent k

Having discussed convergence with CS basis-set size in
the previous sections, we now turn our attention to the CS
exponent k. In Fig. 1 of Sec. III A, we already noted the
convergence rate of CS discretizations to depend on k with
some values giving faster and some slower convergence. For
constructing a basis, which approximates the wave function
best given a particular CS basis size, a suitable exponent k

needs to be chosen as well. This section will discuss the
influence of altering the CS exponent k in more detail.

FIG. 12. Plot of the HF energy contributions of the carbon atom
versus the Coulomb Sturmian exponent k. All calculations are done
in a (5,2,2) CS basis using UHF.

In the CS basis functions, k only occurs in the radial part
[see Eq. (4)]. Through the exponential term exp(−kr ), k influ-
ences how quickly the basis functions decay asymptotically
and in the form of a polynomial prefactor it determines the
curvature of the radial functions as they oscillate between the
radial nodes. Keeping this in mind, let us consider Fig. 12,
which shows the changes to individual energy contributions of
the HF ground-state energy as k is altered. The largest changes
are apparent for the nuclear attraction energy (Enuc), which
decreases, initially rather steeply, as k is increased. This can be
easily understood from a physical point of view. Since larger
values of k imply a more rapid decay of the basis functions,
the electron density on average stays closer to the nucleus,
which in turn leads to a lower (more negative) interaction
energy between electrons and nucleus. The converse effect
happens for smaller values of k, where the electron density
is more expanded and thus on average at larger distance from
the nucleus. In contrast, the kinetic energy (Ekin) is related to
the curvature of the wave function, which, as described above,
increases for larger k. In other words, the trends of nuclear
attraction energy and electronic kinetic energy oppose each
other, with the kinetic energy being affected to a lesser degree.
On the scale depicted in Fig. 12, the variation of the electron-
electron interaction (Ee2e), i.e., both classical Coulomb repul-
sion as well as the exchange interaction combined, is much
less pronounced. Only a very minor increase with k can be
observed. The physical mechanism is again similar to the nu-
clear attraction energy term, namely, that larger k compresses
the wave function and thus lets the electrons reside more
closely to another, which increases the Coulomb repulsion
between them. The exchange interaction is affected as well,
but changes are smaller and thus hidden in the trend of the
Coulomb term. Notice that the observed opposing trends of
the two largest depicted terms, the kinetic and nuclear attrac-
tion energies, are in agreement with the virial theorem. Since
this requires the sum of the potential energy terms (Enuc +
Ee2e) to be related to the kinetic energy by a factor of −2, the
same should hold true for the slopes of these as k is varied.
Neglecting the electron-electron interaction, this relationship
can indeed be roughly observed for the two other curves.

Summing up, all energy contributions lead to curves such
as Fig. 13, which shows the total Hartree-Fock energy versus
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FIG. 13. Plot of the UHF energies of carbon versus the Coulomb
Sturmian exponent k in the (4,2,2), (5,2,2), and (6,2,2) basis sets.
The minimum-energy exponent kopt for each basis set is marked by a
cross.

the Coulomb Sturmian exponent k. From our discussion of
the individual terms it is apparent that at small values for k

the increase in nuclear attraction energy dominates, such that
the HF energy increases rapidly. At large distances, the kinetic
energy and electron-electron interaction terms win, giving rise
to convex curves for the plot EHF versus k. The shape of these
curves depends on the maximal principal quantum number
nmax of the basis set. While a (4,2,2) CS basis gives rise
to the deepest minimum, for (5,2,2) and (6,2,2) the energy
versus exponent curves become visibly flatter close to the
optimal exponent (around k = 2.8). Since k only occurs in
the radial part of the CS basis functions and larger values of
nmax imply that the set of all radial functions Rnl becomes
more complete, the value of k gets less important. Notice
that not all parts of the energy versus exponent curves are
equally dependent on nmax. As a result, the optimal exponent
kopt depends on nmax as well and larger basis sets give rise
to smaller values for kopt. This can be rationalized by taking
the plots of the energy terms in Fig. 12 into account. The
nuclear attraction energy is influenced by k most strongly and,
additionally, it is (by magnitude) the largest contribution to the
HF energy. In order to yield the minimal ground-state energy
in a small basis, the dominating effect is therefore to minimize
the nuclear attraction energy as much as possible. As a result,
the optimal exponent kopt takes comparatively large values.
As the basis becomes larger, a balanced description of the
complete physics becomes possible, such that the electron
repulsion and kinetic effects are described better as well and
thus smaller values for kopt results. Moreover, the difference
in magnitude of the energy terms rationalizes why choosing
a CS exponent larger than kopt will generally have a lesser
influence on the obtained energy compared to choosing a too
small exponent, which can be observed in Fig. 1 as well.

