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The spin-orbit (SO) coupling matrix elements between the excited states of the lightest heteronuclear alkali
metal dimers AB(A, B = Li, Na, K, Rb) converging to the first three dissociation limits were evaluated
by employing the quasirelativistic electronic wave functions in a wide range of interatomic distances, R.
The inner-shell electrons of alkali atoms were described using nonempirical shape-consistent effective core
potentials. To take the core-valence correlation effects into account, core polarization potentials for each atom
were implemented. Dynamical correlation was introduced through the multireference configuration interaction
method, which was applied to two valence electrons keeping all subvalence electrons frozen. The reliability of
the derived SO functions is accessed through comparison, wherever possible, with their preceding theoretical and
experimental counterparts. The ab initio SO matrix elements were approximated beyond the LeRoy radius using
the formula: ξSO

if (R) = α + β
[k]
if /Rk , where (1) k = 6 and α = ξSO

n2P
is the SO splitting of the atom A(n2P) for

the states of the AB molecule converging to the same A(nA
2P) + B(nB

2S) dissociation limit, and (2) k = 3 and
α = 0 for the molecular i and f states converging to the A(nA

2P) + B(nB
2S) and A(nA

2S) + B(nB
2P) atomic

thresholds, respectively. A theoretical justification of these formulas was derived from the multipole expansion
of the molecular SO operator in terms of the inverse powers of the internuclear distance and of products of
operators acting on the electronic coordinates of the atoms A and B.
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I. INTRODUCTION

The spin-orbit (SO) coupling effect is the main source of
intramolecular perturbations due to the flexible selection rules
for the corresponding SO operator [1]. Typically, the strength
of the SO interaction decreases as electronic excitation in-
creases. However, the impact of this interaction on the nona-
diabatic mixing of excited states does not diminish, instead
remaining significant, because the density of interacting states
grows rapidly when looking at more highly excited states.
The SO functions themselves, expectedly, are strongly depen-
dent on internuclear distance, R, and their long-range tails
are responsible for the complex dynamics of states near the
dissociation threshold. Therefore, a rigorous coupled-channel
(CC) deperturbation treatment [2] of the excited diatomic
states with spectroscopic (experimental) accuracy indispens-
ably includes detailed potential energy curves (PECs) and SO
functions over a wide range of internuclear distances.

This requirement is furthermore complicated by the
fact that the optical pathways most frequently applied in
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photoassociation [3], magnetoassociation [4], and stimulated
Raman adiabatic passage [5] (STIRAP) processes of ultra-
cold atom assembly [6,7] include bound and quasi-bound
rovibronic levels located in the vicinity of the dissociation
threshold. Therefore, it is necessary that both PEC and SO
functions be physically correct over the entire range of R, so
the relevant Feshbach resonances can be predicted with the
required spectroscopic accuracy.

The SO coupling effect is especially dominant in the
complex electronic structure of open-shell diatomic systems
(in particular, those containing a transition metal) which
are important in the astrophysics of “cool” stars, brown
dwarfs, and, most recently, extrasolar planets [8]. In addi-
tion, the SO interaction dramatically changes the radiative,
magnetic, and electric properties of the excited molecular
states. The pronounced SO coupling makes intercombination
(spin-forbidden) transitions, autoionization, and dissociative
recombination possible and plays a crucial role in the correct
description of the collisions of slow atoms in cold plasma.

The adiabatic interatomic potentials for the ground and
low-lying excited electronic states of homonuclear and het-
eronuclear [9] alkali dimers were comprehensively studied
(both experimentally and theoretically) during the past three
decades [10]. The corresponding quasirelativistic and fully
relativistic PECs of K-, Rb-, and Cs-containing molecules
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[11–15] were also evaluated using ab initio methods. How-
ever, the electronic SO coupling functions, ξSO

if (R), needed
for a robust CC deperturbation analysis in explicit form,
are known, at present, for a very limited number of both
homonuclear [16] and heteronuclear [17] alkali diatomic
states. Indeed, the most extensive ab initio calculations of
reliable SO matrix elements were performed for the NaK
[18–21] and NaRb [22,23] molecules. Highly accurate SO
matrix elements were extracted in the course of a CC depertur-
bation treatment of the low-lying singlet-triplet A(1)1�+ ∼
b(1)3� complexes of NaK [21], NaRb [22,23], and KRb [24].
In the case of NaK, the more highly excited singlet-triplet
B(1)1� ∼ c(2)3�+ and D(2)1� ∼ d(2)3� complexes were
additionally investigated [18,19,25]. Contrary to their theoret-
ical counterparts, the resulting empirical SO matrix elements
are determined in a very narrow interval of R. The ab initio SO
matrix elements for Li-containing dimers are still not available
(except for a few matrix elements calculated for the LiCs
molecule [26]), even though a pronounced SO coupling effect
was recently discovered in the photoassociation spectra of the
LiRb molecule [27,28].

Long-range perturbation theory [29–33] has been well
established for the asymptotic construction of PECs, electric
properties, and electronic transition dipole moment functions
(ETDMs) [34–37] at large internuclear distances. Recently,
the long-range behavior of the ab initio calculated ETDMs
functions was numerically studied for homonuclear [38] A2(A
= Rb, Cs) and heteronuclear [39] dimers AB(A, B = Li, Na,
K, Rb), while, to the best of our knowledge, no long-range
study was reported for the corresponding SO functions.

Therefore, the present paper aims to fill this gap focus-
ing on systematic ab initio calculations of the SO coupling
matrix elements between the low-lying states of the lightest
heteronuclear alkali metal dimers over a wide range of R

conducting both analytical and numerical long-range analy-
sis beyond the modified LeRoy radius [40]. Additionally, a
multipole expansion of the molecular SO operator in terms
of the inverse powers of R, and products of operators acting
on the electronic coordinates of the atoms A and B will be
introduced to analytically explain the long-range behavior of
the computed SO coupling matrix elements.

