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Nonperturbative analysis of nuclear shape effects on the bound electron g factor
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The theory of the g factor of an electron bound to a deformed nucleus is considered nonperturbatively and
results are presented for a wide range of nuclei with charge numbers from Z=16 up to Z = 98. We calculate the
nuclear deformation correction to the bound electron g factor within a numerical approach and reveal a sizable
difference compared to previous state-of-the-art analytical calculations. We also note particularly low values in
the region of filled proton or neutron shells, and thus a reflection of the nuclear shell structure both in the charge
and neutron number.
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I. INTRODUCTION

The electron’s g factor characterizes its magnetic moment
in terms of its angular momentum. For an electron bound
to an atomic nucleus, the g factor can be predicted in the
framework of bound-state quantum electrodynamics (QED)
as well as measured in Penning traps, both with a very high
degree of accuracy. This enables extraction of information on
fundamental interactions, constants, and nuclear structure. For
example, the combination of theory and precise measurements
of the bound electron g factor has recently provided an im-
proved value for the electron mass [1], and bound-state QED
in strong fields was tested with unprecedented precision [2–5].
It also enables measurement on characteristics of nuclei such
as electric charge radii, as shown for the Si13+ ion [6], or the
isotopic mass difference as demonstrated for 48Ca and 40Ca
in [7], or, as proposed theoretically, magnetic moments [8,9].
Also, it was argued that g-factor experiments with heavy ions
could result in a value for the fine-structure constant which
is more accurate than the presently established one [10,11].
With planned experiments involving high-Z nuclei [12–14]
and current experimental accuracies on the 10−10 level for
low Z, it is important to keep track also of higher order
effects. In this context, besides one-loop QED [15,16], which
is well under control, two-loop QED [17–20], which requires
further investigation, and nuclear polarization [21,22], also
the influence of nuclear size [23,24] and shape is critical. In
Ref. [25], the nuclear shape correction to the bound electron
g factor was introduced and calculated for spinless nuclei
using the perturbative effective radius method (ERM) [26,27].
This effect takes the influence of a deformed nuclear charge
distribution into account and changes the g factor up to the
10−6 level for heavy nuclei, and thus is potentially visible in
future experiments. Additionally, the uncertainty of the finite
nuclear size correction to the Lamb shift in hydrogenlike 238U
was shown to be sensitive to nuclear deformation (ND) effects
[27]. This motivates the possibility of lowering uncertainties
for the bound electron g factor by considering ND. Therefore,
a comparison of experiment and theory for heavy nuclei

*niklas.michel@mpi-hd.mpg.de

demands a critical scrutiny of the validity of the previously
used perturbative methods, as pointed out in Ref. [28].

In this paper, we present nonperturbative calculations of
the ND correction to the bound electron g factor and show the
corresponding values for nuclei across the entire nuclear chart,
quantifying the nonperturbative corrections and especially
observing the appearance of nuclear shell closure effects in
the values of the bound electron g factor.

Relativistic units with h̄ = c = 1 are used throughout this
work, as well as the Heavyside unit of charge with α = e2/4π ,
where α is the fine structure constant and the elementary
charge e is negative.

II. AVERAGED NUCLEAR POTENTIAL

It has been shown in Ref. [27] that for spinless nuclei the
relativistic Hamiltonian for the electron bound to a deformed
nucleus reads

He = �α · �p + βme + V (r ). (1)

Here, �α and β are the four Dirac matrices, �p is the electron’s
momentum, me is the electron mass, and the electric interac-
tion between eletron and nucleus can be described in terms of
the nuclear charge distribution ρ(�r ) as

V (r ) = −Zα

∫
d3r

′ ρ(�r ′
)

r>

, (2)

where r> := max(r, r
′
). For spherically symmetric charge

distributions, this leads to finite-size effects in atomic spectra
[26]. However, it is important to note that this formula is also
valid for deformed nuclear charge distributions, although the
resulting potential is spherically symmetric. The solution of
the corresponding eigenvalue equation