Due to the flat structure of the energy versus exponent
curves close to the optimal exponent kopt, it is not required at
high accuracy. If a highly accurate treatment of a particular
system is required, then increasing nmax has both a much
larger effect and is computationally cheaper than finding the
optimal exponent more accurately. A good estimate to kopt for

FIG. 14. Plot of the atomic number versus the optimal Coulomb
Sturmian exponent kopt for the atoms of the second and the third peri-
ods. For comparison, the occupation-averaged value of the Clementi
and Raimondi [2] optimal Slater exponent ζClementi is shown as well.

a basis can be usually found by minimizing the HF energy
with respect to k in a smaller basis and then use the obtained
value for larger bases as well. Since such energy curves are
convex and only scalar functions of a single parameter, this
minimization can be performed effectively by a gradient-free
optimization algorithm based on Brent’s method [94]. Starting
from a reasonable guess for kopt convergence to the minimum
is usually achieved in around 10 iterations, which requires
a similar number of energy computations using the chosen
quantum-chemical method and the chosen CS basis. An ap-
propriate procedure for obtaining kopt for HF is described in
Ref. [95] and has been implemented in molsturm [49]. A
selection of optimal exponents for the atoms of the second
and third periods can be found in Tables SI-1 and SI-2 of the
Supplemental Material [96].

C. Comparison of optimal Coulomb Sturmian exponents and
the Slater exponents from Clementi and Raimondi [2]

Comparing the radial part of a Slater-type orbital [1,97]

RSTO
n (r ) = (2ζ )3/2

√
(2n)!

(2ζ r )n−1 exp (−ζ r ) (16)

with the radial part of a CS function (4), one notices that the
functional form is very similar, with the Slater exponent ζ and
the CS exponent k occurring in related terms. Additionally, the
procedure followed by Clementi and Raimondi [2] to obtain
the Slater exponents ζClementi is a variational minimization of
the HF energy with respect to ζ , so the same approach we
used to obtain kopt. However, the notable difference between
CS discretizations and STO bases is that all CS functions in a
basis share the same k, whereas each function of an STO basis
may employ a different ζ .

Instead of directly relating the values of k and ζClementi, we
therefore plot k versus the occupation-weighted averaged of
the ζClementi values corresponding to the occupied orbitals of
a respective atom (see Fig. 14). Over the full depicted range,
the magnitude of kopt and the average ζClementi stays similar.
Furthermore, except the sharp drop going from atom number
10 to 11 the trend of ζClementi is more or less reproduced by
kopt. Notice, however, that the trend in both cases is not linear
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as can be observed by comparing the data points to the fitted
lines.

With respect to the drop between Z = 10 and 11, two
possible causes are plausible. First, our calculations in the
third period employs a larger CS basis set compared to the
second period. This was done to provide extra basis functions
for the description of the more electron-rich atoms. Recalling
our discussion in Sec. III B related to Fig. 13, larger basis
sets tend to lead to smaller values for kopt. The observed
drop in Fig. 14 is, however, much larger than any lowering
caused by increasing the basis (see Tables SI-1 and SI-2 of the
Supplemental Material [96]), such that additional effects need
to be present. A second aspect to consider is the reduction
of information, which is caused by taking the average of all
ζClementi. For example, when changes in the physics of the
electronic structure of the atom trigger relative adjustments
of the exponents ζClementi, this is not captured by the average
ζClementi. Especially when going to a new shell, i.e., when
adding a new, more expanded orbital with only a single
electron in it, the structure of the electron density undergoes
large changes compared to the previous atom: the inner core
electrons become more contracted while the atomic radius
and thus the valence shell expands. The STO basis has more
degrees of freedom in the form of multiple exponents to adapt
to this, the CS basis has only one exponent to balance the
effects. This potentially overemphasizes some trends, e.g.,
the compression of the core, compared to others, leading to
deviations from the trend of the average ζClementi.

Nevertheless, the similarities in the trend between kopt and
the average ζClementi allows for a physical interpretation of kopt.
Returning to the ideas of Slater [1], which were later picked
up by Clementi and Raimondi [2], one can use the exponents
ζClementi to define, for each orbital, a shielding parameter σ ,
which indicates how much of the nuclear charge is screened
away by all electrons closer to the core. The appropriate
relationship is

ζClementi = Z − σ

n∗ , (17)

where Z is the nuclear charge and n∗ is a function of the
principal quantum number (see Ref. [1]). Z − σ is sometimes
called the effective nuclear charge as well, giving it the
interpretation as a measure for the remaining charge felt by
an orbital. If we take kopt to be related to the average ζClementi,
we can think of kopt as a measure for the average effective
nuclear charge, which is felt by all electrons.

