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Atom-surface forces using excited states have a host of compelling applications, including repulsive and lateral
forces. However, such states can be fragile and difficult to prepare. Here we report an explicit normal-mode
based calculation of the Casimir-Polder potential between a ground-state atom and a nondispersive surface in the
presence of an external quantized field. The potential we derive shares some features with that of excited-state
Casimir-Polder forces even though we consider a ground-state atom. Our work provides a physically transparent
and intuitive picture of driven Casimir-Polder potentials, as well as expanding on previous investigations by
providing analytic results that fully include retardation, as well as being applicable for any choice of mutual
alignment of the atom’s dipole moment, the external field, and the surface normal.

DOI: 10.1103/PhysRevA.99.012508

I. INTRODUCTION

As technology progresses, the distances between construc-
tion elements become continuously smaller, even reaching
the nanometer regime [1,2]. At these scales the forces of the
quantum vacuum can become significant [3], the most famous
example being the Casimir force between two macroscopic
bodies [4]. A closely related effect is the Casimir-Polder (CP)
force between an atom and a macroscopic body [5], which is
well-studied in a wide range of situations, using a variety of
theoretical approaches [6–11]. Some of the most compelling
possibilities are found in systems where the atom is in an
excited state [8,9,12], where forces can be repulsive or even
lateral [13,14]. Such effects are of great interest in cold-atom
physics in order to realize tuneable interactions; however,
excited atomic states are often very short lived. Recently, there
has been growing interest in interplay between the CP effect
and externally applied fields [15–18]. The forces found there
have some of the same desirable features as those for excited-
state CP forces (the possibility of repulsion, for example),
but, crucially, the atom is prepared in its ground state which
sidesteps some experimental complications.

The current literature on external field-modified CP forces
can essentially be collected into two groups. The first is that
taken by Ref. [15], where a simple, approximate model is
built up in order to build intuition for the size and character
of the effect. The second group consists of those works using
more elaborate and sometimes opaque formalisms associated
with field quantization in dispersive and absorbing media.
While very powerful, such approaches sometimes run into
problems when attempting to describe physics that should at
first sight be very simple—see, for example, the way in which
a laser-driving field has to be defined in Ref. [18]. The goal
of this work is to provide a suitable middle ground between
these two extremes. To do this, we will use an idealized
but rigorous quantization of the electromagnetic vacuum field
near a nondispersive medium (the so-called “triplet modes”
[19]), then use this to perturbatively calculate a CP force.

Aside from the methodological differences discussed
above, we will consider a different type of external field to
that used in previous work (e.g., Refs. [15,17,18]). There the
external field was classical, while here it is quantized and
modeled as a Fock state with which the atom is allowed
to exchange energy, as schematically indicated in Fig. 1. In
the limit where this external field contains a large number
of excitations, we will show that our results reduce to those
previously derived for a classical driving field.

This paper is structured as follows: we begin in Sec. II
by giving details of the system we intend to study, followed
by Sec. III, where we describe the perturbative calculation of
an energy shift. Then, in Sec. IV we discuss our results and
evaluate them for a selection of specific systems, followed by
our conclusion in Sec. V.

II. SYSTEM

We consider a two-level atom (which is a valid approach
since we are considering multipolar coupling [12,20]), ini-
tially in its ground state |0〉, subject to an external, quantized,
monochromatic electric field ÊL, initially populated by NL

photons of frequency ωL. As shown in Fig. 2, the atom is
placed next to a medium with frequency-independent refrac-
tive index n, which occupies the half space z < 0, while for
z > 0 we have vacuum. While of course this type of infinite
planar surface does not exist in reality, it has proven itself to
be a good approximation when the atom-surface distance is
small relative to any geometric features, and in fact forms the
basis of the proximity-force approximation (PFA) [21], which
is widely used in calculation of CP forces (see, for example,
Ref. [22]).

A. Field quantization

In order to derive vacuum-induced effects, we need to
determine the vacuum electromagnetic field subject to the
boundary conditions imposed by the surface. This will be
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FIG. 1. Schematic view of our setup. An atom is placed near an
infinite planar surface of refractive index n and allowed to interact
with a light field in a number (Fock) state.

achieved by the introduction of the triplet modes [19], where
the electromagnetic field is separated into left and right-
incident parts, which we will label L and R, respectively. This
field at spatial point r and time t can then be written in a very
general form as

ÊV(r, t ) =
∑
λ,α

∫
d3k

[
f α
kλ(r, ω)âα

kλe
−iωt + H.c.