Fitting high-resolution spectra to extract accurate empirical
potential energy curves and nonadiabatic couplings represents
a formidable task, and Professor Robert J. LeRoy was one
of the pioneers in this field. In a series of computer pro-
grams [41–45], LeRoy developed open-ended tools to perform
direct-potential-fits (DPFs) with physically reliable analytic
forms. See, for instance, Refs. [46–55] for various applica-
tions of these inversion procedures to alkali metal dimers. It is
worth noting that the approach to fitting the potentials in the
long range introduced by LeRoy [56] was used, among others,
to discriminate between different ab initio and empirical long-
range coefficients [57–59].

II. AB INITIO CALCULATIONS OF THE SPIN-ORBIT
MATRIX ELEMENTS

We obtained the electronic wave functions ψab
i ≡

|S,�,�(� = � + �)〉 for the lightest heteronuclear alkali
metal dimers AB(A, B = Li, Na, K, Rb) within the framework

TABLE I. Static electric dipole polarizabilities of the cation [66],
α+

c , and the exponential cutoff parameters, kc, used to build the
core-polarization potentials (CPPs) for the Li, Na, K, and Rb atoms
with the principal quantum numbers n = 2, 3, 4, and 5, respectively.
The α+

c and kc values are given in a.u., while the relevant atomic
nonrelativistic energies, ω, and spin-orbit splitting parameters, ξSO

n 2P
,

are in cm−1.

ω(n 2S − n 2P) ξSO
n 2P

α+
c kc exp calc exp calc

Li 0.1997 2.42a 14 903 14 903 0.335 0.315
Na 0.9947 0.65a 16 967 16 947 17.196 17.224
K 5.354 0.247a 13 023 13 013 57.710 57.688
Rb 9.096 0.379b 12 737 12 705 237.595 237.731

aStoll-Fuenteabla damping function.
bMueller-Meyer damping function.

of quasirelativistic (scalar) electronic structure calculations
corresponding to Hund’s coupling case (a). According to the
selection rule �� = 0 in the pure Hund’s coupling case (c),
both singlet-triplet 1�+–3�, 1�–3�+, 1�–3� and triplet-
triplet 3�–3�+, 3�–3� spin-orbit (SO) coupling matrix
elements ξSO

if (R) = 〈ψab
i |HSO|ψab

f 〉 between the individual
quasirelativistic eigenstates were evaluated using the corre-
sponding spin-orbit parts of the atomic pseudopotentials. All
stages of the electronic structure calculations were carried out
with the MOLPRO package [60]. The computational protocol
used in the present work is described elsewhere [12,39] in
detail.

Briefly, the inner core shells of the Li, Na, K, and Rb atoms
were replaced by shape-consistent nonempirical effective core
potentials [61] (ECP), leaving one valence electron of the Li
and Na atoms and nine outer shell (eight subvalence plus
one valence) electrons of the K and Rb atoms for explicit
treatment. The Hartree-Fock molecular orbitals were opti-
mized as solutions of the state-averaged complete active space
self-consistent field (SA-CASSCF) problem performed for 2
(LiNa), 10 (LiK, LiRb, NaK, NaRb), and 18 (KRb) electrons
on the (1–8)1,3�+, (1–5)1,3�, and (1, 2)1,3� electronic states
taken with equal weights [62]. The dynamical correlation was
introduced via the internally contracted multireference config-
uration interaction (MRCI) method [63], which was applied to
two valence electrons keeping all subvalence electrons frozen,

TABLE II. The sign-consistent multiplicative factors [68] of the
spin-orbit electronic matrix elements, ξSO

if , calculated using ab initio
methods for alkali metal AB dimers at R → +∞.

Transition factor

3�0± –3�0± +1
3�1–3�1 +1
3�2–3�2 +1
3�1–1�1 −1
3�1–3�+

1 +1
1�1–3�+

1 +1
3�0+ –1�+

0+ −√
2

3�0− –3�+
0− +√

2
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(a)

(b)

FIG. 1. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of LiRb converging to the second Li(22S) +
Rb(52P) dissociation limit. The solid lines indicate SO matrix el-
ements estimated in Ref. [17]; (b) the asymptotic behavior of the
present ξSO

if values with respect to the 1/R6 coordinate.

i.e., 2 electrons in the case of LiNa, 8 electrons for LiK, LiRb,
NaK, and NaRb, and 16 electrons for KRb.

We employed l-independent core polarization potentials
(CPPs) [64] to take the core polarization effect into account.
Both Stoll-Fuenteabla [65] and Mueller-Meyer [64] damping
functions were implemented within the present CPP construc-
tion. The required static dipole polarizabilities of the atomic
core, α+

c (i.e., of the singly charged atomic cation) were taken
from Ref. [66]. The initial sets of the exponential cutoff pa-
rameter, kc, were adjusted to reproduce the experimental spin-
averaged atomic energies (estimated at the center of gravity of
the alkali doublets according to the Landé rule) for the lowest
excited n 2P atomic states: ω(n 2S − n 2P) = E(n 2P 3

2
) −

ξSO
n 2P

/3. The atomic SO splitting parameters ξSO
n 2P

=
E(n 2P 3

2
) − E(n 2P 1

2
) were estimated from the experimental

termvalues of the corresponding n 2P doublets [67]. The
resulting α+

c and kc parameters applied to construct the present
CPPs of the Li, Na, K, and Rb atoms are given in Table I.