D. Selecting Coulomb Sturmian basis sets for
Hartree-Fock calculations

As discussed, selecting CS basis sets for HF calculations
boils down to selecting a reasonable exponent k together with
values for nmax and lmax such that the basis does not get too
large and the error in the discretization of the angular part as
well as the radial part is balanced.

For cases where the RMSOl plots show a distinct drop
at a particular angular moment, a suitable lmax, which fully
captures the angular part, can be read off. What remains is to
increase nmax until the radial part is sufficiently converged as
well. For the examples considered in this work, nmax = 10 was

sufficient to reach a target accuracy of more than four digits
in the HF energy, which equals a relative error of below 10−4.
For Li and Be, where lmax = 0 is sufficient, this translates to
a (10,0,0) basis consisting of only 10 CS basis functions. For
the other atoms with a rapid-drop-type RMSOl plot, a (10,1,1)
basis would be required, which has 37 basis functions. In our
investigation we obtained rapid-drop-type RMSOl plots for
HF calculations on closed-shell atoms, on open-shell atoms
with an S ground-state term, and for UHF calculations of any
other open-shell atom if fractional occupation numbers were
used. Given the arguments we outlined in Sec. II B, we expect
these observations to extend to the other periods.

In case of a decreasing staircase pattern in the RMSOl

plots one needs to find a balance: Restricting the CS basis
set using smaller values of lmax implies a larger error in the
angular discretization, but on the other hand gives rise to
more manageable scaling of the basis-set size [see Eq. (11)].
This in turn implies that larger values for nmax can be used
and thus that a more accurate radial discretization may be
obtained. For example, for oxygen in a UHF calculation with
integer occupation numbers at least lmax = 3 and nmax = 10
is required to reach five digits of accuracy compared to the
CBS reference. This is a basis with the enormous number of
126 basis functions. For carbon, on the other hand, lmax = 2 is
sufficient, such that a (10,2,2) basis with 77 functions may be
used. On the other hand, our discussion linked the occurrence
of the decreasing staircase pattern in the RMSOl plots to
a breaking of spherical symmetry in the UHF calculations.
From this point of view one could argue to still use lmax = 1,
however. This will effectively prevent the symmetry breaking
by not providing any higher angular momentum in the basis.
For UHF calculations of the second and third periods we
therefore suggest to stick to lmax = 1. This approach, however,
is not applicable to the higher periods since d functions are
occupied as well. For performing accurate UHF calculations
on open-shell systems in period 4 and onwards, either larger
lmax values or techniques to prevent the breaking of spherical
symmetry need to be used. Alternatively, one may still choose
lmax = 2 and live with the uneven description of the spherical
symmetry breaking in s, p, and d functions.

Compared to the influence of nmax and lmax, the value of
the Coulomb Sturmian exponent k only plays a secondary role
since it does not alter the convergence trends. Typically it is
therefore sufficient to use a value which is reasonably close to
the minimal-energy exponent kopt. This can, for example, be
achieved by reusing an optimal exponent from a smaller basis
set, like the exponents provided in the Supplemental Material
(Tables SI-1 and SI-2) [96].

IV. OUTLOOK

For judging the convergence properties of Coulomb Stur-
mians with respect to quantum-chemical simulations, Hartree-
Fock is without any doubt only the first step. Nevertheless,
already at the HF level this work only represents the first step.
For example, restricted open-shell HF has not been considered
at all so far and similarly we just stated empirical obser-
vations. A more mathematically motivated approach could
allow to deduce rigorous error bounds and potentially allow
to understand whether the observed sublinear convergence for
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nitrogen and for the cases with a clear drop in RMSOl is
a general feature, which would also be encountered for Be
and Ne at large enough bases. Similarly, a more quantitative
understanding on the deviation of the convergence rate with
respect to choosing a CS exponent would be desirable.

With respect to capturing correlation effects, preliminary
work [95] suggests that the leading-order effects can be
captured by increasing lmax by 1, in agreement with the
typical constructions followed for cGTO basis sets [5,6,57].
Our plan is to confirm this with a more detailed discussion
in a subsequent publication. Given that a larger lmax bound
will additionally increase the basis size beyond the HF level,
primitive CS basis functions will probably not be sufficient
any more. With respect to contracted CS basis sets, however,
the challenge is to design construction schemes, which do not
break the advantageous equivalence of the CS basis functions
with the hyperspherical harmonics, which is required for an
efficient evaluation of the CS ERI integrals [26,27]. For this
reason, one should restrict the formation of contracted CS
functions in a way that all primitives still share the same
CS exponent k. The availability of contracted CS basis sets,
constructed in such a way, would furthermore allow to use
them in molecular calculations, which have now gotten into
reach due to the recent advances in evaluating four-center
electron-repulsion integrals using CS functions [25–28].