]
, (1)

where fα
kλ are position- and frequency-dependent vector mode

functions for each orthogonal polarization λ = TE, TM, and
incidence direction α = L,R. The set of bosonic operators
âα

kλ and â
α†
kλ respectively create or annihilate an excitation

of the quantized field with wave vector k, polarization λ,
and incidence direction α. The triplet modes are written by
splitting each left- or right-incident mode into incident (I),
reflected (R), and transmitted (T) parts:

f L
kλ(r) = �(−z)

[
f L,I
kλ (r) + f L,R

kλ (r)
] + �(z)f L,T

kλ (r), (2)

f R
kλ(r) = �(z)

[
f R,I
kλ (r) + f R,R

kλ (r)
] + �(−z)f R,T

kλ (r), (3)

where �(z) is the Heaviside step function and we have
dropped frequency arguments for brevity. Here and through-
out we use a system of units where h̄ = c = ε0 = 1, unless
otherwise specified. In practice it is useful to package the
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FIG. 2. Triplet mode functions.

incident and reflected parts of (2) and (3) together by defining

f α,IR
kλ (r) = f α,I

kλ (r) + f α,R
kλ (r). (4)

The modes for the right-hand side of the interface (z > 0) are
given by [19]

f R,IR
kλ (r, ω) = −i

√
ω

2(2π )3

[
eik·rekλ + RR

kλe
ik̄·rēkλ

]
(5)

and

f L,T
kλ (r, ω) = −i

√
ω

2(2π )3

1

n
T L

kλe
ik·rekλ. (6)

In these expressions the wave vector k has been decomposed
into parts parallel and perpendicular to the surface, respec-
tively denoted k‖ and kz. The vectors ekλ are unit polarization
vectors indexed by wave vector k and polarization λ. Barred
quantities here and throughout are obtained from unbarred
ones via reflection kz → −kz.

The coefficients RR
kλ and T L

kλ are the reflection and trans-
mission amplitudes relevant to each k and λ, as illustrated in
Fig. 2. These turn out to be the well-known Fresnel coeffi-
cients, as can be found by demanding that the mode functions
either side of the interface obey standard Maxwell boundary
conditions [19]. The reflection coefficient are given explicitly
by

RR
kTE =

kz −
√

n2k2
z + k2

‖ (n2 − 1)

kz +
√

n2k2
z + k2

‖ (n2 − 1)
≡ kz − kd

z

kz + kd
z

,

RR
kTM =

n2kz −
√

n2k2
z + k2

‖ (n2 − 1)

n2kz +
√

n2k2
z + k2

‖ (n2 − 1)
≡ n2kz − kd

z

n2kz + kd
z

, (7)

where kd
z =

√
n2k2

z + k2
‖ (n2 − 1) (with k‖ = |k‖|) is the per-

pendicular component of the wave vector inside the medium.

B. External field

Having set up the vacuum field, we now need to consider
the external driving. We model this as a monochromatic
quantized electric field, given by

ÊL(r, t ) = g(r, ωL)e−iωLt âL + g∗(r, ωL)eiωLt â
†
L, (8)

where âL and â
†
L are the corresponding annihilation and

creation operators. The only significant difference between
this and a single mode of the vacuum field in free space is
that the external field has an arbitrary amplitude given by
E0 = (Ex,Ey,Ez)T , from which we define the mode function
for the external field,

g(r, ω) = −i

√
ω

2(2π )
E0e

ikL·r, (9)

with ωL = |kL|.

III. PERTURBATION THEORY

We model the interaction of the atom with the two fields
via the electric dipole Hamiltonian HAF,

ĤAF = −d̂ · (ÊV + ÊL), (10)
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where d̂ is the electric dipole operator of the atom that couples
its eigenstates. We could also combine the two fields into a
single operator, and then single out one special mode repre-
senting the laser in the subsequent calculations and diagrams.
However, the approach of using two separated fields provides
a clearer physical interpretation and makes no difference to
final results [18,23]. For the total Hamiltonian we then have

H = a
†
LaL +

∑
λ,α

∫
d3k â

α†
kλâ

α

kλ +
∑
i=0,1

Ei |i〉 〈i| + ĤAF.