It should be noted that the sign of the originally calculated
SO matrix elements is not well defined since the phase of the
corresponding electronic wave functions is arbitrary during

(a)

(b)

FIG. 2. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of LiRb converging to the third Li(22P) +
Rb(52S) dissociation limit; (b) the asymptotic behavior of the present
ξSO
if values with respect to the 1/R6 coordinate.

the calculations. The self-consistent signs of the ab initio SO
functions can be obtained using the multiplicative factors from
Table II. To simplify the comparison of the present ab initio
SO functions with their previous theoretical and empirical
counterparts, we defined that all SO matrix elements between
states converging to the same dissociation limit are positive
at large values of R. This assumption is, however, incorrect
for the 1�+

0+–3�0+ and 1�1–3�1 matrix elements, since they
should both be negative at R → +∞. Furthermore, according
to Table II, the originally calculated SO 1�+

0+–3�0+ and
3�+

0−–3�0− matrix elements should be multiplied by a factor
of

√
2 to provide the correct fine splitting of the molecular

singlet-triplet 1�+–3� and 1�–3�–3�+ complexes near their
common dissociation thresholds.

III. THE ASYMPTOTIC BEHAVIOR OF THE SPIN-ORBIT
MATRIX ELEMENTS AS R → +∞

The spin-orbit coupling matrix element, ξSO
if , between the

molecular states ψi and ψf is given by

ξSO
if = 〈ψi |HSO|ψf 〉, (1)
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(a)

(b)

FIG. 3. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of LiRb converging to different (the second
and third) dissociation limits; (b) the asymptotic behavior of the
present ξSO

if values with respect to the 1/R3 coordinate.

where HSO is the spin-orbit Hamiltonian that can be split into
the atomic H at

SO and interaction H int
SO components:

HSO = H at
SO + H int

SO = H at
SO(A) + H at

SO(B) + H int
SO. (2)

In this section, HSO is assumed to be the microscopic Breit-
Pauli spin-orbit Hamiltonian [69] given explicitly in the Ap-
pendix, while more approximate forms of the HSO will be
discussed further in the text. In the first step, the interaction
component, H int

SO, is neglected leaving only terms resulting
from the atomic component, H at

SO.
The expansion of the molecular wave functions ψi and

ψf in the perturbation series up to the second order in the
intermolecular interaction, V̂ , is given by

ψi/f ≈ ψ
(0)
i/f + ψ

(1)
i/f + ψ

(2)
i/f , (3)

where the zero-order molecular wave functions are products
of the atomic wave functions: ψ

(0)
i = |iA〉|iB〉 and ψ

(0)
f =

|fA〉|fB〉. The indices A and B denote the isolated atoms,
and i and f stand for the quantum states of the bra and ket
molecular wave functions, respectively.

(a)

(b)

FIG. 4. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of LiRb converging to different (the third
and second) dissociation limits; (b) the asymptotic behavior of the
present ξSO

if values with respect to the 1/R3 coordinate.

If the interacting species are neutral atoms, then the first-
order molecular wave function in its lowest order is due to the
dipole-dipole interaction component, V̂d−d, of the interaction
operator, V̂ , which asymptotically decays as 1/R3 with the
interatomic distance, R:

ψ
(1)
i/f = R̂0V̂d−dψ

(0)
i/f . (4)

A similar expression for the second-order molecular wave
function is given by

ψ
(2)
i/f = R̂0V̂d−dR̂0V̂d−dψ

(0)
i/f

− 〈
ψ

(0)
i/f

∣∣V̂d−d

∣∣ψ (0)
i/f

〉
R̂0

2
V̂d−dψ

(0)
i/f . (5)

In the above equations, the reduced resolvent operator, R̂0, of
the dimer AB is defined as

R̂0 =
∑

nA 
=iA

∑
nB 
=iB

|nA〉|nB〉〈nB|〈nA|
�EiAnA + �EiBnB

, (6)

�EiAnA = EiA − EnA , �EiBnB = EiB − EnB , (7)
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and the dipole-dipole operator, V̂d−d, is defined as

V̂d−d = −2d1
0 (A)d1

0 (B) + d1
1 (A)d1

−1(B) + d1
−1(A)d1

1 (B)

R3
,

(8)

where d1
m(X) (X ≡ A or B) is the mth spherical component

of the dipole operator for the atom X, and the molecular
fixed z axis is assumed to parallel the interatomic axis. The
indices nA and nB (or n′

A and n′
B used later on) in Eq. (6)

are composite labels, i.e., they involve all possible quantum
numbers and their projections (n, S,MS,L,ML for the atom
X in its n2S+1L state). It should also be noted that the
expectation value of the dipole-dipole operator Eq. (8) is zero,
so in Eq. (5) for the second-order correction ψ

(2)
i/f , only the first

term survives.

A. Initial and final states corresponding to the
same dissociation limit

First, the long-range behavior of the SO matrix elements
between heteronuclear dimer states converging to the same
dissociation limit, i.e., iA = fA and iB = fB, is considered. To
realize that, all terms of the expansion Eq. (3) are inserted into
Eq. (1), and only the nonvanishing contributions are retained.
The first nonvanishing component is the purely atomic one:〈

ψ
(0)
i

∣∣H at
SO

∣∣ψ (0)
f

〉 = 〈iA|〈iB|(H at
SO(A) + H at

SO(B)
)|fA〉|fB〉

= 〈iA|H at
SO|fA〉 + 〈iB|H at

SO|fB〉 = ξat. (9)

Since, in the present case, the dissociation limit is equal
to A(nA

2P) + B(nB
2S), only atom A in the nA

2P state (see
Table I) yields a zero-order contribution into the molecular
SO splitting.

The second leading term comes from matrix elements
involving the ψ

(0)
i and ψ

(1)
f , or ψ

(1)
i and ψ

(0)
f wave func-

tions, but it vanishes due to symmetry constraints, namely
because the spin-orbit operator connects states of the same
parity while the dipole operator acts on states of opposite
parity.