V. CONCLUSIONS

In recent, years exponential-type basis functions have
shown to be promising alternatives for quantum-chemical
simulations [9,10]. From this class of functions, Coulomb
Sturmians (CS) are particularly appealing. These functions
form a complete one-particle basis and furthermore their
multicenter electron-repulsion integrals can be evaluated ef-
ficiently [25–28]. As a result, molecular problems could be
treated with this basis in the future. Following along this
prospect, this work provided a look at the construction of
CS basis sets for quantum-chemical calculations. For this
objective, a simple and physically motivated construction
scheme for CS basis sets was suggested and its conver-
gence properties with respect to atomic calculations at the
Hartree-Fock (HF) level investigated. A brief outlook to-
wards correlated and molecular calculations was provided
as well.

In our construction, a CS basis set is formed by restricting
the set of possible quantum number triples (n, l,m) using
upper bounds nmax, lmax, and mmax on the principal, angular
momentum, and magnetic quantum numbers, respectively.
While the bound on nmax is required to achieve a finite basis
size, the bounds lmax and mmax are optional, in which case
only the usual restrictions between n, l, and m apply. The CS
exponent k is common to all CS functions of the basis and is
fixed as a fourth parameter of a basis.

With respect to the convergence properties k only effects
the convergence rate, but not the observed convergence trends.
Furthermore, for each choice of nmax and lmax an optimal,
minimum-energy CS exponent kopt can be found. Deviations
from this value, however, become more and more unimportant
as nmax gets larger. We have computed some optimal exponent
values for the second and the third periods of the periodic

table, which can be found in the Supplemental Material [96].
From a plot of these kopt exponents versus the atomic number,
we identified similar trends to a plot of the average Slater
exponents obtained by Clementi and Raimondi [2]. Based on
these results, we suggested a physical interpretation of the
optimal exponents kopt as a measure for the average effective
nuclear charge, which is felt by the electrons of an atom.

The basis parameters nmax and lmax were identified to
independently influence the convergence of the CS discretiza-
tion in the radial and angular coordinates, respectively. Ad-
ditionally, these have a direct influence on the size of the
CS basis, where introducing a restriction by lmax 	 nmax

reduces the scaling of the basis-set size from cubic in nmax

to linear in nmax. A key aspect for constructing CS basis sets
is therefore to fix lmax to a value causing both a sufficiently
good angular discretization as well as the smallest basis sizes
possible.

For this purpose, we introduced the root-mean-square oc-
cupied coefficient value per angular momentum l (RMSOl).
This quantity allows to measure the importance of a partic-
ular angular momentum quantum number l for describing a
Hartree-Fock (HF) wave function. Considering the trend of
RMSOl as l is increased thus either allows to directly select a
value for lmax or help uncover unphysical effects such as the
breaking of spherical symmetry in the UHF calculations on
oxygen and carbon if integer occupation numbers are used. It
should be noted that the construction of RMSOl is general
and could be applied to other basis functions of the form
radial part times spherical harmonics, for example, cGTO
discretizations. Due to the completeness of the radial part
of the Coulomb Sturmians, the observed RMSOl behavior
for CS discretizations has general character, i.e., it should be
reproduced by other basis function types as well.

With respect to the bound nmax, our investigations indicate
that nmax = 10 is sufficient to give rise to 4 to 5 digits of
accuracy in the HF energy for all our investigated cases.
For lithium and beryllium, lmax = 0 showed to be suitable,
whereas lmax = 1 should be chosen for the other atoms of the
second and third periods. This value assumes, however, that a
potential breaking of spherical symmetry in UHF should not
be modeled or is prevented using, e.g., fractional occupation
numbers. As indicated by our RMSOl plots, larger values for
lmax are required otherwise, the precise value depending on the
desired target accuracy.

In all cases considered, the convergence behavior of the
proposed basis set construction could be interpreted based
on physical arguments. This includes challenging cases like
the symmetry breaking in some UHF calculations, where
conversely the obtained RMSOl plots were used to gain an un-
derstanding of the unusual angular momentum requirements
of such wave functions. For key basis parameters, such as
lmax or the optimal exponent kopt, physical interpretations were
suggested. This emphasizes the ability of CS basis sets to
capture the physics of HF wave functions and furthermore
enables an intuitive approach to the construction of CS basis
sets. In light of modern approaches for constructing cGTO ba-
sis sets, a thorough understanding of convergence properties
of atoms at the HF level is the prerequisite for constructing
contracted CS basis sets. This work enables such progress,
bringing Coulomb Sturmian basis sets one step closer towards
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applying them to correlated quantum-chemical methods and
molecular systems.
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