(11)

We aim to calculate the energy shift caused by treating
ĤAF as a perturbation of the Hamiltonian (11). Since we
are interested in effects which are surface and external field
dependent, we will keep only the terms which depend on
both the vacuum field (which mediates the interaction with
the surface) and the applied field. The resulting energy shift is
then the CP potential, subject to our chosen external field.

The interaction of the atom with the vacuum field proceeds
via emission and reabsorption of a virtual photon, meaning
that the lowest vacuum-dependent contributions appear in
second-order perturbation theory. Similarly, the interaction
with the external field proceeds either via emission and reab-
sorption of a photon, or absorption followed by reemission. In
either case, such a process has its leading-order contribution in
second-order perturbation theory. Since we want to study the
combined effects of both fields, we need to use fourth-order
perturbation theory. Thus our energy shift will be extracted
from

�E =
∑

I,II,III 	=φ

× 〈φ| ĤAF |III〉 〈III| ĤAF |II〉 〈II| ĤAF |I〉 〈I| ĤAF |φ〉
(Eφ − EI )(Eφ − EII )(Eφ − EIII )

,

(12)

where |φ〉 is an initial state with energy Eφ and |I〉, |II〉, and
|III〉 are intermediate states to be found, with EI, EII, and EIII

being their respective energies.
We choose the following initial state for our system:

|φ〉 = |0〉 |0kλ〉 |NL〉 , Eφ = E0 + NLωL, (13)

corresponding to the atom being in state |0〉, the empty
vacuum field being represented as |0kλ〉, and the external
bosonic field containing NL excitations. Proceeding through
a lengthy evaluation of (12) using the techniques outlined
in the next section, one finds eight relevant contributions,
shown schematically in Fig. 3. There it is seen that there
are four different classes of diagram, each of which gives
two contributions since the atom’s first interaction with the
external field could be either an emission into it (|NL〉 →
|NL + 1L〉) or absorption from it (|NL〉 → |NL − 1L〉). In the
next section we discuss in detail the evaluation of diagram 1
in Fig. 3, then simply quote the results for the others as these
follow exactly analogously.

Diagram 1

We are now in a position to calculate the contribution of
the first diagram to the energy shift. For this diagram, we have

FIG. 3. Schematic representation of the eight contributing terms
in second-order perturbation theory. Each diagram above represents
two contributions, as emission into or absorption from the external
field are both possible directly from the initial state. The first diagram
(1) is fully labeled; the others (2–4) can be labeled analogously.

|I〉 = |1〉 |1kλ〉 |NL〉, giving for the rightmost factor in (12)

〈I|ĤAF |φ〉 = 〈NL| 〈1kλ| 〈1| d̂ · (ÊV + ÊL) |0〉 |0kλ〉 |NL〉
= f∗

kλ(r, ω) · d∗eiωt , (14)

where d∗ ≡ 〈1|d̂|0〉. Proceeding analogously for the next fac-
tor to the left, we need the second intermediate state |II〉 =
|0〉 |1kλ〉 |NL ± 1L〉:

〈II| ĤAF |I〉 =
√

N±
L g(r, ωL) · de−iωLt , (15)

where we have defined

N+
L = NL + 1, N−

L = NL. (16)

Calculating the other factors in the numerator of (12) in the
same way and simplifying the energy denominators, we find

�E1± = − N±
L

∑
n,m,p,q

dnd
∗
mdpd∗

q

×
∑
λ,α

P
∫

d3k
f α

nkλf
α∗
qkλgmg∗

p

(ω + ω)2(ω ± ωL)
, (17)

where the subscripts n,m, p, q denote Cartesian directions,
we have defined ω ≡ E1 − E0 > 0, and P denotes the Cauchy
principal value. Furthermore, we have used a shorthand
notation where f α

nkλ ≡ f α
nkλ(r, ω) and gn ≡ gn(r, ωL).

To further simplify Eq. (17) we assume that the atom is
hydrogenlike, corresponding to the following relation for the
dipole moment:

d∗
ndm = |dn|2δnm, (18)

giving

�E1± = −N±
L

∑
n,m

∑
λ,α

P
∫

d3k

∣∣f α
nkλ

∣∣2|gm|2|dn|2|dm|2
(ω + ω)2(ω ± ωL)

.