The next nonvanishing term arises from the second order
of perturbation theory (where the V̂d−d operator is considered
as a perturbation) and it decays asymptotically as β

[6]
if /R6:

〈
ψ

(1)
i

∣∣H at
SO

∣∣ψ (1)
f

〉+ 〈
ψ

(0)
i

∣∣H at
SO

∣∣ψ (2)
f

〉+ 〈
ψ

(2)
i

∣∣H at
SO

∣∣ψ (0)
f

〉= β
[6]
if

R6
,

(10)

where the long-range coefficient β
[6]
if consists of three sum-

mands: β
[6]
if (I), β

[6]
if (II), and β

[6]
if (III).

The β
[6]
if (I) term corresponds to the first matrix element in

Eq. (10):

〈
ψ

(1)
i

∣∣H at
SO

∣∣ψ (1)
f

〉 = 〈
ψ

(0)
i

∣∣V̂d−dR̂0H
at
SOR̂0V̂d−d

∣∣ψ (0)
f

〉 = β
[6]
if (I)

R6
,

(11)

and it can be expressed as the sum-over-states:

β
[6]
if (I) =

1∑
m,m′=−1

∑
nA 
=iA

∑
nB 
=iB,fB

∑
n′

A 
=fA

Cmm′
〈iA|d1

m|nA〉〈nA|H at
SO(A)|n′

A〉〈n′
A|d1

m′ |fA〉〈iB|d1
−m|nB〉〈nB|d1

−m′ |fB〉
(�EiAnA + �EiBnB )(�EfAn′

A
+ �EfBnB )

+ (A ↔ B), (12)

where C00 = 4, C01 = C0−1 = C10 = C−10 = 2, and C11 = C1−1 = C−11 = C−1−1 = 1, and the expression (A ↔ B), hereafter,
means an extra term with all indices related to the atom A replaced by the equivalent indices of the atom B and vice versa.

The second term summand results from the atomic SO coupling between the ψ
(0)
i and ψ

(2)
f states:

〈
ψ

(0)
i

∣∣H at
SO

∣∣ψ (2)
f

〉 = 〈
ψ

(0)
i

∣∣H at
SOR̂0V̂d−dR̂0V̂d−d

∣∣ψ (0)
f

〉 = β
[6]
if (II)

R6
, (13)

where the coefficient β
[6]
if (II) is given by

β
[6]
if (II) =

1∑
m,m′=−1

∑
nA 
=fA

∑
nB 
=fB

∑
n′

A 
=fA

Cmm′
〈iA|H at

SO(A)|n′
A〉〈n′

A|d1
m|nA〉〈nA|d1

m′ |fA〉〈iB|d1
−m|nB〉〈nB|d1

−m′ |fB〉
�EfAn′

A
(�EfAnA + �EfBnB )

+ (A ↔ B). (14)

The last term results from the SO coupling between the ψ
(2)
i and ψ

(0)
i states:

〈
ψ

(2)
i

∣∣H at
SO

∣∣ψ (0)
f

〉 = 〈
ψ

(0)
i

∣∣V̂d−dR̂0V̂d−dR̂0H
at
SO

∣∣ψ (0)
f

〉 = β
[6]
if (III)

R6
, (15)

where the expression for β
[6]
if (III) is the same as Eq. (14) except for the interchange of the i and f states.

B. Initial and final states corresponding to different dissociation limits

Now, it shall be assumed that the SO coupled ψi and ψf states converge to different dissociation limits. This means that iA 
=
fA, iB 
= fB and there is no pure atomic contribution to the SO matrix elements. The first nonvanishing term in the long-range
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expansion of ξSO
if arises from the first-order wave functions ψ

(1)
i or ψ

(1)
f , and it drops off asymptotically as a function of 1/R3:

〈
ψ

(0)
i

∣∣H at
SO

∣∣ψ (1)
f

〉+ 〈
ψ

(1)
i

∣∣H at
SO

∣∣ψ (0)
f

〉 = 〈
ψ

(0)
i

∣∣H at
SOR̂0V̂d−d

∣∣ψ (0)
f

〉+ 〈
ψ

(0)
i

∣∣V̂d−dR̂0H
at
SO

∣∣ψ (0)
f

〉 = β
[3]
if (I) + β

[3]
if (II)

R3
= β

[3]
if

R3
, (16)

where the coefficient β
[3]
if (I) can be expanded in the sum-over-states:

β
[3]
if (I) =

1∑
m=−1

∑
nA 
=fA

Dm

〈iA|H at
SO(A)|nA〉〈nA|d1

m|fA〉〈iB|d1
−m|fB〉

�EfAnA + �EfBiB

+ (A ↔ B), (17)

where the coefficients, Dm, are defined as D0 = −2 and D1 = D−1 = −1. An analogous expression for β
[3]
if (II) can be obtained

from Eq. (17) by interchanging the indices corresponding to the states ψi and ψf .

C. Contributions of the intermolecular spin-orbit interaction

So far, the derived long-range expressions have not depended on the particular form of the spin-orbit Hamiltonian used, i.e.,
they work when H at

SO is taken in the Breit-Pauli form [69] or as an effective core potential (although the actual numerical values
may, obviously, differ). The interaction component, H int

SO, of the Hamiltonian Eq. (2) incorporates the SO interaction between
electrons from different atoms. In this subsection, the leading R−k contribution arising from the multipole expansion of the
H int

SO operator are derived, since this has not been reported in literature yet. Fontana and Meath [70] considered the one-center
expansion, while Meath [71] derived a few leading terms in the two-center expansion. See Hirschfelder and Meath [72] for the
review of the multipole expansion of various relativistic operators.