He|nκm〉 = E|nκm〉 (3)

can be written in position space in terms of the well-known
spherical spinors �κm(ϑ, ϕ) and the radial functions Gnκ (r ),
Fnκ (r ) [29] and depends on the principal quantum number n,
the relativistic angular momentum quantum number κ , and the
z component of the total angular momentum m.
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In this work, we focus on quadrupole and hexadecapole
deformations, since atomic nuclei do not possess static dipole
moments. Here, the deformed Fermi distribution

ρcaβ2β4 (r, ϑ ) = N

1 + exp
(

r−c(1+β2Y20(ϑ )+β4Y40(ϑ ))
a

) (4)

as a model of the nuclear charge distribution has proved to be
very successful, e.g., in heavy muonic atom spectroscopy with
deformed nuclei [30,31]; the normal Fermi distribution (β2 =
β4 = 0) has also been used in electron-nucleus scattering
experiments determining the nuclear charge distribution [32].
Here, a is a skin thickness parameter and c is the half-density
radius, while β2, β4 are the quadrupole and hexadecapole de-
formation parameters, respectively. Ylm(ϑ, ϕ) are the spherical
harmonics and Yl0(ϑ ) depend only on the polar angle ϑ , not
on the azimuthal angle ϕ. The normalization constant N is
determined by the condition∫

d3r ρcaβ2β4 (r, ϑ ) = 1. (5)

III. NUCLEAR DEFORMATION CORRECTION
TO THE g FACTOR

In an external, homogeneous, and weak magnetic field �B,
the g factor of the bound electron is defined by the first-
order energy splitting δE due to the external field as the
proportionality coefficient [33]

δE = −e 〈nκm|�α · �A|nκm〉 =: m g μB | �B|, (6)

where �A = 1
2 [ �B × �r ] is the corresponding vector potential

and μB is the Bohr magneton. The g factor in central po-
tentials is independent of the quantum number m. It can be
expressed in terms of the radial functions as

g = 2meκ

j (j + 1)

∫ ∞

0
dr r Gnκ (r ) Fnκ (r ), (7)

where j = |κ| − 1/2 is the total angular momentum of the
electron. Alternatively, the bound electron g factor can be
expressed for arbitrary central potentials in terms of the
derivative of the eigenenergies with respect to the electron’s
mass [34] as

g = − κ

2j (j + 1)

(
1 − 2κ

∂Enκ

∂me

)
. (8)

For the model of a pointlike nucleus, the radial wave
functions are known analytically and the ground-state g factor
with n = 1 and κ = −1 is

gpoint = 2
3 (1 + 2γ ), (9)

with γ =
√

1 − (Zα)2, a result presented for the first time by
Breit [35]. For the deformed Fermi distribution (4) with a fixed
charge number Z, the g factor (7) is completely determined by
the parameters c, a, β2, and β4, and therefore can be written
for the ground state as

g = gpoint + δg
(caβ2β4 )
FS , (10)

where δg
(caβ2β4 )
FS is the finite-size correction depending on the

parameters c, a, β2, and β4. In Ref. [25], the ND correction to
the bound electron g factor is defined as the difference of the

finite-size effect due a deformed charge distribution and due
to a symmetric charge distribution (i.e., β2 = β4 = 0) with the
same nuclear radius as

δgND = δg
(c1aβ2β4 )
FS − δg

(c2a00)
FS , (11)

where a = 2.3 fm/[4ln(3)], and ci are determined such that√
〈r2〉ρ of the corresponding charge distribution agrees with

the root-mean-square (rms) values from literature [36]. The
nth moment of a charge distribution ρ(�r ) is defined as

〈rn〉ρ =
∫

d3r rnρ(�r ). (12)

Values for the deformation parameter β2 can be obtained by
literature values of the reduced E2-transition probabilities
from a nuclear state 2+

i to the ground state 0+ via [37]

β2 = 4π

3Z|e|√5〈r2〉ρ/3

[∑
i

B(E2; 0+ → 2+
i )

]1/2

, (13)

and estimates for β4 can be found in Ref. [38]. From Eq. (11),
it is evident that the ND correction is a difference of two
finite-size effects and therefore especially sensitive to higher
order effects. However, for high Z it reaches the 10−6 level
and therefore is very significant.