(19)

To calculate quantities of the form f α
nkλf

α∗
mkλ one requires

the outer product of the polarization vectors ekλ with them-
selves and their reflected counterparts ēkλ. The resulting ma-
trices are listed in Appendix A. In this particular case we need
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Re(kz)

Im(kz)
ik‖

√
n2−1
n

C

FIG. 4. Integration contour C in the complex kz plane.

only the diagonal elements, using these one finds

∑
n,α

∣∣f α
nkTE

∣∣2|dn|2 =
∫

d2k‖βkTE
(
k2
y |dx |2 + k2

x |dy |2
)
,

∑
n,α

∣∣f α
nkTM

∣∣2|dn|2 =
∫

d2k‖βkTM
1

k2k2
‖

× (−k2
xk

2
z |dx |2 − k2

yk
2
z |dy |2 + k4

‖|dz|2
)
,

(20)

where we have defined

βkλ ≡
∫ 0

−∞
dkz

∣∣eik·r + RR
kλe

ik̄·r∣∣2 + 1

n2

∫ ∞

0
dkd

z

∣∣T L
kλe

ik·r∣∣2
.

(21)
This can be rewritten as a contour integral [24,25],

βkλ =
∫

C

dkzR
R
kλe

2ikzz + (z-independent terms), (22)

where the contour C is shown in Fig. 4.
Since the energy shift is linear in βkλ, we can isolate the

surface-dependent part of the shift simply by discarding its
z-independent terms. In approaches based on noise-current
quantization (see, for example, Ref. [18]), a similar isolation
of surface-dependent effects is made by using the scattering
Green’s tensor rather than the whole Green’s tensor.

Using the contour integral (22) in Eq. (19) we obtain for
the surface-dependent part of the energy shift

�E1± = − N±
L ωL

4(2π )4

(
E2

x |dx |2 + E2
y |dy |2 + E2

z |dz|2
)

×
∫

d2k‖
∫

C

dkz

ω e2ikzz

(ω + ω)2(ω ± ωL)

×
[
RR

kTE

k2
‖

(
k2
y |dx |2 + k2

x |dy |2
)

− RR
kTM

ω2k2
‖

(
k2
xk

2
z |dx |2 + k2

yk
2
z |dy |2 − k4

‖|dz|2
)]

. (23)

Finally, we note from Eq. (23) that poles are encountered
along the kz integration contour (recall that ω2 = k2

z + k2
‖),

corresponding to resonant contributions where photons are
absorbed from the external field. These are the terms we will
concentrate on for the remainder of this work.

Recalling that ω and ωL are positive by definition, it is
apparent from (23) that a pole is present at ω = ωL for the
case where there is a minus sign in the denominator. In terms
of the integration variable kz, the pole can be at one of three

locations in the complex kz plane, depending on the relative
values of k‖ and ωL. If k‖ < ωL, the pole is on the real axis at

kz = ±
√

ω2
L − k2

‖, (24)

corresponding to traveling-wave solutions. By contrast, if
ωL < k‖, the pole is found at

kz = i

√
k2
‖ − ω2

L, (25)

corresponding to evanescent modes, i.e., those which decay
exponentially away from the interface. Here we have made
explicit use of a physical constraint that implicitly enters into
the definitions of the triplet modes [19], namely that Im(kz) >

0 in the region z > 0. This ensures that the modes do not
diverge as z → ∞.

Since one pole is at purely imaginary kz and the other two
poles are at purely real kz, it is convenient to split the shift into
two parts. Contributions originating from poles on the real
axis will carry a subscript “tr”(traveling-wave contribution),
and similarly those originating from poles on the imaginary
axis will carry a subscript “ev” (evanescent-wave contribu-
tion).

1. Poles on the real axis

Using the Cauchy principal-value prescription, one has two
half-residue contributions. Using a shorthand |d‖|2 ≡ |dx |2 +
|dy |2, we find for the total contribution of the real-axis poles

�E1
tr = − Re

iNLω4
L

32π2

1

(ω + ωL)2

× (
E2

x |dx |2 + E2
y |dy |2 + E2

z |dz|2
) ∫ 1

0
dτ e2iωLτz

× [|d∗
‖ |2(RR

ωLTE−τ 2RR
ωLTM

) + 2|dz|2(1−τ 2)RR
ωLTM

]
,

(26)

where we transformed to polar coordinates via kx = k‖ cos θ

and ky = k‖ sin θ , carried out the trivial angular integral, then

made another change of variable to τ =
√

1 − k2
‖/ω

2
L. The

appearance of the real part is a consequence of one pole
contribution being the complex conjugate of the other.