The multipole expansion of the operator H int
SO is given by the following expression:

H int
SO =

∞∑
lA=0

∞∑
lB=0

i
√

6

2 RlA+lB+2
[1 + P̂ (A, B)(−1)lA+lB+1]

⎧⎪⎨⎪⎩
∑

λ

τ
lA,lB
λ

⎡⎣QlB (B) ⊗
∑
j∈A

[RlA (�rj ) ⊗ [p1(�rj ) ⊗ s1(j )]1]λ

⎤⎦lA+lB+1

0

+ 2
∑
λ,λ′

γ
lA,lB
λ,λ′

⎡⎣∑
k∈B

[RlB (�rk ) ⊗ p1(�rk )]λ ⊗
∑
j∈A

[RlA (�rj ) ⊗ s1(j )]λ
′

⎤⎦lA+lB+1

0

⎫⎪⎬⎪⎭, (18)

where P̂ (A, B) is the operator interchanging the indices of the monomers A and B. Note that Eq. (18) was derived in the spirit of
the derivation of Wormer [31] for the multipole expansion of the intermolecular interaction operator, V̂ , with the full recoupling
of the spherical tensors in such a way that operators acting on the coordinates of the monomers A and B are explicitly separated.
A sketch of the derivation of Eq. (18) together with an explanation of all symbols used is reported in the Appendix.

Assuming an effective single electron on each of the uncharged monomers, the R−3 term arising from Eq. (18) reads

H int
SO = i

√
6

2 R3

1∑
m=−1

1∑
m1m2=−1

〈1m11m2|1m〉
{

−
√

2〈1−m1m|20〉d1
−m(A)p1

m1
(�rB)s1

m2
(B)

+ [
p1

−m(�rB)R1
m1

(�rA)s1
m2

(A) + R1
m1

(�rA)p1
m2

(�rA)s1
−m(B)

](√2

3
〈1−m1m|20〉 + 1√

2
〈1−m2m|20〉

)}
+ (A ↔ B) + O(R−4). (19)

Combining the above relation Eq. (19) to Eq. (16) leads to the following δβ
[3]
if correction to the β

[3]
if values:

δβ
[3]
if = −

√
6

2

1∑
m=−1

1∑
m1,m2=−1

〈1m11m2|1m〉
[(√

2�EiBfB +
√

2

3
�EiAfA

)〈1−m1m|20〉 + 1√
2
�EiAfA〈1−m2m|20〉

]
× 〈iA|d1

−m|fA〉〈iB|d1
m1

s1
m2

(B)|fB〉 + (A ↔ B), (20)

where the identities 〈iX|s1
m|fX〉 = 0 and 〈iX|p1

m|fX〉 = i�EiXfX〈iX|d1
m|fX〉 (X ≡ A or B) are used.
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FIG. 5. Comparison of the theoretical and experimental spin-
orbit matrix elements available for the NaK states converging to
the second Na(32S) + K(42P) dissociation limit. The solid lines
indicate the empirical SO functions obtained during the coupled-
channel deperturbation analysis of the A1�+ − b3� complex [21].
The open symbols are results of the present work. The solid symbols
corresponds the ab initio estimates derived in a limited range of R

during an ECP-MPPT calculation [19]. The dashed lines denote the
ab initio results of the full electron BP-MRCI calculations [20]. The
original SO functions borrowed from Ref. [20] are uniformly scaled
here to reach the correct (experimental) atomic asymptote, K(42P).

IV. DISCUSSION

The analytical results obtained within the framework of
the long-range perturbation theory lead to the following
propensity rules for the asymptotic behavior of the SO matrix
elements, ξSO

if :
(1) for the molecular states of AB converging to the same

A(nA
2P) + B(nB

2S) dissociation limit

ξSO
if (R → +∞) → ξSO

nA
2P + β

[6]
if

R6
, (21)

where ξSO
nA

2P
is the SO splitting parameter of atom A in the n 2P

state;
(2) for the molecular states of AB corresponding to

the A(nA
2P) + B(nB

2S) and A(nA
2S) + B(nB

2P) dissocia-

(a)

(b)

FIG. 6. (a) The present ab initio spin-orbit matrix elements
between the NaK states converging to the third Na(32P) + K(42S)
dissociation limit. The solid lines indicate the SO functions obtained
within the framework of an ECP-MPPT calculation [18]; (b) the
asymptotic behavior of the present ξSO

if values with respect to the
1/R6 coordinate.

tion thresholds the SO function is reduced to

ξSO
if (R → +∞) → β

[3]
if

R3
; (22)

The spin-orbit coupling matrix elements ξSO
if (R) be-

tween electronic states converging to the second A(nA
2P) +

B(nB
2S) (A1�+, B1�, b3�, c3�+) and third A(nA

2S) +
B(nB

2P) (C1�+, D1�, d3�, e3�+) state manifolds of the
alkali mixed dimers AB(A, B = Li, Na, K, Rb) were evaluated
over a wide range of internuclear distances, R, namely: R ∈
[2.2, 35] Å for KRb and R ∈ [2, 25] Å for all others. The
resulting ab initio SO functions for the LiNa, LiK, LiRb, NaK,
NaRb, and KRb molecules are presented graphically and
tabulated in point-wise format in Supplemental Material (SM)
[73]. The long-range portion of the same ab initio ξSO

if (R)
functions are represented in the lower half of the same figures
with respect to the reciprocal 1/R3 or 1/R6 coordinates. The
vertical (dashed and dotted) lines mark the modified LeRoy
radius [40] (RLR

�−� and RLR
�−�) estimated for the �–� and

�–� matrix elements, respectively (see Ref. [39] for details).
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(a)

(b)

FIG. 7. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of NaK converging to different (the second
and third) dissociation limits. The solid line indicates the SO func-
tions obtained within the framework of an ECP-MPPT calculation
[18,19]; (b) the asymptotic behavior of the present ξSO

if values with
respect to the 1/R3 coordinate.