It was shown in [25] with the ERM [26] that δg
(caβ2β4 )
FS

and therefore δgND mainly depends on the moments 〈r2〉ρ and
〈r4〉ρ . δgND can be calculated with the formula [34]

δg
(caβ2β4 )
FS = 4

3

∂EFS(c, a, β2, β4)

∂me

, (14)

which is a direct consequence of Eq. (8) and where
EFS(c, a, β2, β4) is the energy correction due to ρcaβ2β4 (r, ϑ )
compared to the pointlike nucleus. The effective radius R is
defined as the radius of a homogeneously charged sphere with
the same energy correction E

(sph)
FS (R) as the deformed Fermi

distribution via

E
(sph)
FS (R) = EFS(c, a, β2, β4). (15)

The energy correction can be approximated [26] as

E
(sph)
FS (R) ≈ (Zα)2

10
[1+(Zα)2f (Zα)](2ZαRme )2γ me. (16)

Here, f (x) = 1.380 − 0.162x + 1.612x2 and the effective
radius is approximately

R ≈
√√√√5

3
〈r2〉ρcaβ2β4

[
1 − 3

4
(Zα)2

(
3

25

〈r4〉ρcaβ2β4

〈r2〉2
ρcaβ2β4

− 1

7

)]
.

(17)

We would like to note that in Ref. [25], there is a small typing
error in the formula for f (x), while in the calculations of
Ref. [25], the correct formula from Eq. (19), and Table 2
in Ref. [26] for f (x) was used. While (14) is exact for an
arbitrary central potential, provided that EFS is known exactly,
(16) is an approximation derived under the assumption of
the difference between pointlike and extended potential being
a perturbation. The calculation of the ND correction to the
bound electron g factor via the effective radius approach
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FIG. 1. Nuclear chart with charge number Z and neutron number N , where the gray lines indicate the magic numbers 20, 28, 50, 82, and
126. The points represent even-even nuclei, where their color in panel (a) displays the ND g-factor correction δgND, which takes particularly
low values around the magic numbers and larger values in between. The two lower figures show δgND for the considered even-even nuclei as
a function of only the charge number Z (b) and of only the neutron number N (c), respectively. The vertical solid gray lines are the nuclear
magic numbers, which show that filled proton, as well as neutron shells, reduce δgND.

therefore relies on a perturbative evaluation of the energy
derivative in Eq. (14) and is limited by the accuracy of the
finite-size corrections.

In this work, the ND g-factor correction is calculated
with three methods: First, with the previously used analytical
ERM described above. Second, with a numerical ERM, where
instead of the approximative Eqs. (16) and (17), Eq. (15)
is solved numerically for R and the ND g-factor correction
is obtained by using Eq. (7) with the wave functions of
the corresponding charged sphere. Finally, we also calculate
δgND nonperturbatively by solving the Dirac equation (3)
numerically with the dual kinetic balance method [39] for
the potential (2), including all finite-size effects due to the
deformed charge distribution ρcaβ2β4 (r, ϑ ). Then, the g factors
needed in Eq. (11) for the ND correction can be obtained
by numerical integration of the wave functions in Eq. (7).
Alternatively, the derivative of the energies in Eq. (8) can be

calculated numerically as

∂Enκ

∂me

≈ E(me+δm)
nκ − E(me−δm)

nκ

2δm
, (18)

with a suitable δm/me
1. Here, E(mi )
nκ stands for the bind-

ing energy obtained by solving the Dirac equation with the
electron mass replaced by mi . We find both methods to be in
excellent agreement.