2. Pole on the imaginary axis

In a similar way, we find for the poles on the imaginary
axis

�E1
ev = − NLω4

L

32π2

1

(ω + ωL)2

× (
E2

x |dx |2 + E2
y |dy |2 + E2

z |dz|2
) ∫ ∞

0
dκ e−2ωLκz

× [|d∗
‖ |2(RR

ωLTE+κ2RR
ωLTM

) + 2|dz|2(1+κ2)RR
ωLTM

]
,

(27)

where we used a different integration variable, defined by κ =√
k2
‖/ω

2
L − 1. Inspection of Eqs. (26) and (27) reveals that they

can be obtained from a single suitably defined function S1 (see
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Appendix B) via

�E1
tr = Re

∫ 1

0
dχ S1(χ ), �E1

ev =
∫ ∞

0
d(iχ )S1(iχ ). (28)

The contributions from diagrams 2, 3, and 4 can also be written in the same way, so that the total resonant energy shift can be
written as

�Etr =
4∑

j=1

Re
∫ 1

0
dχ Sj (χ ) ≡ Re

∫ 1

0
dχ Stot(χ ), (29)

�Eev =
4∑

j=1

∫ ∞

0
d(iχ )Sj (iχ ) ≡

∫ ∞

0
d(iχ )Stot(iχ ). (30)

We list the functions Sj corresponding to each individual diagram in Appendix B. Here we only report their total Stot:

Stot(χ ) = − NLω4
L

32π2

e2iωLχz(
ω2 − ω2

L

)2

{
4ω2

[(
E2

x |dx |4 + E2
y |dy |4

)(
RR

ωLTE − χ2RR
ωLTM

) + 2E2
z |dz|4(1 − χ2)RR

ωLTM

] + 2
(
ω2 + ω2

L

)
× [(

E2
z |dz|2|d∗

‖ |2 + (
E2

x + E2
y

)|dx |2|dy |2
)(

RR
ωLTE − χ2RR

ωLTM

) + 2
(
E2

x |dx |2 + E2
y |dy |2

)|dz|2(1 − χ2)RR
ωLTM

]}
. (31)

IV. RESULTS AND DISCUSSION

We now have the total resonant energy shift, given by

�E = �Etr + �Eev, (32)

where �Etr and �Eev are defined by Eqs. (29), (30), and
(31). These lengthy expressions simplify significantly if some
physical assumptions are made, for example, if the external
field and the dipole are both aligned in a direction parallel to
the surface—a case which we will distinguish by a superscript
‖. Here one can choose E0 = Ex x̂ and d = dx̂, finding

�E
‖
tr = − NLω4

L

8π2

ω2(
ω2 − ω2

L

)2

×
∫ ∞

0
dκ E2

x |d|4e−2ωLκz
(
RR

ωLTE + κ2RR
ωLTM

)
(33)

and

�E‖
ev = −Re

iNLω4
L

8π2

ω2(
ω2 − ω2

L

)2

×
∫ 1

0
dτ E2

x |d|4e2iωLτz
(
RR

ωLTE − τ 2RR
ωLTM

)
. (34)

In the remainder of this section we will use the general
results (33) and (34) to evaluate the energy shift for different
materials.

A. Perfect conductor, classical laser field

As a consistency check of our general result (32) we
compare with [15], where the CP force is calculated for an
atom near a perfectly reflecting surface in the presence of
a laser field. There, the external field and the dipole are
parallel to each other and to the surface, so we can use the
simplified expressions (33) and (34). For a perfect reflector
one has RR

kTE = −1 and RR
kTM = 1, as can be verified from

the reflection coefficients (7) by taking n → ∞.

To model the laser field we use the correspondence princi-
ple to link the photon number NL and the intensity of a classi-
cal field. It would also be possible to do the same calculation
using a coherent field which is a more realistic representation
of a laser field, but would complicate calculations (see, for
example, Ref. [26] for a similar calculation with a thermal
state) and lessen the degree of physical intuition. The intensity
of our field is

I = 1

2
〈NL|Ê2

L|NL〉 = E2
xωL

8π
(2NL + 1). (35)

The classical limit should be recovered in the limit of large
photon number NL � 1, under which conditions we have

I ≈ E2
xNLωL

4π
≡ Icl, (36)

which we define as the intensity of the corresponding classical
field. Inserting this into the general results given by Eqs. (33)
and (34), we find the parallel-aligned, perfect conductor (PC)
result �E‖PC = �E