The horizontal lines denote the experimental SO parameters
of the corresponding alkali atoms [67], ξ

exp
nA

2P
, given in Table I.

The selected ξSO
if (R) functions of the LiRb, NaK, NaRb, and

KRb molecules are depicted on Figs. 1–10 for illustrative
purposes.

It is easily seen that the vast majority of the derived
ab initio SO matrix elements demonstrate a pronounced R-
dependence over the entire range of interatomic distances.
Indeed, at small and intermediate distances, R, the absolute
magnitude of the SO molecular functions could deviate sig-
nificantly from their asymptotic counterparts corresponding
to R → +∞. The extremely sharp changes of the SO matrix
elements involving the lowest 1� states of the KRb molecule
[see Fig. 10(a)] are due to the avoided crossing effect [74]
of the adiabatic B 1� and D 1� states around R ≈ 5.5 Å. It
should be noted that, for the KRb molecule, the SO long-range
expansion becomes valid at abnormally large interatomic
distances significantly exceeding the LeRoy radius estimates
[see, for instance, Fig. 10(b)]. The latter was observed for the
ETDM functions, as well [39]. The effect could be attributed

(a)

(b)

FIG. 8. (a) The present ab initio spin-orbit matrix elements be-
tween electronic states of NaK converging to different (the third and
second) dissociation limits. The solid lines indicate the theoretical
SO functions obtained within the framework of an ECP-MPPT
calculation [18,19]; (b) the asymptotic behavior of the present ξSO

if

values with respect to the 1/R3 coordinate.

to the prolonging electronic correlation caused by the prox-
imity of the second and third dissociation thresholds to each
other (see Table I).

At intermediate distances both present ab initio diagonal
b 3�–b 3� and off-diagonal A 1�+–b 3� SO matrix elements
calculated for the NaK, NaRb, and KRb molecules agree
very well with their empirical counterparts obtained within
the framework of the highly accurate coupled-channel de-
perturbation analysis of the rovibronic term values belonging
to the singlet-triplet A 1�+ ∼ b 3� complex [21,23,24]. The
present SO splitting function for the d 3� state and SO
coupling matrix element of the states D 1�–d 3� for the
NaK molecule are also in good agreement with empirical
estimates obtained using the effective Hamiltonian depertur-
bation treatment [18] of the experimental rovibronic term
values of the NaK D 1� ∼ d 3� complex [25]. The present
SO functions for the NaK and NaRb molecules are remarkably
close to previous estimates [18,19,22,23] obtained within the
framework of the multipartition perturbation theory (MPPT)
calculation. At the same time, the present SO matrix elements
systematically underestimate the previous NaK results [20]
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(a)

(b)

FIG. 9. (a) Comparison of the theoretical and experimental spin-
orbit matrix elements for the NaRb states converging to the second
Na(32S) + Rb(52P) dissociation limit. The dash lines indicate the
empirical SO functions obtained during the CC deperturbation anal-
ysis of the A1�+ − b3� complex [23]. The symbols are results of
the present work. The solid lines correspond the ab initio ECP-MPPT
estimates [22]; (b) the asymptotic behavior of the present ξSO

if values
with respect to the 1/R6 coordinate.

obtained within the full electron multireference configuration
interaction (MRCI) calculations based on the microscopic
Breit-Pauli (BP) Hamiltonian.

The present ab initio SO functions obtained between
molecular states converging to the same and to different
atomic thresholds could all be approximated quite accurately
at large distances using the asymptotic Eqs. (21) and (22),
respectively. The relevant long-range expansion coefficients
β

[6]
if and β

[3]
if , obtained by performing a linear least squares fit

of the present SO matrix elements are given in Tables III and
IV, respectively. The reliability of the present ab initio SO
functions is confirmed by the good agreement of the fitting
parameters, ξ calc

n 2P
, with the corresponding experimental atomic

values, ξ
exp
n 2P

, from Table I.

As follows from long-range theory, the derived |β[n]
if | val-

ues given in Tables III and IV generally demonstrate that
they are independent of the S and � quantum numbers for

(a)

(b)

FIG. 10. (a) The present ab initio spin-orbit matrix elements
between the KRb states converging to the second K(42S) + Rb(52P)
dissociation limit. The solid lines indicate the empirical SO functions
obtained by means of the CC deperturbation analysis of the A1�+ −
b3� complex [24]; (b) the asymptotic behavior of the present ξSO

if

values with respect to the 1/R6 coordinate.

most states. This tendency holds true for the Li-containing
molecules, but some exceptions arise for the triplet-triplet
�–� and �–� transitions for the heavier molecules NaK,
NaRb, and KRb. Furthermore, the β

[3]
if coefficients of LiNa,

LiK, and LiRb molecules for states corresponding to the
excited Li(22P) atom almost coincide for �–� and �–� tran-
sitions, and their values are approximately two times smaller
than the β

[3]
if values corresponding to the atomic ground state

Li(22S) (see Table IV). A reason of the observed peculiarities
is not evident for the moment.

Table V contains the contribution to the asymptotic co-
efficients, β

[3]
if , arising from the multipole expansion of the

intermolecular Breit-Pauli Hamiltonian, H int
SO, i.e., terms ne-

glected when effective core potentials are used in the calcu-
lations. An inspection of Table V shows that the corrections
resulting from the microscopic electron-electron spin-orbit
interaction are several orders of magnitude smaller than β

[3]
if

(see Table IV) resulting from H at
SO. This is a very encouraging

result, since calculations involving H int
SO beyond the effective
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TABLE III. Long-range expansion coefficients, β
[6]
if (in cm−1 Å

6
), obtained using Eq. (21) from the present ab initio SO matrix elements

between the molecular states converging to the second and third dissociation thresholds. The numbers in the square brackets denote powers of
ten.