We calculated the ND g-factor correction for a wide range
of even-even, both in the proton and neutron number and
therefore spinless, nuclei with charge numbers between 16
and 96 using the deformed Fermi distribution from Eq. (4)
with parameters a, c, β2, and β4 obtained as described above.
The required rms values for the nuclear charge radius are
taken from Ref. [36] and the reduced transition probabilities
needed for the calculation of β2 via (13) from Ref. [40]. The
resulting values for |δgND|, obtained by the nonperturbative
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TABLE I. Comparison of the nuclear deformation g-factor correction obtained by the effective radius method (ERM) with the analytical
expressions from Eqs. (16) and (17) (δg(eff,A)

ND ) and by the ERM with effective radius and corresponding energy correction calculated numerically
(δg(eff,N)

ND ) and nonperturbatively by direct numerical calculations (δg(num)
ND ) for several isotopes. RN is the rms nuclear electric charge radius

from literature [36] and β2, β4 are the deformation parameters of the deformed Fermi distribution (4). The parameters of the deformed Fermi
distribution were either taken from Ref. [25] or calculated as described in the text, where the β4 values from Ref. [38] were used.

RN (fm) β2 β4 δg
(eff,A)
ND δg

(eff,N)
ND δg

(num)
ND

58
26Fe a 3.775 0.274 −0.019 −2.10 × 10−11 −1.95 × 10−11 −1.99 × 10−11

82
38Sr a 4.248 0.263 0.001 −3.57 × 10−10 −3.16 × 10−10 −3.27 × 10−10

86
38Sr b 4.226 0.134c 0.000 −8.98 × 10−11 −8.01 × 10−11 −8.24 × 10−11

100
38Sr b 4.487 0.435c 0.000 −1.08 × 10−09 −0.97 × 10−09 −1.00 × 10−09

98
44Ru a 4.423 0.194 0.038 −6.91 × 10−10 −6.02 × 10−10 −6.21 × 10−10

116
48Cd a 4.620 0.190 −0.038 −1.13 × 10−09 −0.99 × 10−09 −1.02 × 10−09

116
50Sn a 4.625 0.108 −0.008 −5.03 × 10−10 −4.36 × 10−10 −4.48 × 10−10

134
54Xe a 4.790 0.113 0.000 −1.09 × 10−09 −0.94 × 10−09 −0.96 × 10−09

142
60Nd b 4.912 0.100 0.000 −2.01 × 10−09 −1.71 × 10−09 −1.76 × 10−09

150
60Nd b 5.042 0.278 0.000 −1.70 × 10−08 −1.45 × 10−08 −1.49 × 10−08

144
62Sm b 4.945 0.090 0.000 −2.14 × 10−09 −1.81 × 10−09 −1.85 × 10−09

154
62Sm b 5.111 0.328 0.000 −3.24 × 10−08 −2.75 × 10−08 −2.82 × 10−08

152
64Gd a 5.077 0.202 0.050 −1.86 × 10−08 −1.56 × 10−08 −1.60 × 10−08

208
82Pb a 5.501 0.061 0.000 −1.35 × 10−08 −1.10 × 10−08 −1.13 × 10−08

234
92U b 5.829 0.256 0.080 −1.12 × 10−06 −0.90 × 10−06 −0.91 × 10−06

238
92U b 5.851 0.280 0.070 −1.28 × 10−06 −1.02 × 10−06 −1.04 × 10−06

244
94Pu a 5.895 0.284 0.062 −1.57 × 10−06 −1.25 × 10−06 −1.27 × 10−06

248
96Cm a 5.869 0.294 0.040 −1.90 × 10−06 −1.51 × 10−06 −1.54 × 10−06

a Parameters obtained as described in the text.
b Parameters of deformed Fermi distribution taken from Ref. [25].
c Value from Ref. [42].

method, are shown in Fig. 1 as a function of the charge number
Z and the neutron number N . If proton or neutron number is
in the proximity of a nuclear magic number 2, 8, 20, 28, 50,
82, and 126, which corresponds to a filled proton or neutron
shell [41], the nuclear shell closure effects also transfer to the
bound electron g factor, and the ND correction is reduced.
In Table I, a comparison between our numerical approaches
and the analytical ERM from Ref. [25] is shown. The β2

parameters for 86,100Sr are taken from Ref. [42], which was
not specified in Ref. [25].