‖PC
tr + �E

‖PC
ev with

�E‖PC
ev = − Iclα

2

32πcε2
0

1

z3

(
1 − ζ 2

2

)
(37)

and

�E
‖PC
tr = − Iclα

2

32πcε2
0

1

z3

×
[
−1 + ζ 2

2
+ (1 − ζ 2) cos ζ + ζ sin ζ

]
, (38)

where we have defined the dimensionless quantity ζ =
2ωLz/c, made use of the polarizability α,

α ≡ α(ωL) = 2

h̄

ω|d|2
ω2 − ω2

L

, (39)

and converted our expressions to S.I. units. In total we then
have

�E‖PC = α2Icl

32πcε2
0z

3
[(ζ 2 − 1) cos(ζ ) − ζ sin ζ ]. (40)
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FIG. 5. Laser-driven CP potential of a 133Cs atom at the distance
z from a perfect conductor. Black dotted: evanescent-wave contri-
bution; red dashed: traveling-wave contribution; blue: total energy
shift.

We now use Eqs. (37) and (38) to explicitly evaluate the
energy shift, for which we need to choose an atomic species
and a laser field. We use 133Cs, whose dominant transition is
at a frequency of ω = 1.55 × 1014 Hz with dipole moment of
d = 5.85 × 10−29 C m [27]. For the external field we choose
a laser with a typical intensity I = 5 W/cm2 and angular
frequency ωL = 1.50 × 1014 Hz, which is in the mid-infrared.
The results are shown in Fig. 5 where we can see that the
traveling-wave part has an oscillatory behavior, meaning that
the force can be attractive or repulsive depending on the exact
position chosen. This is a remarkable feature of driven atom-
surface forces—usually one requires an atom in an initially
excited state in order to realize such a potential, but here one
can use a ground-state atom which only visits its upper level
in intermediate processes.

The dimensionless quantity ζ/(2π ) carries a physical
meaning, which is most easily seen by writing

ζ

2π
= 1

2π

2ωLz

c
= 2z/c

2π/ωL
, (41)

which is the ratio of the round-trip time for a photon of
frequency ωL to travel from the atom to the surface and back
again, and the time period of the external field. If we are in
the nonretarded regime (ζ  2π ), the state of the atom will

not have appreciably changed during photon exchange with
the surface, so no oscillatory (phased-based) effects should
appear. Indeed, expanding Eq. (40) for small ζ one finds

�E‖PC(ζ  2π ) = − Iclα
2

32πcε2
0

1

z3
,

(42)

which agrees with Eq. (28) of Ref. [15]. In the retarded (long-
distance) limit we find

�E‖PC(ζ � 2π ) = Iclα
2ω2

L

8πc3ε2
0

cos (2ωLz/c)

z
. (43)

In Ref. [15] it is claimed that retardation is included, but our
result (43) differs from theirs. To see why it is instructive to
rewrite the shift (40) as

�E‖PC = Iclα
2ω3

L

8πc4ε2
0

[
−cos ζ

ζ 3
− sin ζ

ζ 2
+ cos ζ

ζ

]
. (44)

The first term is the result of [15], where it is claimed that
such a result includes retardation, encoded via the factor cos ζ .
In the near-field limit, our results agree with [15] since the
cosine factor becomes unity and the other terms are negligible.
However, going to next-to-leading order in the nonretarded
approximation (i.e., including a small retardation-dependent
effect), one finds terms of order 1/ζ originating from all three
terms of Eq. (44). In [15] all terms of order ζ−1 and ζ−2 are
discarded, which is valid but is inconsistent with including
a cosine factor in the first term, since only the leading-order
contribution to that term [which is ∝cos(0)/ζ−3 = 1/ζ−3] is
insensitive to the discarding of terms of order ζ−1 and ζ−2.
This means that the work of [15] in fact contains only results
for the nonretarded regime where oscillatory results cannot be
observed at leading order, so it is not surprising that our result
(43) differs from theirs.