LiNa LiK LiRb NaK NaRb KRb

B1� − c3�+ 9.757[4] − 7.408[5] − 2.665[6] − 2.432[5] − 1.206[6] − 1.568[8]
b3� − A1�+ 9.757[4] − 7.412[5] − 2.687[6] − 2.400[5] − 1.243[6] − 1.572[8]
b3� − c3�+ − 1.024[5] − 7.447[5] − 2.671[6] − 3.264[5] − 1.278[6] − 2.276[8]

D1� − e3�+ − 1.406[5] 5.415[5] 1.722[6] 4.495[4] 4.297[5] 1.056[8]
d3� − C1�+ − 1.406[5] 5.415[5] 1.723[6] 4.570[4] 4.239[5] 1.056[8]
d3� − e3�+ − 1.432[5] − 5.472[5] − 1.800[6] − 2.239[5] − 5.798[5] − 1.791[8]

B1� − b3� − 5.107[4] − 3.308[5] − 1.178[6] − 1.484[5] − 5.607[5] − 1.009[8]
b3� − b3� 4.981[4] − 3.315[5] − 1.174[6] − 1.073[5] − 5.290[5] − 7.364[7]

D1� − d3� − 6.153[4] − 2.683[5] − 8.680[5] − 9.602[4] 2.057[5] − 8.487[7]
d3� − d3� − 6.256[4] 2.769[5] 8.665[5] 3.691[4] − 2.977[5] 6.123[7]

TABLE IV. Long-range expansion coefficients, β
[3]
if (in cm−1Å

3
), obtained using Eq. (22) from the present ab initio SO matrix elements

between molecular states corresponding to the second A(nA
2P) + B(nB

2S) and third A(nA
2S) + B(nB

2P) dissociation thresholds, respectively.
The numbers in the square brackets denote powers of ten.

LiNa LiK LiRb NaK NaRb KRb

B1� − e3�+ 5.178[2] 4.529[3] 1.656[4] 1.935[3] 8.305[3] 1.335[5]
b3� − C1�+ 5.178[2] 4.530[3] 1.657[4] 1.934[3] 8.274[3] 1.337[5]
b3� − e3�+ 5.578[2] 4.553[3] 1.659[4] 2.622[3] 8.956[3] 1.709[5]

D1� − c3�+ 1.064[3] 2.255[3] 8.335[3] 4.522[2] 3.824[3] 3.975[4]
d3� − A1�+ 1.063[3] 2.255[3] 8.335[3] 4.522[2] 3.824[3] 3.974[4]
d3� − c3�+ 1.084[3] 2.302[3] 8.378[3] 1.821[3] 5.135[3] 1.137[5]

B1� − d3� 5.480[2] 2.292[3] 8.369[3] 1.480[3] 4.758[3] 9.562[4]
D1� − b3� 5.478[2] 2.269[3] 8.370[3] 1.480[3] 4.809[3] 9.561[4]
b3� − d3� 5.280[2] 2.269[3] 8.348[3] 7.925[2] 4.150[3] 5.825[4]

TABLE V. The contribution to the long-range coefficient, δβ
[3]
if (in cm−1 Å

3
), arising from the multipole expansion of the intermolecular

spin-orbit operator, H int
SO, Eq. (20).

LiNa LiK LiRb NaK NaRb KRb

B1� − e3�+ − 0.239 − 0.245 − 0.233 − 0.168 − 0.153 − 0.394
b3� − C1�+ − 0.239 − 0.245 − 0.233 − 0.168 − 0.153 − 0.394
b3� − e3�+ − 0.239 − 0.245 − 0.233 − 0.168 − 0.153 − 0.394

D1� − c3�+ − 0.426 − 0.448 − 0.474 − 0.617 − 0.649 − 0.433
d3� − A1�+ − 0.426 − 0.448 − 0.474 − 0.617 − 0.649 − 0.433
d3� − c3�+ − 0.426 − 0.448 − 0.474 − 0.617 − 0.649 − 0.433

B1� − d3� − 0.175 − 0.183 − 0.190 − 0.231 − 0.240 − 0.196
D1� − b3� − 0.175 − 0.183 − 0.190 − 0.231 − 0.240 − 0.196
b3� − d3� − 0.175 − 0.183 − 0.190 − 0.231 − 0.240 − 0.196
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one-electron treatment would require nonstandard integrals
involving products of a number of operators acting simultane-
ously on the spatial and spin coordinates of electrons, which
is not realized in any standard program for electronic structure
calculations.

V. CONCLUDING REMARKS

The spin-orbit matrix elements between the lowest excited
electronic states of the heteronuclear alkali metal dimers
AB(A, B = Li, Na, K, Rb) were systematically evaluated in
a wide range of interatomic distances. Wherever possible, the
reliability of the derived ab initio SO functions was confirmed
through comparison with previous theoretical and empirical
results.

The numerical studies of the asymptotic R → +∞ behav-
ior of the calculated ξSO

if (R) functions were generally sup-
ported by the analytical results obtained within the framework
of the long-range perturbation theory. The propensity rules
for the behavior of the SO long-range coefficients, β

[k]
if , as

an implicit function of the S, �, and � quantum numbers
of the i and f coupled states were established. Additional
R−3 contributions resulting from the intermolecular SO in-
teraction in the Breit-Pauli Hamiltonian were estimated us-
ing an effective one-electron model and were shown to be
negligible.