Now, let us discuss the main causes for the disagreement of
the results as presented in Table I. Both Eqs. (16) and (17) are
approximations derived by perturbation theory, which affects
the accuracy of the analytical ERM (δg(eff,A)

ND ). Equation (16)
has an estimated relative uncertainty �0.2% [26] and (17) uses
only the second and fourth moments of the nuclear charge
distribution for finding the effective radius. Also, it was shown
in Ref. [28] that the analytical ERM for arbitrary charge
distributions is incomplete in order (Zα)2me(ZαmeRN )3,
where RN is the nuclear rms charge radius. Furthermore, even
if the effective radius is calculated without approximations
according to Eq. (15), the wave functions of the corresponding
homogeneously charged sphere differ slightly from the ones
of the deformed Fermi distribution with the same binding
energy. This affects values of the g factor and explains the
difference between the numerical ERM (δg(eff,N)

ND ) and the
direct numerical calculations (δg(num)

ND ). Finally, being a dif-

ference of two small finite-nuclear-size corrections, the ND
correction can exhibit enhanced sensitivity on the uncertainty
of the ERM. From Table I, we conclude that for high Z,
the difference between analytical ERM and nonperturbative
calculations is mainly due to the approximations in Eqs. (16)
and (17).

Concluding, the analytical ERM proved to be a good
order-of-magnitude estimate of the ND correction, but for
high-precision calculations, nonperturbative methods beyond
the ERM and without an expansion in Zα or Zα me RN are
indispensable. Convergence of the numerical methods was
checked by varying numerical parameters and using various
grids, and the obtained accuracy permits the consideration
of nuclear size and shape with an accuracy level much
higher than the differences to the perturbative method for
the considered nuclei. For low-Z nuclei, however, it becomes
increasingly difficult to resolve the small deformation effect
with the numerical methods.

IV. CONCLUSION

In summary, the ND g-factor correction was calculated
nonperturbatively for a wide range of nuclei by using
quadrupole deformations estimated from nuclear data. By
comparing the previously used perturbative ERM and the all-
order numerical approach, it was shown that the contributions
of the nonperturbative effects can amount up to the 20% level.
Previously, the uncertainty of the finite nuclear size correction
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was commonly estimated as the difference between the Fermi
distribution and a homogeneously charged sphere, which is
a very conservative estimate [9]. If the finite size correction
is calculated including deformation effects, the remaining
model uncertainty is reduced to the difference between the
deformed Fermi distribution and the true, unknown nuclear
charge distribution. As a consequence, precise calculation of
deformation effects are needed. In the low-Z regime, the ND
corrections can safely be neglected, especially for the ions
considered in Ref. [1]. However, considering a ND correction
up to the parts-per-million level and an expected parts-per-
billion accuracy, or even below, for the g-factor experiments
with high-Z nuclei, in this case an all-order treatment is
indispensible. These results motivate a nonperturbative treat-
ment of nuclear shape effects also for other atomic properties,
e.g., fine and hyperfine splittings. The distribution of electric

charge inside the nucleus is a major theoretical uncertainty
for g factors with heavy nuclei, which suggests the extraction
of information thereon from experiments. Our work demon-
strates the required accurate mapping of arbitrary nuclear
charge distributions to corresponding g factors. Furthermore,
the ND correction was shown to be a not monotonically
increasing function of the nuclear charge number. In fact, it
rather reflects the nuclear shell model by taking particularly
low values around filled proton, as well as neutron shells,
showing the neutrons’ indirect influence on the distribution
of electric charge inside the atomic nucleus.
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