B. Imperfect reflection

The modes outlined in Sec. II A apply for a dielectric
half-space of refractive index n, with the previous section
dealing with the analytically solvable special case of a per-
fect reflector. For imperfect reflection (finite n), the integrals
Eqs. (33) and (34) become

�E‖
ev = −Iclα

2ω3
L

8π

∫ ∞

0
dκ e−2ωLκz

(
κ − √

1 − n2 + κ2

κ + √
1 − n2 + κ2

+ κ2 n2κ − √
1 − n2 + κ2

n2κ + √
1 − n2 + κ2

)
(45)

and

�E
‖
tr = −Re

iIclα
2ω3

L

8π

∫ 1

0
dτ e2iωLτz

(
τ − √

1 − n2 + τ 2

τ + √
1 − n2 + τ 2

− τ 2 n2τ − √
1 − n2 + τ 2

n2τ + √
1 − n2 + τ 2

)
, (46)

which must be solved numerically. The resulting energy shifts
for a range of n are shown in Fig. 6. It is observed there
that finite n causes relatively minor corrections to the perfect
reflector result, except for the case n = 1.3 which could be
considered as a dilute medium.

V. CONCLUSION

In this paper we have used explicit and physically trans-
parent perturbation theory to calculate a general result for
the surface- and external field-dependent energy shift of a
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FIG. 6. Laser-driven CP potential of a 133Cs atom at distance z

from different materials. Blue: n → ∞ (perfect conductor); purple:
n ≈ 4.5 (e.g., sapphire); pink: n = 2 (e.g., sulfur in the visible
spectrum); magenta: n = 1.3 (e.g., water in the visible spectrum).

two-level atom interacting with a populated photon state near
a dielectric half-space. These equations allow one to calculate
the resonant energy shift of a two-level atom with arbitrary
mutual alignment of the dipole, applied field, and surface
normal. Our results were calculated using the example of a
nondispersive medium, but since we concentrated on reso-
nant terms (those which depend on the medium’s response
at a single frequency), our results also can be applied to
dispersive media simply by taking the permittivity at the
relevant frequency. We have confirmed our general results by
showing that they reduce to and expand upon the perfect re-
flector results shown previously by others, and shown some il-
lustrative examples for imperfect reflection. Our results show
that the qualitative behavior of excited-state Casimir-Polder

forces can be reproduced via external driving, which has ap-
plications in trapping and control of cold atoms. The intricate
dependence of the force on the atom-surface distance could be
used in the future as a sensitive probe of surface structure and
response.
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APPENDIX A: POLARIZATION MATRICES

A suitable choice of polarization vectors is

ekTE = 1

k‖

⎛
⎝ ky

−kx

0

⎞
⎠, ekTM = 1

kk‖

⎛
⎝kxkz

kykz

−k2
‖

⎞
⎠. (A1)

In the main text we need the dyadic product of these with their
reflected counterparts ēkλ. Such products are given explicitly
by

ekTE ⊗ ēkTE = 1

k2
‖

⎛
⎝ k2

y −kxky 0
−kxky k2

x 0
0 0 0

⎞
⎠,

ekTM ⊗ ēkTM = 1

k2
‖k2

⎛
⎜⎝

−k2
xk

2
z −kxkyk

2
z −kxkzk

2
‖

−kxkyk
2
z −k2

yk
2
z −kykzk

2
‖

kxkzk
2
‖ kykzk

2
‖ k4

‖

⎞
⎟⎠.

APPENDIX B: INTEGRANDS

The integrands of (29) and (30) required for calculating the contribution of diagram 1 (see Fig. 3) to the shift (12) are found
from

S1(χ ) = − iNLω4
L

32π2

e2iωLχz

(ω + ωL)2

(
E2

x |dx |2 + E2
y |dy |2 + E2

z |dz|2
)[|d‖|2

(
RR

ωLTE − χ2RR
ωLTM

) + 2|dz|2(1 − χ2)RR
ωLTM

]
. (B1)

It turns out that diagrams 2 and 3 make equal contributions to (12), as they must do since they are exactly the same process in
reverse time order. We find

S2(χ ) = − iNLω4
L

32π2

e2iωLχz

(ω + ωL)(ω − ωL)

[(
E2

x |dx |4 + E2
y |dy |4

)(
RR

ωLTE − χ2RR
ωLTM

) + 2E2
z |dz|4(1 − χ2)RR

ωLTM

] = S3(χ ). (B2)

Finally, the contribution of diagram four is found from

S4(χ ) = − iNLω4
L

32π2

e2iωLχz

(ω − ωL)2

(
E2

x |dx |2 + E2
y |dy |2 + E2

z |dz|2
)[|d‖|2

(
RR

ωLTE − χ2RR
ωLTM

) + 2|dz|2(1 − χ2)RR
ωLTM

]
. (B3)
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