It is believed that the overall accuracy of the present
ab initio ξSO

if (R) functions should be sufficient to accomplish
a comprehensive coupled-channel deperturbation treatment of

the singlet-triplet states manifold of the lightest alkali AB
dimers up to the first three dissociation thresholds.
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APPENDIX: DERIVATION OF THE MULTIPOLE
EXPANSION OF THE INTERACTION SO HAMILTONIAN

The Breit-Pauli spin-orbit Hamiltonian is given by [69]

HSO = 1

2

∑
α

∑
j

Zα

r3
jα

(rjα × pj ) · sj

− 1

2

∑
j 
=k

1

r3
jk

[(rjk × pj ) · sj − 2(rjk × pk ) · sj ],

(A1)

where indices α and j iterate over all nuclei and electrons,
Zα is the charge of the nucleus α, ruv is a vector connecting
particles u and v, and p and s are the momentum and spin
operators. The Hamiltonian, HSO, can be divided into atomic,
H at

SO, and interaction, H int
SO, components:

HSO = H A
SO + H B

SO + H Int
SO, (A2)

where the interaction part is defined as

H Int
SO = 1

2

∑
α∈A

∑
j∈B

Zα

r3
jα

(rjα × pj ) · sj − 1

2

∑
j∈A

∑
k∈B

1

r3
jk

[(rjk × pj ) · sj − 2(rjk × pk ) · sj ] + (A ↔ B). (A3)

An arbitrary vector, X, can be expressed as an irreducible tensor operator:

T 1
0 (X) = Xz T 1

±1(X) = ∓ 1√
2

(Xx ± iXy ), (A4)

and the irreducible tensor product is defined by the expression

[Xl ⊗ Yl′ ]λλ′ ≡
l∑

m=−l

l′∑
m′=−l′

〈l, m; l′,m′|λ, λ′〉Xl
m Y l′

m′ , (A5)

where 〈l, m; l′,m′|λ, λ′〉 is the corresponding Clebsch-Gordan coefficient. The interaction component can be expressed by
applying the irreducible tensor coupling [75] as

H Int
SO = i

√
6

2
[1 + P̂ (A, B)] ×

⎡⎣∑
α∈A

∑
j∈B

Zα

r3
jα

{[rjα ⊗ p1(j )]1 ⊗ s1(j )}0

−
∑
j∈A

∑
k∈B

(
1

r3
jk

{[rjk ⊗ p1(j )]1 ⊗ s1(j )}0 − 2{[rjk ⊗ p1(k)]1 ⊗ s1(j )}0

)⎤⎦. (A6)

To proceed further, we use the following coordinate transformation:

rjk = rj − rk = rj − (R − r′
k ) = rj − r′

k − R, (A7)

where R is the distance between the monomers. Then, we apply the following identity [75] for r1 < r2:

rμ

r3
= 4π

∞∑
l=1

(−1)l
√

l

3

rl−1
1

rl+1
2

[Y l−1(�1) ⊗ Y l (�2)]1
μ, (A8)
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where r = r1 − r2, and (r1,�1) and (r2,�2) are the spherical coordinates of vectors r1 and r2, respectively. In the present case,
r1 = rj − r′

k and r2 = R. Then, the formula for the translation of the regular solid harmonic Rl
m(r) can be used [75]:

|rj − r′
k|l−1Y l−1

μ

(
�rj −r′

k

) =
√

2(l − 1) + 1

4π
Rl−1

μ (rj − r′
k ), (A9)

Rl−1
μ (rj − r′

k ) =
l−1∑
λ=0

(
2l − 2

2λ

)1/2 λ∑
ω=−λ

Rλ
ω(rj ) Rl−1−λ

μ−ω (−r′
k )〈λ, ω; l − 1 − λ,μ − ω|l − 1, μ〉, (A10)

Rl−1
μ (rj − r′

k ) =
l−1∑
λ=0

(
2l − 2

2λ

)1/2

[Rλ(rj ) ⊗ Rl−1−λ(−r′
k )]l−1

μ . (A11)

Using all the above identities and recoupling the tensor operators in the spirit of Wormer [31] (i.e., in such a way that the
operators acting on the coordinates of the monomers A and B are separated) the two-center multipole long-range expansion of
the interaction component, H int

SO, can be represented in the form

H int
SO =

∞∑
lA=0

∞∑
lB=0

i
√

6

2 RlA+lB+2
[1 + P̂ (A, B)(−1)lA+lB+1]

⎧⎨⎩∑
λ

τ
lA,lB
λ [QlB (B) ⊗

∑
j∈A

[RlA (�rj ) ⊗ [p1(�rj ) ⊗ s1(j )]1]λ]lA+lB+1
0

+ 2
∑
λ,λ′

γ
lA,lB
λ,λ′

⎡⎣∑
k∈B

[RlB (�rk ) ⊗ p1(�rk )]λ ⊗
∑
j∈A

[RlA (�rj ) ⊗ s1(j )]λ
′

⎤⎦lA+lB+1

0

⎫⎪⎬⎪⎭. (A12)

The constants τ
lA,lB
λ and γ

lA,lB
λ,λ′ are fixed as

τ
lA,lB
λ = (−1)lB

(lA + lB + 1)1/2

31/2
(2lA + 2lB + 1)

(
2lA + 2lB

2lA

)1/2

(2λ + 1)1/2

{
lA lB lA + lB

lA + lB + 1 1 λ

}
, (A13)

γ
lA,lB
λ,λ′ = (−1)lB (lA + lB + 1)1/2(2lA + 2lB + 1)(2λ + 1)1/2(2λ′ + 1)1/2

(
2lA + 2lB

2lA

)1/2
⎧⎨⎩1 lA λ′

1 lB λ

1 lA + lB lA + lB + 1

⎫⎬⎭.

(A14)

Ql (A) denotes the operator of the multipole moment operator of rank l of the system A:

Ql
m(A) = −

∑
i∈A

Rl
m(�ri ) +

∑
α∈A

ZαRl
m(�rα ), (A15)

and { lA lB lA + lB
lA + lB + 1 1 λ } and {

1 lA λ′
1 lB λ

1 lA + lB lA + lB + 1
} are Wigner 6j and 9j -symbols [75].
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